Automata and Formal Languages - Exercise Sheet 9

Exercise 9.1

(a) Give a formula Block_between of $\operatorname{MSO}(\Sigma)$ such that Block_between (X, i, j) holds whenever $X=\{i, i+$ $1, \ldots, j\}$.
(b) Let $0 \leq m<n$. Give a formula $\operatorname{Mod}^{m, n}$ of $\operatorname{MSO}(\Sigma)$ such that $\operatorname{Mod}^{m, n}(i, j)$ holds whenever $\left|w_{i} w_{i+1} \cdots w_{j}\right| \equiv$ $m(\bmod n)$, i.e. whenever $j-i+1 \equiv m(\bmod n)$.
(c) Let $0 \leq m<n$. Give a sentence of $\operatorname{MSO}(\Sigma)$ that defines $a^{m}\left(a^{n}\right)^{*}$.
(d) Give a sentence of $\operatorname{MSO}(\{a, b\})$ that defines the language of words such that every two b 's with no other b in between are separated by a block of a 's of odd length.

Exercise 9.2

Let $\inf (w)$ denote the set of letters occurring infinitely often in the infinite word w. Give Büchi automata and ω-regular expressions for the following ω-languages:
(a) $L_{1}=\left\{w \in \Sigma^{\omega}\right.$: in w, every a is immediately followed by a $\left.b\right\}$ over alphabet $\Sigma=\{a, b, c\}$,
(b) $L_{2}=\left\{w \in \Sigma^{\omega}: w\right.$ has no occurrence of bab\} over alphabet $\Sigma=\{a, b\}$,
(c) $L_{3}=\left\{w \in \Sigma^{\omega}: \inf (w) \subseteq\{a, b\}\right\}$ over alphabet $\Sigma=\{a, b, c\}$,
(d) $L_{4}=\left\{w \in \Sigma^{\omega}:\{a, b\} \subseteq \inf (w)\right\}$ over alphabet $\Sigma=\{a, b, c\}$,
(e) Does there exist a deterministic Büchi automaton accepting L_{3} ? If there is then give it, otherwise give a proof of why it is not true.

Exercise 9.3

Prove or disprove:
(a) For every Büchi automaton A, there exists a Büchi automaton B with a single initial state and such that $L_{\omega}(A)=L_{\omega}(B) ;$
(b) For every Büchi automaton A, there exists a Büchi automaton B with a single accepting state and such that $L_{\omega}(A)=L_{\omega}(B)$;
(c) There exists a Büchi automaton recognizing the finite ω-language $\{w\}$ such that $w \in\{0,1, \ldots, 9\}^{\omega}$ and w_{i} is the $i^{\text {th }}$ decimal of $\sqrt{2}$.

Exercise 9.4

Recall that every finite set of finite words is a regular language. Prove that this does not hold for infinite words. More precisely:
(a) Prove that every nonempty ω-regular language contains an ultimately periodic ω-word, i.e., an ω-word of the form $u v^{\omega}$ for some finite words $u \in \Sigma^{*}$ and $v \in \Sigma^{+}$.
(b) Give an ω-word w such that $\{w\}$ is not an ω-regular language.

Solution 9.1

(a) Block_between $(X, i, j):=\forall x(x \in X) \leftrightarrow(i \leq x \wedge x \leq j)$.
(b) The idea is to construct the set of positions $\{i+m+k \cdot n \mid k \geq 0\}$ and check if $j+1$ is in the set. $\operatorname{Mod}^{m, n}(i, j):=\exists x \exists y\left(x=m+i \wedge y=j+1 \wedge \operatorname{Mult}^{n}(x, y)\right)$ where

$$
\operatorname{Mult}^{n}(a, b):=\exists X(b \in X) \wedge \forall x(x \in X) \leftrightarrow[(x=a) \vee(\exists y \in X x=y+n)]
$$

