Automata and Formal Languages — Exercise Sheet 7

Exercise 7.1
Let \(\text{val} : \{0,1\}^* \rightarrow \mathbb{N} \) be the function that associates to every word \(w \in \{0,1\}^* \) the number \(\text{val}(w) \) represented by \(w \) in the least significant bit first encoding.

(a) Give a transducer that doubles numbers, i.e. a transducer accepting \(L_1 = \{ [x,y] \in (\{0,1\} \times \{0,1\})^* \mid \text{val}(y) = 2 \cdot \text{val}(x) \} \).

(b) Give an algorithm that takes \(k \in \mathbb{N} \) as input, and that produces a transducer \(A_k \) accepting \(L_k = \{ [x,y] \in (\{0,1\} \times \{0,1\})^* \mid \text{val}(y) = 2^k \cdot \text{val}(x) \} \).

Hint: use (a) and consider operations seen in class.

(c) Give a transducer for the addition of two numbers, i.e. a transducer accepting \(\{ [x,y,z] \in (\{0,1\} \times \{0,1\} \times \{0,1\})^* \mid \text{val}(z) = \text{val}(x) + \text{val}(y) \} \).

(d) For every \(k \in \mathbb{N}_{>0} \), let \(X_k = \{ [x,y] \in (\{0,1\} \times \{0,1\})^* \mid \text{val}(y) = k \cdot \text{val}(x) \} \).

Sketch an algorithm that takes as input transducers \(A \) and \(B \), accepting respectively \(X_a \) and \(X_b \) for some \(a,b \in \mathbb{N}_{>0} \), and that produces a transducer \(C \) accepting \(X_{a+b} \).

(e) Let \(k \in \mathbb{N}_{>0} \). Using (b) and (d), how can you build a transducer accepting \(X_k \)?

(f) Show that the following language has infinitely many residuals, and hence that it is not regular: \(\{ [x,y] \in (\{0,1\} \times \{0,1\})^* \mid \text{val}(y) = \text{val}(x)^2 \} \).

Exercise 7.2
Let \(L_1 = \{ bba, aba, bbb \} \) and \(L_2 = \{ aba, abb \} \).

(a) Give an algorithm for the following operation:

\[\text{INPUT: } \text{A fixed-length language } L \subseteq \Sigma^k \text{ described explicitly as a set of words.} \]

\[\text{OUTPUT: } \text{State } q \text{ of the master automaton over } \Sigma \text{ such that } L(q) = L. \]

(b) Use the previous algorithm to build the states of the master automaton for \(L_1 \) and \(L_2 \).

(c) Compute the state of the master automaton representing \(L_1 \cup L_2 \).

(d) Identify the kernels \((L_1), (L_2), \) and \((L_1 \cup L_2) \).

Exercise 7.3
We define the language of a Boolean formula \(\varphi \) over variables \(x_1, \ldots, x_n \) as:

\[L(\varphi) = \{ a_1 a_2 \cdots a_n \in \{0,1\}^n : \text{the assignment } x_1 \mapsto a_1, \ldots, x_n \mapsto a_n \text{ satisfies } \varphi \}. \]

(a) Give a polynomial-time algorithm that takes as input a DFA \(A \) recognizing a language of length \(n \), and returns a Boolean formula \(\varphi \) such that \(L(\varphi) = L(A) \).

(b) Give an exponential-time algorithm that takes a Boolean formula \(\varphi \) as input, and returns a DFA \(A \) recognizing \(L(\varphi) \).
Solution 7.1

(a) Let \([x_1, x_2 \cdots x_n, y_1 y_2 \cdots y_n] \in (\{0, 1\} \times \{0, 1\})^n \) where \(n \geq 2 \). Multiplying a binary number by two shifts its bits and adds a zero. For example, the word

\[
\begin{array}{c}
10110 \\
01011
\end{array}
\]

belongs to the language since it encodes \([13, 26]\). Thus, we have \(\text{val}(y) = 2 \cdot \text{val}(x) \) if and only if \(y_1 = 0, x_n = 0, \text{ and } y_i = x_{i-1} \) for every \(1 < i \leq n \). From this observation, we construct a transducer that

- tests whether the first bit of \(y \) is 0,
- tests whether \(y \) is consistent with \(x \), by keeping the last bit of \(x \) in memory,
- accepts \([x, y]\) if the last bit of \(x \) is 0.

Note that words \([\epsilon, \epsilon]\) and \([0, 0]\) both encode the numerical values \([0, 0]\). Therefore, they should also be accepted since \(2 \cdot 0 = 0 \). We obtain the following transducer:

★ The initial state can be merged with state 0 as they have the same outgoing transitions.

(b) We construct \(A_0 \) as the following transducer accepting \([x, y] \in (\{0, 1\} \times \{0, 1\})^*: y = x\):

\[
\begin{array}{c}
0 \\
1
\end{array}
\]

Let \(A_1 \) be the transducer obtained in (a). For every \(k > 1 \), we define \(A_k = \text{Join}(A_{k-1}, A_1) \). A simple inductions show that \(L(A_k) = L_k \) for every \(k \in \mathbb{N} \).

