Technische Universitat Miinchen Winter term 2022/23
Prof. J. Esparza / A. R. Balasubramanian / M. Lazié I7

Automata and Formal Languages — Exercise Sheet 7

Exercise 7.1

Let val : {0,1}* — N be the function that associates to every word w € {0,1}* the number val(w) represented
by w in the least significant bit first encoding.

(a) Give a transducer that doubles numbers, i.e. a transducer accepting
Ly = {fz,y] € ({0,1} x {0,1})" [val(y) = 2 - val(z)} .
(b) Give an algorithm that takes k € N as input, and that produces a transducer Ay accepting
L = {[z,y] € ({0,1} x {0,1})* | val(y) = 2" - val(z)} .
Hint: use (a) and consider operations seen in class.
(c) Give a transducer for the addition of two numbers, i.e. a transducer accepting
{[z,y,2] € ({0,1} x {0,1} x {0,1})* | val(z) = val(x) + val(y)} .
(d) For every k € Ny, let
Xi = {lz, 9] € ({0, 1} x {0, 1})" | val(y) = k - val(z)} .

Sketch an algorithm that takes as input transducers A and B, accepting respectively X, and X, for some
a,b € N5, and that produces a transducer C accepting X 4p.

(e) Let k € N5g. Using (b) and (d), how can you build a transducer accepting X?

(f) Show that the following language has infinitely many residuals, and hence that it is not regular:

{[axy] € ({0,1} x {0,1})* | val(y) = Val(x)Q}.

Exercise 7.2
Let Ly = {bba, aba, bbb} and Ly = {aba, abb}.

(a) