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Automata and Formal Languages — Exercise Sheet 8

Exercise 8.1

(a) Give a recursive algorithm for the following operation:

Input: States p and q of the master automaton.
Output: State r of the master automaton such that L(r) = L(p) · L(q).

Observe that the languages L(p) and L(q) can have different lengths. Try to reduce the problem for p, q
to the problem for pa, q.

(b) Give a recursive algorithm for the following operation:

Input: A state q of the master automaton.
Output: State r of the master automaton such that L(r) = L(q)R

where R is the reverse operator.

(c) A coding over an alphabet Σ is a function h : Σ 7→ Σ. A coding h can naturally be extended to a function
over words, i.e., h(ε) = ε and h(w) = h(w1)h(w2) · · ·h(wn) for every w ∈ Σn. Give an algorithm for the
following operation:

Input: A state q of the master automaton and a coding h.
Output: State r of the master automaton such that L(r) = {h(w) : w ∈ L(q)}.

Can you make your algorithm more efficient when h is a permutation?

Exercise 8.2

Let Σ = {request , answer ,working , idle}.

(1) Build a regular expression and an automaton recognizing all words with the property P1: for every
occurrence of request there is a later occurrence of answer .

(2) Build an automaton recognizing all words with the property P2: there is an occurrence of answer before
which only working and request occur.

(3) Using automata theoretic constructions, prove that all words accepted by the automaton A below satisfy
P1, and give a regular expression for all words accepted by the automaton A that violate P2.

q0 q1

Σ

answer



Exercise 8.3

Suppose there are n processes being executed concurrently. Each process has a critical section and a non
critical section. At any time, at most one process should be in its critical section. In order to respect this
mutual exclusion property, the processes communicate through a channel c. Channel c is a queue that can store
up to m messages. A process can send a message x to the channel with the instruction c ! x. A process can
also consume the first message of the channel with the instruction c ? x. If the channel is full when executing
c ! x, then the process blocks and waits until it can send x. When a process executes c ? x, it blocks and waits
until the first message of the channel becomes x.

Consider the following algorithm. Process i declares its intention of entering its critical section by sending i to
the channel, and then enters it when the first message of the channel becomes i:

1 process(i):
2 while true do
3 c ! i
4 c ? i
5 /* critical section */

6 /* non critical section */

(a) Sketch an automaton that models a channel of size m > 0 where messages are drawn from some finite
alphabet Σ.

(b) Model the above algorithm, with n = 2 and m = 1, as a network of automata. There should be three
automata: one for the channel, one for process(0) and one for process(1).

(c) Construct the asynchronous product of the network obtained in (b).

(d) Use the automaton obtained in (c) to show that the above algorithm violates mutual exclusion, i.e. the
two processes can be in their critical sections at the same time.

(e) Design an algorithm that makes use of a channel to achieve mutual exclusion for two processes (n = 2).
You may choose m as you wish.

(f) Model your algorithm from (e) as a network of automata.

(g) Construct the asynchronous product of the network obtained in (f).

(h) Use the automaton obtained in (g) to show that your algorithm achieves mutual exclusion.



Solution 8.1

(a) Let L and L′ be fixed-length languages. The following holds:

L · L′ =


∅ if L = ∅,
L′ if L = {ε},⋃
a∈Σ

{a} · La · L′ otherwise.

These identities give rise to the following algorithm:

Input: States p and q of the master automaton.
Output: State r of the master automaton such that L(r) = L(p) · L(q).

1 concat(p, q):
2 if G(p, q) is not empty then
3 return G(p, q)
4 else if p = q∅ then
5 return q∅
6 else if p = qε then
7 return q
8 else
9 for ai ∈ Σ do

10 si ← concat(pai , q)
11 G(p, q)← make(s1, s2, . . . , sn)
12 return G(p, q)

(b) Let L be a fixed-length language. The following holds:

LR =


∅ if L = ∅,
{ε} if L = {ε},⋃
a∈Σ

(La)R · {a} otherwise.

These identities give rise to the following algorithm:

Input: A state q of the master automaton.
Output: State r of the master automaton such that L(r) = L(q)R.

1 reverse(q):
2 if G(q) is not empty then
3 return G(q)
4 else if q = q∅ then
5 return q∅
6 else if q = qε then
7 return qε
8 else
9 p← q∅

10 for ai ∈ Σ do
11 si ← qε
12 sj ← q∅ for every i ̸= j
13 r ← concat(reverse(qai), make(s1, s2, . . . , sn))
14 p← union(p, r)

15 G(q)← p
16 return G(q)

⋆ Note that Lines 11 and 12 are introduced in order to represent the language {ai} in Line 13 as a state
make(s1, s2, . . . , sn) of the master automaton. This can be avoided by using the algorithm from Exercise
8.1, namely the state that represents {ai} is add-lang({ai}). Thus, Lines 11-13 can be replaced just by
r ← concat(reverse(qai), add-lang({ai}))



(c) Let L be a fixed-length language and let h be a coding. The following holds:

h(L) =


∅ if L = ∅,
{ε} if L = {ε},⋃
a∈Σ

h(a) · h(La) otherwise.

These identities give rise to the following algorithm:

Input: A state q of the master automaton and a coding h.
Output: State r of the master automaton such that L(r) = {h(w) : w ∈ L(q)}.

1 coding(q, h):
2 if G(q) is not empty then
3 return G(q)
4 else if q = q∅ then
5 return q∅
6 else if q = qε then
7 return qε
8 else
9 p← q∅

10 for a ∈ Σ do
11 r ← coding(qa, h)
12 sh(a) ← r
13 sb ← q∅ for every b ̸= h(a)
14 p← union(p, make(s))

15 G(q)← p
16 return G(q)

The above algorithm makes use of union because the coding may be the same for distinct letters, i.e.
h(a) = h(b) for a ̸= b is possible. However, if the coding is a permutation, then this is not possible, and
thus each letter maps to a unique residual. Therefore, the algorithm can be adapted as follows:

Input: A state q of the master automaton and a coding h which is a permutation.
Output: State r of the master automaton such that L(r) = {h(w) : w ∈ L(q)}.

1 coding-permutation(q, h):
2 if G(q) is not empty then
3 return G(q)
4 else if q = q∅ then
5 return q∅
6 else if q = qε then
7 return qε
8 else
9 for a ∈ Σ do

10 sh(a) ← coding-permutation(qa, h)
11 G(q)← make(s)
12 return G(q)



Solution 8.2

(1) A possible regular expression is (Σ∗answer)∗(Σ \ {request})∗. (Observe that we must also describe the
sequences containing no occurrence of request .) A minimal NFA for the property is

q0 q1

Σ

answer

Σ \ {request}

(3) A minimal NFA for P2 is

r0 r1

{working , request}

answer

Σ

(4) Determinizing and complementing the automaton for P1 we get

s0 s1

Σ \ {request}
request

answer

Σ \ {answer}

The intersection of A and the automaton for P1 is empty: indeed, we can only reach a final state of A by
executing request , while we can only reach a final state of the automaton for P1 by executing answer . So we
cannot simultaneously reach final states in both.

For the second half, since the automaton for P2 is deterministic, we can complement it by exchanging final and
non-final states (and not forgetting that the trap state now becomes an accepting state). We get:

r0 r1

r2

{working , request}

answer

idle

Σ

Σ

The intersection with A yields

{working , request}

idle answer

Σ

and the regular expression is (working + request)∗ idle Σ∗ answer .



Solution 8.3

(a) We construct an automaton AΣ,m that stores the content of the channel within its states. For example,
the automaton for Σ = {0, 1} and m = 2 is as follows:

□□

0□

1□

00

01

10

11

c ! 0

c ! 1

c ! 0

c ! 1

c ! 0

c ! 1

c ? 0

c ? 1

c ? 0

c ? 0

c ? 1

c ? 1

More formally, AΣ,m = (Q,Γ, δ, q0, F ) is defined as:

Q = {w ∈ (Σ ∪□)m : (wi = □) =⇒ (wi+1 = □) for every 1 ≤ i < m},
Γ = {c ! σ : σ ∈ Σ} ∪ {c ? σ : σ ∈ Σ},
q0 = □m,

F = Q.

Let ℓ : Q → {1, 2, . . . ,m} be the function that associates to each state q the position of the last letter of
q which is not □. For example, ℓ(abb□□) = 3. The transitions are formally defined as follows:

δ(q, c ! σ) =

{
q1q2 · · · qℓ(q)σ□m−ℓ(q)−1 if ℓ(q) < m,

none otherwise,

δ(q, c ? σ) =

{
q2q3 · · · qm□ if q1 = σ,

none otherwise.

⋆ Note that AΣ,m grows exponentially since |Q| =
∑m

i=0 |Σ|i = (|Σ|m+1 − 1)/(|Σ| − 1).

(b) The automata for the channel, process(0) and process(1) are respectively:

□

0

1

c ! 0

c ! 1

c ? 0

c ? 1



r0 w0 c0 n0
c ! 0 c ? 0 c0

n0

r1 w1 c1 n1
c ! 1 c ? 1 c1

n1

(c)

r0, r1,□ w0, r1, 0 c0, r1,□ n0, r1,□

r0, w1, 1

r0, c1,□ w0, c1, 0 c0, c1,□ n0, c1,□

r0, n1,□ w0, n1, 0 c0, n1,□ n0, n1,□

c0, w1, 1 n0, w1, 1

c ! 0 c ? 0 c0

n0

c ! 1

c ? 1

c ! 0 c ? 0 c0

n0

c1

n1

c1 c1 c1

n1 n1 n1

c ! 0 c ? 0 c0

n0

c ! 1 c ! 1

c ? 1 c ? 1

c0

n0

(d) The algorithm violates mutual exclusion since state (c0, c1,□) is reachable in the above automaton.

(e) We initialize a channel c of size one with message 1. When a process wants to enter its critical section, it
simply consumes 1 from the channel and sends it back once it is done:

(f) The automata modeling the channel and the two processes are respectively:



1 process():

2 while true do
3 /* non critical section */

4 c ? 1
5 /* critical section */

6 c ! 1

1 □
c ! 1, c ! 1

c ? 1, c ? 1

n0 w0 c0 ℓ0
n0 c ? 1 c0

c ! 1

n1 w1 c1 ℓ1
n1 c ? 1 c1

c ! 1

⋆ Note that we have introduced the new letters c ! 1 and c ? 1. We could have simply used letters c ! 1
and c ? 1. However, these new letters will be important when considering the asynchronous product of
the network. If the two automata modeling the processes both used c ! 1 and c ? 1, then the asynchronous
product would force them to synchronize on these letters.

⋆ In class, we have seen an alternative solution: to simply swap line 4 and 5 of the processes described
in #6.2. This also works. You can verify this solution either manually or with Spin.

(g)



n0, n1, 1 w0, n1, 1 c0, n1,□ ℓ0, n1,□

n0, w1, 1

n0, c1,□

n0, ℓ1,□

w0, w1, 1 c0, w1,□ ℓ0, w1,□

w0, c1,□

w0, ℓ1,□

n0 c ? 1 c0

c ! 1

n1

c ? 1

c1

c ! 1

n0 c ? 1 c0

c ! 1

n1 n1 n1

c ? 1

n0

c1

c ! 1

n0

(h) None of the state of the above automaton is of the form (c0, c1, σ) where σ ∈ {□, 1}. This implies that
both processes cannot be in their critical sections at the same time.


