Automata and Formal Languages - Exercise Sheet 8

Exercise 8.1

Let c a channel. A process can send a message m to the channel with the instruction $c!m$. A process can also consume the first message of the channel with the instruction c ? m. If the channel is full when executing $c!m$, then the process blocks and waits until it can send m. When a process executes c ? m, it blocks and waits until the first message of the channel becomes m.

Suppose there are two processes being executed concurrently that communicate through a channel c. Channel c is a queue that can store up to 1 message. The two processes follow these two algorithms respectively:

```
process(1):
    while true do
        c!m
        /* critical section */
        c?m
```

```
process (2):
    while true do
            c? m
            c? \(m\)
            /* critical section */
            \(c!m\)
```

a. Model the program by constructing a network of three automata:

- One for process 1 , using the alphabet $\Sigma_{1}=\left\{c ? m, c!m, c s_{1}\right\}$,
- One for process 2 , using the alphabet $\Sigma_{2}=\left\{\overline{c ? m}, \overline{c!m}, c s_{2}\right\}$,
- One for the channel c of size 1 , that is initially empty, using the alphabet $\Sigma_{c}=\{c ? m, c!m, \overline{c ? m}, \overline{c!m}\}$.
b. Construct the asynchronous product \mathcal{P} of the three automata obtained in (a). The alphabet of the automaton \mathcal{P} should be $\Sigma=\Sigma_{1} \cup \Sigma_{2} \cup \Sigma_{c}$.
c. Consider the state of the asynchronous product \mathcal{P} where both processes are in the critical section. Is this state reachable? Give a short justification based on automaton \mathcal{P}.

Exercise 8.2

Let Σ be a finite alphabet. A language $L \subseteq \Sigma^{*}$ is star-free if it can be expressed by a star-free regular expression, i.e. a regular expression where the Kleene star operation is forbidden, but complementation is allowed. For example, Σ^{*} is star-free since $\Sigma^{*}=\bar{\emptyset}$, but $(a a)^{*}$ is not.
(a) Give star-free regular expressions and $\operatorname{FO}(\Sigma)$ sentences for the following star-free languages with $\Sigma=$ $\{a, b\}$:
(i) Σ^{+}.
(ii) $\Sigma^{*} A \Sigma^{*}$ for some $A \subseteq \Sigma$.
(iii) A^{*} for some $A \subseteq \Sigma$.
(iv) $(a b)^{*}$.
(v) $\left\{w \in \Sigma^{*} \mid w\right.$ does not contain $\left.a a\right\}$.
(b) Show that finite and cofinite languages are star-free.
(c) Show that for every sentence $\varphi \in \mathrm{FO}(\Sigma)$, there exists a formula $\varphi^{+}(x, y)$, with two free variables x and y, such that for every $w \in \Sigma^{+}$and for every $1 \leq i \leq j \leq w$,

$$
w \neq \varphi^{+}(i, j) \quad \text { iff } \quad w_{i} w_{i+1} \cdots w_{j} \models \varphi .
$$

(d) Give a polynomial time algorithm that decides whether the empty word satisfies a given sentence of $\mathrm{FO}(\Sigma)$.
(e) Show that every star-free language can be expressed by an $\mathrm{FO}(\Sigma)$ sentence. Hint: Given a star-free regular expression r, build sentence $\varphi_{r} \in \mathrm{FO}(\Sigma)$ s.t. $L\left(\varphi_{r}\right)=L(r)$. You may use (c) and (d).

Exercise 8.3

Consider the logic PureMSO(Σ) with syntax

$$
\varphi:=X \subseteq Q_{a}|X<Y| X \subseteq Y|\neg \varphi| \varphi \vee \varphi \mid \exists X . \varphi
$$

Notice that formulas of $\operatorname{PureMSO}(\Sigma)$ do not contain first-order variables. The satisfaction relation of $\operatorname{PureMSO}(\Sigma)$ is given by:

$$
\begin{array}{lllll}
(w, \mathcal{J}) & \models & X \subseteq Q_{a} & \text { iff } & w[p]=a \text { for every } p \in \mathcal{J}(X) \\
(w, \mathcal{J}) & \models X<Y & \text { iff } & p<p^{\prime} \text { for every } p \in \mathcal{J}(X), p^{\prime} \in \mathcal{J}(Y) \\
(w, \mathcal{J}) & \models X \subseteq Y & \text { iff } & p \in \mathcal{J}(Y) \text { for every } p \in \mathcal{J}(X)
\end{array}
$$

with the rest as for $\operatorname{MSO}(\Sigma)$.
Prove that $\operatorname{MSO}(\Sigma)$ and $\operatorname{PureMSO}(\Sigma)$ have the same expressive power for sentences. That is, show that for every sentence ϕ of $\operatorname{MSO}(\Sigma)$ there is an equivalent sentence ψ of $\operatorname{PureMSO}(\Sigma)$, and vice versa.