(c) $\underbrace{[(m=0) \wedge(\neg \exists x \operatorname{first}(x))]}_{\text {empty word if } \mathrm{m}=0} \vee\left[\forall x Q_{a}(x) \wedge \exists x \exists y \operatorname{first}(x) \wedge \operatorname{last}(y) \wedge \operatorname{Mod}^{m, n}(x, y)\right]$.
(d) $\forall x \forall y[\varphi(x, y) \rightarrow \psi(x, y)]$ where

$$
\begin{aligned}
& \varphi(x, y):=(x<y) \wedge Q_{b}(x) \wedge Q_{b}(y) \wedge\left[\forall z(x<z \wedge z<y) \rightarrow \neg Q_{b}(z)\right] \\
& \psi(x, y):=\left[\forall z(x<z \wedge z<y) \rightarrow Q_{a}(z)\right] \wedge \operatorname{Mod}^{1,2}(x, y)
\end{aligned}
$$

In fact, since the question states that the alphabet is $\{a, b\}$, we can remove $\forall z(x<z \wedge z<y) \rightarrow Q_{a}(z)$ from $\psi(x, y)$.

Solution 9.2

These are just some possible solutions.
(a) $\left((b+c)^{*}(a b)^{*}\right)^{\omega}$, and

(b) $a^{*}\left(b^{*}\left(\epsilon+a a a^{*}\right)\right)^{\omega}$, and

(c) $(a+b+c)^{*}(a+b)^{\omega}$, and

(d) $\left((b+c)^{*} a(a+c)^{*} b\right)^{\omega}$, and

(e) It is asked whether there exists a deterministic Büchi automaton accepting L_{3}. We show that it is not the case. For the sake of contradiction, suppose there exists a deterministic Büchi automaton $B=$ $\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L_{\omega}(B)=L_{3}$. Since $c b^{\omega} \in L_{3}, B$ must visit F infinitely often when reading $c b^{\omega}$. In particular, this implies the existence of $m_{1}>0$ and $q_{1} \in F$ such that $q_{0} \xrightarrow{c b^{m_{1}}} q_{1}$. Similarly, since $c b^{m_{1}} c b^{\omega} \in L_{3}$, there exist $m_{2}>0$ and $q_{2} \in F$ such that $q_{0} \xrightarrow{c b^{m_{1}} c b^{m_{2}}} q_{2}$. Since B is deterministic, we have $q_{0} \xrightarrow{c b^{m_{1}}} q_{1} \xrightarrow{c b^{m_{2}}} q_{2}$. By repeating this argument $|Q|$ times, we can construct $m_{1}, m_{2}, \ldots, m_{|Q|}>0$ and $q_{1}, q_{2}, \ldots, q_{|Q|} \in F$ such that

$$
q_{0} \xrightarrow{c b^{m_{1}}} q_{1} \xrightarrow{c b^{m_{2}}} q_{2} \cdots \xrightarrow{c b^{m_{|Q|}}} q_{|Q|} .
$$

By the pigeonhole principle, there exist $0 \leq i<j \leq|Q|$ such that $q_{i}=q_{j}$. Let

$$
\begin{aligned}
u & =c b^{m_{1}} c b^{m_{2}} \cdots c b^{m_{i}} \\
v & =c b^{m_{i+1}} c b^{m_{i+2}} \cdots c b^{m_{j}}
\end{aligned}
$$

We have $q_{0} \xrightarrow{u} q_{i} \xrightarrow{v} q_{i} \xrightarrow{v} q_{i} \xrightarrow{v} \cdots$ which implies that $u v^{\omega} \in L_{\omega}(B)$. Also notice that c appears infinitely often in $u v^{\omega}$, that is, $c \in \inf \left(u v^{\omega}\right)$. Therefore we have $u v^{\omega} \notin L_{3}=L_{\omega}(B)$, which yields a contradiction.

Solution 9.3

(a) True. The construction for NFAs still work for Büchi automata.