(c) We construct a transducer that computes the addition by keeping the current carry bit. Consider some tuple \([x, y, z] \in \{0, 1\}^3\) and a carry bit \(r \). Adding \(x, y \) and \(r \) leads to the bit

\[
z = (x + y + r) \mod 2. \tag{1}
\]

Moreover, it yields a new carry bit \(r' \) such that \(r' = 1 \) if \(x + y + r > 1 \) and \(r' = 0 \) otherwise. The following table identifies the new carry bit \(r' \) of the tuples that satisfy (1):

<table>
<thead>
<tr>
<th>(r)</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

We construct our transducer from the above table:
(d) We construct a transducer C that, intuitively, feeds its input to both A and B, and then feed the respective outputs of A and B to a transducer performing addition. More formally, let $A = (Q_A, \{0, 1\}, \delta_A, q_0A, F_A)$, $B = (Q_B, \{0, 1\}, \delta_B, q_0B, F_B)$, and let $D = (Q_D, \{0, 1\}, \delta_D, q_0D, F_D)$ be the transducer for addition obtained in (c). We define C as $C = (Q_C, \{0, 1\}, \delta_C, q_0C, F_C)$ where

\[
\hat{Q}_C = Q_A \times Q_B \times Q_D,
\]

\[
\hat{q}_0C = (q_{0A}, q_{0B}, q_{0D}),
\]

\[
\hat{F}_C = F_A \times F_B \times F_D,
\]

and

\[
\delta_C((p, p', p''), [x, z]) = \{(g, q', q'') : \exists y, y' \in \{0, 1\} \text{ s.t. } p \xrightarrow{[x, y]} A q, p' \xrightarrow{[x, y']} B q' \text{ and } p'' \xrightarrow{[y, y', z]} D q''\}.
\]

(e) Let $\ell = \lceil \log_2(k) \rceil$. There exist $c_0, c_1, \ldots, c_\ell \in \{0, 1\}$ such that $k = c_0 \cdot 2^0 + c_1 \cdot 2^1 + \cdots + c_\ell \cdot 2^\ell$. Let $I = \{0 \leq i \leq \ell : c_i = 1\}$. Note that $k = \sum_{i \in I} 2^i$. Therefore, we may use transducer A_i from (b) for each $i \in I$, and combine these transducers using (d).

(f) For every $n \in \mathbb{N}_{>0}$, let

\[
u_n = \begin{bmatrix} 0^n 1 \\ 0^n 0 \end{bmatrix}
\]

and

\[
u_n = \begin{bmatrix} 0^{n-1} 0 \\ 0^{n-1} 1 \end{bmatrix}.
\]

Let $i, j \in \mathbb{N}_{>0}$ be such that $i \neq j$. We claim that $L^{u_i} \neq L^{u_j}$. We have

\[
u_i \nu_i = \begin{bmatrix} 0^i 10^i \\ 0^i 2^i 1 \end{bmatrix}
\]

and

\[
u_j \nu_i = \begin{bmatrix} 0^j 10^j \\ 0^j 2^j 1 \end{bmatrix}.
\]

Therefore, $u_i \nu_i$ encodes $[2^i, 2^2^i]$, and $u_j \nu_i$ encodes $[2^j, 2^2^j]$. We observe that $u_i \nu_i$ belongs to the language since $2^{2^i} = (2^i)^2$. However, $u_j \nu_i$ does not belong to the language since $2^{2^i} \neq 2^{2^j} = (2^j)^2$.

Solution 7.2

(a)

(b) Executing \texttt{add-lang}(L_1) yields the following computation tree:
Input: A fixed-length language $L \subseteq \Sigma^k$ described explicitly by a set of words.

Output: State q of the master automaton over Σ such that $L(q) = L$.

```plaintext
1 add-lang($L$):
2   if $L = \emptyset$ then
3     return $q_\emptyset$
4   else if $L = \{\varepsilon\}$ then
5     return $q_\varepsilon$
6   else
7     for $a_i \in \Sigma$ do
8       $L^{a_i} \leftarrow \{u \mid a_iu \in L\}$
9       $s_i \leftarrow add-lang(L^{a_i})$
10      return make($s_1, s_2, \ldots, s_n$)
```

The table obtained after the execution is as follows:

<table>
<thead>
<tr>
<th>Ident.</th>
<th>a-succ</th>
<th>b-succ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>q_ε</td>
<td>q_\emptyset</td>
</tr>
<tr>
<td>3</td>
<td>q_\emptyset</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>q_ε</td>
<td>q_ε</td>
</tr>
<tr>
<td>5</td>
<td>q_\emptyset</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Executing $add-lang(L_2)$ yields the following computation tree:

```
add-lang($\{aba, aba, bbb\}$)
```

```
make(add-lang($\{ba\}$), add-lang($\{ba, bb\}$))
```

```
make(add-lang($\emptyset$), add-lang($\{a\}$))
```

```
make(add-lang($\emptyset$), add-lang($\{a, b\}$))
```

```
\(q_\emptyset\)
```

```
\(q_\varepsilon\)
```

```
\(q_\emptyset\)
```

```
\(q_\varepsilon\)
```
The table obtained after the execution is as follows:

<table>
<thead>
<tr>
<th>Ident.</th>
<th>a-succ</th>
<th>b-succ</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>q0</td>
</tr>
<tr>
<td>4</td>
<td>qε</td>
<td>qε</td>
</tr>
<tr>
<td>5</td>
<td>qε</td>
<td>4</td>
</tr>
</tbody>
</table>

The resulting master automaton fragment is:

(c) Let us first adapt the algorithm for intersection to obtain an algorithm for union:

Input: States p and q of same length of the master automaton.