Exercise 8.4

Let $r \geq 0$ and $n \geq 1$. Give a Presburger formula φ such that $\mathcal{J} \models \varphi$ iff $\mathcal{J}(x)>\mathcal{J}(y)$ and $\mathcal{J}(x)-\mathcal{J}(y) \equiv$ $r(\bmod n)$. Give an automaton that accepts the solutions of φ for $r=1$ and $n=2$.

Solution 8.1

a. The automata for the channel, process(1) and process(2) are respectively:

b. The asynchronous product \mathcal{P} is given below:

c. The state where both processes are in the critical section is not reachable, since \mathcal{P} does not contain any of the states $\left(p_{1}, q_{2}, \square\right)$ and $\left(p_{1}, q_{2}, m\right)$.

Solution 8.2

(a) (i) $\bar{\emptyset} \cdot \Sigma$ and $\exists x$ first (x).
(ii) $\bar{\emptyset} \cdot A \cdot \bar{\emptyset}$ and $\exists x \bigvee_{a \in A} Q_{a}(x)$.
(iii) $\overline{\Sigma^{*} \bar{A} \Sigma^{*}}$ and $\forall x \bigvee_{a \in A} Q_{a}(x)$.
(iv) $\overline{b \Sigma^{*}+\Sigma^{*} a+\Sigma^{*} a a \Sigma^{*}+\Sigma^{*} b b \Sigma^{*}}$ and

$$
\begin{aligned}
& (\neg \exists x \operatorname{first}(x)) \vee \\
& \left(\left(\exists x \operatorname{first}(x) \wedge Q_{a}(x)\right) \wedge\left(\exists y \operatorname{last}(y) \wedge Q_{b}(y)\right) \wedge\right. \\
& \left.\quad\left(\forall x \forall y\left(Q_{a}(x) \wedge y=x+1\right) \rightarrow Q_{b}(y)\right) \wedge\left(\forall x \forall y\left(Q_{b}(x) \wedge y=x+1\right) \rightarrow Q_{a}(y)\right)\right) .
\end{aligned}
$$

(v) $\overline{\Sigma^{*} a a \Sigma^{*}}$ and $\forall x \forall y\left(Q_{a}(x) \wedge y=x+1\right) \rightarrow \neg Q_{a}(y)$.

Notice that the FO sentences presented here are correct even if Σ is more than $\{a, b\}$. However the regular expression of (iv) does require $\Sigma=\{a, b\}$. For example if $\Sigma=\{a, b, c\}$ we would have c in the language of the star-free expression, but c is not in $(a b)^{*}$.
(b) Every finite language $L=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ can be expressed as $w_{1}+w_{2}+\cdots+w_{m}$. For every cofinite language L, there exists a finite language A such that $L=\bar{A}$. Since star-free regular expressions allow for complementation, cofinite languages are also star-free.
(c) We build φ^{+}using the following inductive rules:

$$
\begin{aligned}
(x<y)^{+}(i, j) & =x<y \\
Q_{a}(x)^{+}(i, j) & =Q_{a}(x) \\
(\neg \psi)^{+}(i, j) & =\neg \psi^{+}(i, j) \\
\left(\psi_{1} \vee \psi_{2}\right)^{+}(i, j) & =\psi_{1}^{+}(i, j) \vee \psi_{2}^{+}(i, j) \\
(\exists x \psi)^{+}(i, j) & =\exists x(i \leq x \wedge x \leq j) \wedge \psi^{+}(i, j) .
\end{aligned}
$$

(d) We use false as syntactic sugar for $x<x$.

```
Input: sentence \(\varphi \in \mathrm{FO}(\Sigma)\).
Output: \(\varepsilon \vDash \varphi\) ?
has-empty \((\varphi)\) :
        if \(\varphi=\neg \psi\) then
            return \(\neg\) has-empty \((\psi)\)
        else if \(\varphi=\psi_{1} \vee \psi_{2}\) then
            return has-empty \(\left(\psi_{1}\right) \vee\) has-empty \(\left(\psi_{2}\right)\)
        else if \(\varphi=\exists \psi\) then
            return false
```