Let $B=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ be a Büchi automaton. We add a state to Q which acts as the single initial state. More formally, we define $B^{\prime}=\left(Q \cup\left\{q_{\text {init }}\right\}, \Sigma, \delta^{\prime},\left\{q_{\text {init }}\right\}, F\right)$ where

$$
\delta^{\prime}(q, a)= \begin{cases}\bigcup_{q_{0} \in Q_{0}} \delta\left(q_{0}, a\right) & \text { if } q=q_{\text {init }} \\ \delta(q, a) & \text { otherwise }\end{cases}
$$

We have $L_{\omega}(B)=L_{\omega}\left(B^{\prime}\right)$, since there exists $q_{0} \in Q_{0}$ such that

$$
q_{0}{\xrightarrow{a_{1}}}_{B} q_{1}{\xrightarrow{a_{2}}}_{B} q_{2}{\xrightarrow{a_{3}}}_{B} \cdots
$$

if and only if

$$
q_{\text {init }}{\xrightarrow{a_{1}}}_{B^{\prime}} q_{1}{\xrightarrow{a_{2}}}_{B^{\prime}} q_{2}{\xrightarrow{a_{3}}}_{B^{\prime}} \cdots
$$

(b) False. Let $L=\left\{a^{\omega}, b^{\omega}\right\}$. Suppose there exists a Büchi automaton $B=\left(Q,\{a, b\}, \delta, Q_{0}, F\right)$ such that $L_{\omega}(B)=L$ and $F=\{q\}$. Since $a^{\omega} \in L$, there exist $q_{0} \in Q_{0}, m \geq 0$ and $n>0$ such that

$$
q_{0} \xrightarrow{a^{m}} q \xrightarrow{a^{n}} q .
$$

Similarly, since $b^{\omega} \in L$, there exist $q_{0}^{\prime} \in Q_{0}, m^{\prime} \geq 0$ and $n^{\prime}>0$ such that

$$
q_{0}^{\prime} \xrightarrow{b^{m^{\prime}}} q \xrightarrow{b^{n^{\prime}}} q .
$$

This implies that

$$
q_{0} \xrightarrow{a^{m}} q \xrightarrow{b^{n^{\prime}}} q \xrightarrow{b^{n^{\prime}}} \cdots
$$

Therefore, $a^{m}\left(b^{n^{\prime}}\right)^{\omega} \in L$, which is a contradiction.
(c) False. Suppose there exists a Büchi automaton $B=\left(Q,\{0,1, \ldots, 9\}, \delta, Q_{0}, F\right)$ such that $L_{\omega}(B)=\{w\}$. There exist $u \in\{0,1, \ldots, 9\}^{*}, v \in\{0,1, \ldots, 9\}^{+}, q_{0} \in Q_{0}$ and $q \in F$ such that

$$
q_{0} \xrightarrow{u} q \xrightarrow{v} q .
$$

Therefore, $u v^{\omega} \in L_{\omega}(B)$ which implies that $w=u v^{\omega}$. Since w represents the decimals of $\sqrt{2}$, we conclude that $\sqrt{2}$ is rational, which is a contradiction.

Solution 9.4

(a) Let L be a nonempty ω-regular language and let $B=\left(Q,\{0,1\}, \delta, Q_{0}, F\right)$ be an NBA that recognizes L. Since Q is finite, there exist $u \in \Sigma^{*}, v \in \Sigma^{+}, q_{0} \in Q_{0}$ and $q \in F$ such that

$$
q_{0} \xrightarrow{u} q \xrightarrow{v} q .
$$

Consequently, we have $u v^{\omega} \in L$ by iterating v from state q.
(b) Let $w \in\{0,1\}^{\omega}$ be the word given by

$$
w_{i}= \begin{cases}1 & \text { if } i \text { is a square } \\ 0 & \text { otherwise }\end{cases}
$$

We prove that w is not ultimately periodic, which, by (a), implies that $\{w\}$ is not ω-regular. For the sake of contradiction, suppose $w=u v^{\omega}$ for some $u \in\{0,1\}^{*}$ and $v \in\{0,1\}^{+}$. If $v \in 0^{*}$, then we obtain a contradiction. Thus, there exists $1 \leq i \leq|v|$ such that $v_{i}=1$. Let $m=|u|+i$ and $n=|v|$. By definition of $w, m+j \cdot n$ is a square for every $j \geq 0$. In particular, there exist $0<a<b$ such that

$$
m+n \cdot n=a^{2} \text { and } m+n \cdot n+n=b^{2}
$$

Note that $a \geq n$. Moreover,

$$
b^{2}=a^{2}+n \leq a^{2}+a<a^{2}+2 a+1=(a+1)^{2} .
$$

Therefore $a^{2}<b^{2}<(a+1)^{2}$ which is a contradiction.

