Technische Universitat Miinchen Winter term 2020/21
Prof. J. Esparza / M. Lazié / C. Weil-Kennedy I7

Automata and Formal Languages — Exercise Sheet 8

Exercise 8.1

(a) Let 0 < m < n. Give an MSO formula Mod™" such that Mod™" (4, j) holds whenever |w;w;1 - w;| =
m (mod n), i.e. whenever j — i+ 1 =m (mod n).

(b) Let 0 < m < n. Give an MSO sentence for a™(a™)*.

(c) Give an MSO sentence for the language of words such that every two b’s with no other b in between are
separated by a block of a’s of odd length.

Exercise 8.2
Consider the logic PureMSO(X) with syntax

P =XCQu | X<Y|XCY|-p|loVe|IX ¢

Notice that formulas of PureMSO(X) do not contain first-order variables. The satisfaction relation of PureMSO(X)
is given by:
(w, I
(w, T
(w, 7
with the rest as for MSO(Z

) E XCQ, iff wlp]=aforeverype J(X)

) E X<Y iff p<pforeverype J(X),p e TY)
) E XCY iff peJ(Y) for every p € J(X)
).

Prove that MSO(X) and PureMSO(X) have the same expressive power for sentences. That is, show that for
every sentence ¢ of MSO(X) there is an equivalent sentence ¢ of PureMSO(X), and vice versa.

Exercise 8.3

1. Given a sentence ¢ of MSO(X) and a second order variable X not occurring in ¢, show how to construct
a formula X with X as free variable expressing “the projection of the word onto the positions of X
satisfies 7. Formally, X must satisfy the following property: for every interpretation J of X, we have
(w,J) = ¢* iff (w|7(x),J) = ¢, where w|7(x) denotes the result of deleting from w the letters at all
positions that do not belong to J(X).

2. Given two sentences ¢ and 2 of MSO(X), construct a sentence Conc (g1, p2) satisfying L(Conc(p1, ¢2)) =
L) - L(p2)-

3. Given a sentence ¢ of MSO(X), construct a sentence Star(y) satisfying L(Star(y)) = L(p)*.

4. Give an algorithm RegtoMSO that accepts a regular expression r as input and directly constructs a
sentence ¢ of MSO(X) such that L(¢) = L(r), without first constructing an automaton for the formula.

Exercise 8.4
Construct a finite automaton for the Presburger formula Jy. z = 2y using the algorithms of the chapter.

Solution 8.1
(a) We want to express j — i+ 1 = m (mod n), i.e. there exists [> 0 such that j=i+m—1+1-n.

Mod™"(i,j) = 3z (x =i+ m — 1) A Mult"(z, j)
where
Mult"(z,j) =3X je X)ANVzeX [(z=2)VIye X (z=y+n)])

Intuitively x is the smallest option for j, the one corresponding to [= 0. Set X is the positions that
are a multiple of n away from this z. The subformula x = ¢ + m — 1 is syntactic sugar for "x is the
(i + m — 1)-th position in the word” (since ,m are given, i +m — 1 is a constant). For example x = 3 is
short for Jy first(y) Az z=y+ 1Az =z+1, where first(y) and z = y + 1 are classic abbreviations
you can find in the class notes.

(b) [(m = 0) A (=3 first(z))] V [V Qu(z) A Tz, y first(z) A last(y) A Mod™ ™ (z, y)].
(c)

Va,y [(z <y) AQu(x) A Qu(y) ANVz(z < 2 <y — —Qu(2))] —
(Vz (z<z<y)—= Qu)AGB,y (@' =z+1)A(y=y +1) AMod"?(z',4))] .

As remarked in the tutorial, the subformula 3z’,y' (z' = z 4+ 1) A (y = 3/ + 1) A Mod™?(2/,4/) can be
simplified to Mod"?(z, y).

Solution 8.2
Given a sentence ¢ of PureMSO(X), let ¢ be the sentence of MSO(X) obtained by replacing every subformula
of ¢ of the form

XCY by Ve(zeX—ozeY)
XCQa by Va(reX—Qu))
X<Y by VaVy(zeXAyeY)—z<y

Clearly, ¢ and % are equivalent. For the other direction, let
empty(X) =VY X CY
and
sing(X) := —empty(X) AVY (Y C X A —mempty(Y)) - X =Y.

Let ¢ be a sentence of MSO(X). Assume without loss of generality that for every first-order variable z the
second-order variable X does not appear in ¢ (if necessary, rename second-order variables appropiately). Let
¥ be the sentence of PureMSO(X) obtained by replacing every subformula of ¢ of the form

Iz’ by IX (sing(X)A¢Y'[X/x])
where ¢’'[X/z] is the result of substituting X for = in ¢’

Qa(z) by X CQa
r<y by X<Y
zeY by XCY

Clearly, ¢ and v are equivalent.

Solution 8.3
1. We build ¢X using the following inductive rules:

o if o =Qu(2), 2 <y,z € X,p1,p1 V2, then 0% =
o If o = ~p1 (resp. 1V ¢2), then X = = (resp. o V ¢3").

o If o =3z 9, then X =3z (z € X A¥).
o If o = 3Y 4, then X = 3y (anseY—HceX)/\wX.

2. We take the formula

Conc(p,p2) :=3X IV Ve (e XVyeY)
A V:ch((:z:GX/\yEY)%x<y))
Aol Aoy
V. Vx false A o1 A @2

We add the last line because although sets of positions like X and Y can be empty, a word w satisfying
a sentence of the form 3X 1 must be of length |w| > 0 so the empty word is not accounted for.

3. We first express that Y is a set of consecutive positions between two consecutive positions of X. Intuitively
our X is the set of positions at which starts each subword verifying ¢.

Block(Y, X) :=Jdzxe X 3z (Next(a:,z,X)/\Vy (y€Y<—>(3:§y/\y<z)))
VvV Last(z, X)AVy (y€Y <z <y)

where Next(z,z,X) =z € X A—3i € X © <iAi < z denotes that z comes just after in X. The last
line of Block(Y, X) is for the case where we are considering the block from the last position of X to the
end of the word.

Now we express that there exists a set X of positions such that every subword between any two consecutive
positions of X satisfies .

Star(y) :=3X vz (first(z) = 2 € X) AVY (Block(Y, X) — ¢V)
VvV Vz false

4. REtoMSO(r)
Input: Regular expression r
Output: Sentence ¢ such that L(¢) = L(r).
r=0 - Jzz<x
r=¢ = Veox<z
r=a — 3Jr (first(x) Alast(z) A Qq(x))
r=ry+ry = REtoMSO(r1)V REtoMSO(rs)
r=rire — Conc(REtoMSO(r1), REtoMSO(r3))
r=rf — Star(REtoMSO(ry))

Solution 8.4
We can rewrite the formula as Jy. x — 2y = 0.

To build an automaton recognizing the Isbf encodings of the x that are solution of this formula, we can first
construct automata for the atomic formulas z —2y < 0 and —x+2y < 0, then intersect them and then project on
the z component. Here we will use EqtoDFA (section 10.2.1 of the lecture notes) to directly get an automaton
for x — 2y = 0 after which we just need to project on x.

We first use EqtoDFA to obtain an automaton for z — 2y = 0:

Iter. Current automaton w
0 = 0} {0}
1 {1}
0 1
0 0 1
1
2 0

It remains to project the automaton on z, i.e. on the first component of the letters. We obtain:

0 1
0
1

which says that all encodings starting with a 0 are solutions.