(e)

```
Input: star-free regular expression \(r\).
Output: sentence \(\varphi \in \mathrm{FO}(\Sigma)\) s.t. \(L(\varphi)=L(r)\).
formula \((r)\) :
        if \(r=\emptyset\) then
            return \(\exists x\) false
        else if \(r=\varepsilon\) then
            return \(\forall x\) false
        else if \(r=a\) for some \(a \in \Sigma\) then
            return \((\exists x\) true \() \wedge\left(\forall x \operatorname{first}(x) \wedge Q_{a}(x)\right)\)
        else if \(r=\bar{s}\) then
            return \(\neg\) formula \((s)\)
        else if \(r=s_{1}+s_{2}\) then
            return formula \(\left(s_{1}\right) \vee\) formula \(\left(s_{2}\right)\)
        else if \(r=s_{1} \cdot s_{2}\) then
            \(\varphi_{1} \leftarrow\) formula \(\left(s_{1}\right)\)
            \(\varphi_{2} \leftarrow\) formula \(\left(s_{2}\right)\)
            return \(\left(\varphi_{1} \wedge\right.\) has-empty \(\left.\left(\varphi_{2}\right)\right) \vee\)
                    (has-empty \(\left.\left(\varphi_{1}\right) \wedge \varphi_{2}\right) \vee\)
                    \(\left(\exists x, y, y^{\prime}, z \operatorname{first}(x) \wedge y^{\prime}=y+1 \wedge \operatorname{last}(z) \wedge \varphi_{1}^{+}(x, y) \wedge \varphi_{2}^{+}\left(y^{\prime}, z\right)\right)\)
```

where the $\varphi_{i}^{+}(x, y)$ can be computed with an algorithm induced from (c).

Solution 8.3

Given a sentence ψ of $\operatorname{PureMSO}(\Sigma)$, let ϕ be the sentence of $\operatorname{MSO}(\Sigma)$ obtained by replacing every subformula of ψ of the form

$$
\begin{array}{lll}
X \subseteq Y & \text { by } & \forall x(x \in X \rightarrow x \in Y) \\
X \subseteq Q_{a} & \text { by } & \forall x\left(x \in X \rightarrow Q_{a}(x)\right) \\
X<Y & \text { by } & \forall x \forall y(x \in X \wedge y \in Y) \rightarrow x<y
\end{array}
$$

Clearly, ϕ and ψ are equivalent. For the other direction, let

$$
\operatorname{empty}(X):=\forall Y X \subseteq Y
$$

and

$$
\operatorname{sing}(X):=\neg \operatorname{empty}(X) \wedge \forall Y(Y \subseteq X \wedge \neg \operatorname{empty}(Y)) \rightarrow X=Y
$$

Let ϕ be a sentence of $\operatorname{MSO}(\Sigma)$. Assume without loss of generality that for every first-order variable x the second-order variable X does not appear in ϕ (if necessary, rename second-order variables appropiately). Let ψ be the sentence of $\operatorname{PureMSO}(\Sigma)$ obtained by replacing every subformula of ϕ of the form

$$
\begin{array}{lll}
\exists x \psi^{\prime} & \text { by } & \exists X\left(\operatorname{sing}(X) \wedge \psi^{\prime}[X / x]\right) \\
& & \text { where } \psi^{\prime}[X / x] \text { is the result of substituting } X \text { for } x \text { in } \psi^{\prime} \\
Q_{a}(x) & \text { by } & X \subseteq Q_{a} \\
x<y & \text { by } & X<Y \\
x \in Y & \text { by } & X \subseteq Y
\end{array}
$$

Clearly, ϕ and ψ are equivalent.

Solution 8.4

Recall that since n is a constant, we can multiply a variable by n via iterated addition. The formula is as follows:

$$
\varphi(x, y):=(x>y) \wedge \exists a \exists b \bigvee_{0 \leq r^{\prime}<n}\left[\left(x=y+n \cdot a+r^{\prime}\right) \wedge\left(r=n \cdot b+r^{\prime}\right)\right]
$$

Note that the right conjunct can be replaced with $r^{\prime}=r$ if $r<n$.
Let $k \in \mathbb{N}$ and $x, y \in \Sigma^{k}$, LSBF encodings of some naturals. First note that $\operatorname{val}(x)-\operatorname{val}(y) \equiv 1(\bmod 2)$ iff $\operatorname{val}(x)$ and $\operatorname{val}(y)$ are such that one is odd and one is even. Thus, the first bit of x and y should be different. Moreover, $\operatorname{val}(x)>\operatorname{val}(y)$ iff there exists $\ell \in\{1, \ldots, k\}$ such that $x_{\ell}=1, y_{\ell}=0$, and $x_{i} \geq y_{i}$ for every $\ell<i \leq k$. These observations yield the following automaton:

