# Automata and Formal Languages — Exercise Sheet 9

## Exercise 9.1

- (a) Give a formula Block\_between of  $MSO(\Sigma)$  such that  $Block_between(X, i, j)$  holds whenever  $X = \{i, i + 1, \dots, j\}$ .
- (b) Let  $0 \le m < n$ . Give a formula  $\operatorname{Mod}^{m,n}$  of  $\operatorname{MSO}(\Sigma)$  such that  $\operatorname{Mod}^{m,n}(i,j)$  holds whenever  $|w_i w_{i+1} \cdots w_j| \equiv m \pmod{n}$ , i.e. whenever  $j i + 1 \equiv m \pmod{n}$ .
- (c) Let  $0 \le m < n$ . Give a sentence of  $MSO(\Sigma)$  that defines  $a^m(a^n)^*$ .
- (d) Give a sentence of  $MSO(\{a, b\})$  that defines the language of words such that every two b's with no other b in between are separated by a block of a's of odd length.

### Exercise 9.2

Let inf(w) denote the set of letters occurring infinitely often in the infinite word w. Give Büchi automata and  $\omega$ -regular expressions for the following  $\omega$ -languages:

- (a)  $L_1 = \{ w \in \Sigma^{\omega} : \text{in } w, \text{ every } a \text{ is immediately followed by a } b \}$  over alphabet  $\Sigma = \{a, b, c\}, d$
- (b)  $L_2 = \{ w \in \Sigma^{\omega} : w \text{ has no occurrence of } bab \} \text{ over alphabet } \Sigma = \{ a, b \},$
- (c)  $L_3 = \{ w \in \Sigma^{\omega} : \inf(w) \subseteq \{a, b\} \}$  over alphabet  $\Sigma = \{a, b, c\},\$
- (d)  $L_4 = \{ w \in \Sigma^{\omega} : \{a, b\} \subseteq \inf(w) \}$  over alphabet  $\Sigma = \{a, b, c\},\$
- (e) Does there exist a deterministic Büchi automaton accepting  $L_3$ ? If there is then give it, otherwise give a proof of why it is not true.

## Exercise 9.3

Prove or disprove:

- (a) For every Büchi automaton A, there exists a Büchi automaton B with a single initial state and such that  $L_{\omega}(A) = L_{\omega}(B)$ ;
- (b) For every Büchi automaton A, there exists a Büchi automaton B with a single accepting state and such that  $L_{\omega}(A) = L_{\omega}(B)$ ;
- (c) There exists a Büchi automaton recognizing the finite  $\omega$ -language  $\{w\}$  such that  $w \in \{0, 1, \dots, 9\}^{\omega}$  and  $w_i$  is the *i*<sup>th</sup> decimal of  $\sqrt{2}$ .

## Exercise 9.4

Recall that every finite set of finite words is a regular language. Prove that this does not hold for infinite words. More precisely:

- (a) Prove that every nonempty  $\omega$ -regular language contains an *ultimately periodic*  $\omega$ -word, i.e., an  $\omega$ -word of the form  $uv^{\omega}$  for some finite words  $u \in \Sigma^*$  and  $v \in \Sigma^+$ .
- (b) Give an  $\omega$ -word w such that  $\{w\}$  is not an  $\omega$ -regular language.

Hint: use (a).

# Solution 9.1

- (a) Block\_between $(X, i, j) := \forall x \ (x \in X) \leftrightarrow (i \le x \land x \le j).$
- (b) The idea is to construct the set of positions  $\{i + m + k \cdot n \mid k \ge 0\}$  and check if j + 1 is in the set.  $\operatorname{Mod}^{m,n}(i,j) := \exists x \exists y \ (x = m + i \land y = j + 1 \land \operatorname{Mult}^n(x,y))$  where

$$\operatorname{Mult}^{n}(a,b) := \exists X \ (b \in X) \land \forall x \ (x \in X) \leftrightarrow [(x=a) \lor (\exists y \in X \ x=y+n)].$$

- (c)  $\underbrace{[(m=0)\land (\neg \exists x \text{ first}(x))]}_{\text{empty word if } m=0} \lor [\forall x \ Q_a(x)\land \exists x \exists y \text{ first}(x)\land \text{last}(y)\land \text{Mod}^{m,n}(x,y)].$
- (d)  $\forall x \forall y \ [\varphi(x, y) \to \psi(x, y)]$  where

$$\begin{split} \varphi(x,y) &:= (x < y) \land Q_b(x) \land Q_b(y) \land [\forall z \ (x < z \land z < y) \to \neg Q_b(z)], \\ \psi(x,y) &:= [\forall z \ (x < z \land z < y) \to Q_a(z)] \land \operatorname{Mod}^{1,2}(x,y). \end{split}$$

In fact, since the question states that the alphabet is  $\{a, b\}$ , we can remove  $\forall z \ (x < z \land z < y) \rightarrow Q_a(z)$  from  $\psi(x, y)$ .

### Solution 9.2

These are just some possible solutions.

(a)  $((b+c)^*(ab)^*)^{\omega}$ , and



(b)  $a^*(b^*(\epsilon + aaa^*))^{\omega}$ , and



(c)  $(a+b+c)^*(a+b)^{\omega}$ , and



(d)  $((b+c)^*a(a+c)^*b)^{\omega}$ , and





(e) It is asked whether there exists a deterministic Büchi automaton accepting  $L_3$ . We show that it is not the case. For the sake of contradiction, suppose there exists a deterministic Büchi automaton  $B = (Q, \Sigma, \delta, q_0, F)$  such that  $L_{\omega}(B) = L_3$ . Since  $cb^{\omega} \in L_3$ , B must visit F infinitely often when reading  $cb^{\omega}$ . In particular, this implies the existence of  $m_1 > 0$  and  $q_1 \in F$  such that  $q_0 \xrightarrow{cb^{m_1}} q_1$ . Similarly, since  $cb^{m_1}cb^{\omega} \in L_3$ , there exist  $m_2 > 0$  and  $q_2 \in F$  such that  $q_0 \xrightarrow{cb^{m_1}cb^{m_2}} q_2$ . Since B is deterministic, we have  $q_0 \xrightarrow{cb^{m_1}} q_1 \xrightarrow{cb^{m_2}} q_2$ . By repeating this argument |Q| times, we can construct  $m_1, m_2, \ldots, m_{|Q|} > 0$  and  $q_1, q_2, \ldots, q_{|Q|} \in F$  such that

$$q_0 \xrightarrow{cb^{m_1}} q_1 \xrightarrow{cb^{m_2}} q_2 \cdots \xrightarrow{cb^{m_{|Q|}}} q_{|Q|}.$$

By the pigeonhole principle, there exist  $0 \le i < j \le |Q|$  such that  $q_i = q_j$ . Let

$$u = cb^{m_1}cb^{m_2}\cdots cb^{m_i},$$
$$v = cb^{m_{i+1}}cb^{m_{i+2}}\cdots cb^{m_j}$$

We have  $q_0 \xrightarrow{u} q_i \xrightarrow{v} q_i \xrightarrow{v} q_i \xrightarrow{v} \cdots$  which implies that  $uv^{\omega} \in L_{\omega}(B)$ . Also notice that c appears infinitely often in  $uv^{\omega}$ , that is,  $c \in \inf(uv^{\omega})$ . Therefore we have  $uv^{\omega} \notin L_3 = L_{\omega}(B)$ , which yields a contradiction.  $\Box$ 

# Solution 9.3

(a) True. The construction for NFAs still work for Büchi automata.

Let  $B = (Q, \Sigma, \delta, Q_0, F)$  be a Büchi automaton. We add a state to Q which acts as the single initial state. More formally, we define  $B' = (Q \cup \{q_{init}\}, \Sigma, \delta', \{q_{init}\}, F)$  where

$$\delta'(q, a) = \begin{cases} \bigcup_{q_0 \in Q_0} \delta(q_0, a) & \text{if } q = q_{\text{init}}, \\ \delta(q, a) & \text{otherwise.} \end{cases}$$

We have  $L_{\omega}(B) = L_{\omega}(B')$ , since there exists  $q_0 \in Q_0$  such that

$$q_0 \xrightarrow{a_1}_B q_1 \xrightarrow{a_2}_B q_2 \xrightarrow{a_3}_B \cdots$$

if and only if

$$q_{\text{init}} \xrightarrow{a_1}_{B'} q_1 \xrightarrow{a_2}_{B'} q_2 \xrightarrow{a_3}_{B'} \cdots$$

(b) False. Let  $L = \{a^{\omega}, b^{\omega}\}$ . Suppose there exists a Büchi automaton  $B = (Q, \{a, b\}, \delta, Q_0, F)$  such that  $L_{\omega}(B) = L$  and  $F = \{q\}$ . Since  $a^{\omega} \in L$ , there exist  $q_0 \in Q_0$ ,  $m \ge 0$  and n > 0 such that

$$q_0 \xrightarrow{a^m} q \xrightarrow{a^n} q$$

Similarly, since  $b^{\omega} \in L$ , there exist  $q'_0 \in Q_0$ ,  $m' \ge 0$  and n' > 0 such that

$$q'_0 \xrightarrow{b^{m'}} q \xrightarrow{b^{n'}} q$$

This implies that

$$q_0 \xrightarrow{a^m} q \xrightarrow{b^{n'}} q \xrightarrow{b^{n'}} \cdots$$

Therefore,  $a^m (b^{n'})^{\omega} \in L$ , which is a contradiction.

(c) False. Suppose there exists a Büchi automaton  $B = (Q, \{0, 1, \dots, 9\}, \delta, Q_0, F)$  such that  $L_{\omega}(B) = \{w\}$ . There exist  $u \in \{0, 1, \dots, 9\}^*$ ,  $v \in \{0, 1, \dots, 9\}^+$ ,  $q_0 \in Q_0$  and  $q \in F$  such that

 $q_0 \xrightarrow{u} q \xrightarrow{v} q$ .

Therefore,  $uv^{\omega} \in L_{\omega}(B)$  which implies that  $w = uv^{\omega}$ . Since w represents the decimals of  $\sqrt{2}$ , we conclude that  $\sqrt{2}$  is rational, which is a contradiction.

# Solution 9.4

(a) Let L be a nonempty  $\omega$ -regular language and let  $B = (Q, \{0, 1\}, \delta, Q_0, F)$  be an NBA that recognizes L. Since Q is finite, there exist  $u \in \Sigma^*$ ,  $v \in \Sigma^+$ ,  $q_0 \in Q_0$  and  $q \in F$  such that

$$q_0 \xrightarrow{u} q \xrightarrow{v} q.$$

Consequently, we have  $uv^{\omega} \in L$  by iterating v from state q.

(b) Let  $w \in \{0,1\}^{\omega}$  be the word given by

$$w_i = \begin{cases} 1 & \text{if } i \text{ is a square,} \\ 0 & \text{otherwise.} \end{cases}$$

We prove that w is not ultimately periodic, which, by (a), implies that  $\{w\}$  is not  $\omega$ -regular. For the sake of contradiction, suppose  $w = uv^{\omega}$  for some  $u \in \{0,1\}^*$  and  $v \in \{0,1\}^+$ . If  $v \in 0^*$ , then we obtain a contradiction. Thus, there exists  $1 \le i \le |v|$  such that  $v_i = 1$ . Let m = |u| + i and n = |v|. By definition of  $w, m + j \cdot n$  is a square for every  $j \ge 0$ . In particular, there exist 0 < a < b such that

$$m + n \cdot n = a^2$$
 and  $m + n \cdot n + n = b^2$ .

Note that  $a \geq n$ . Moreover,

$$b^{2} = a^{2} + n \le a^{2} + a < a^{2} + 2a + 1 = (a+1)^{2}.$$

Therefore  $a^2 < b^2 < (a+1)^2$  which is a contradiction.