Output: State r of the master automaton such that $L(r) = L(p) \cup L(q)$.

```plaintext
1 union(p, q) :
2   if $G(p, q)$ is not empty then
3       return $G(p, q)$
4   else if $p = q_\emptyset$ and $q = q_\emptyset$ then
5       return $q_\emptyset$
6   else if $p = q_\epsilon$ or $q = q_\epsilon$ then
7       return $q_\epsilon$
8   else
9       for $a_i \in \Sigma$ do
10          $s_i \leftarrow \text{union}(p^{a_i}, q^{a_i})$
11       $G(p, q) \leftarrow \text{make}(s_1, s_2, \ldots, s_n)$
12       return $G(p, q)$
```
Executing \texttt{union}(6, 7) yields the following computation tree:

The table obtained after the execution is as follows:

<table>
<thead>
<tr>
<th>Ident.</th>
<th>a-succ</th>
<th>b-succ</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>q_\emptyset</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>q_\emptyset</td>
<td>q_ε</td>
</tr>
</tbody>
</table>

The new fragment of the master automaton is:

\textbf{Note that} \texttt{union} \textbf{could be slightly improved by returning} q \textbf{whenever} $p = q$, \textbf{and by updating} $G(q, p)$ \textbf{at the same time as} $G(p, q)$.

\textbf{Note that}
(d) The kernels are:

\[(L_1) = L_1, \]
\[(L_2) = L_2, \]
\[(L_1 \cup L_2) = \{ba, bb\}. \]

Solution 7.3

(a) The algorithm takes as input a state of the master automaton and the length of the language it recognizes, and recursively constructs a formula as follows:

```
Input: state \( q \) recognizing a language of length \( n \)
Output: formula \( \varphi_q \) such that \( L(\varphi_q) = L(q) \)

1 DFAtoFormula(\( q, n \)):
2    if \( G(\( q \)) \) is not empty then
3        return \( G(\( q \)) \)
4    if \( q = q_\emptyset \) then
5        return false
6    else if \( q = q_\epsilon \) then
7        return true
8    else
9        \( \varphi_0 \leftarrow DFAtoFormula(\( q_0, n - 1 \)) \)
10       \( \varphi_1 \leftarrow DFAtoFormula(\( q_1, n - 1 \)) \)
11       \( \varphi_q \leftarrow (\neg x_1 \land \varphi_0) \lor (x_1 \land \varphi_1) \)
12       \( G(\( q \)) \leftarrow \varphi_q \)
13      return \( G(\( q \)) \)
```

Observe that the parameter \(n \) is needed to identify the variable at line 11.

Our algorithm takes as input a table with the state identifiers and successors of all the descendants of \(q \) (i.e., the fragment of the master automaton starting at \(q \)). This is a polynomial time algorithm because we compute \(\varphi_q' \) once for every descendant \(q' \) of \(q \).

Note that this algorithm could be improved by adding an `else` that checks if \(q_0 = q_1 \) before the last `else`:

```
1 else if \( q_0 = q_1 \) then
2    \( \varphi \leftarrow DFAtoFormula(\( q_0, n - 1 \)) \)
3    \( \varphi_q \leftarrow \varphi \)
4    \( G(\( q \)) \leftarrow \varphi_q \)
5    return \( G(\( q \)) \)
```
(b) Given a formula φ over variables x_1, \ldots, x_n, we write $\varphi[x_i/\text{true}]$ and $\varphi[x_i/\text{false}]$ to denote the formulas obtained by replacing all occurrences of x_i in φ by true and false, respectively. We have that $L(\varphi[x_i/\text{false}]) = L(\varphi)^0$ and $L(\varphi[x_i/\text{true}]) = L(\varphi)^1$. This yields the following algorithm:

```
Input: formula $\varphi$ over variables $x_1, \ldots, x_n$, total number of variables $n$, $k$ initially equal to 1
Output: state $q$ such that $L(\varphi) = L(q)$

1. $\text{FormulatoDFA}(\varphi,n,k):$
2. if $G(\varphi)$ is not empty then
3.   return $G(\varphi)$
4. if $\varphi = \text{true}$ then
5.   return $q_\varepsilon$
6. else if $\varphi = \text{false}$ then
7.   return $q_0$
8. else
9.   $r_0 \leftarrow \text{FormulatoDFA}(\varphi[x_k/\text{false}],n,k+1)$
10. $r_1 \leftarrow \text{FormulatoDFA}(\varphi[x_k/\text{true}],n,k+1)$
11. $G(\varphi) \leftarrow \text{make}(r_0,r_1)$
12. return $G(\varphi)$
```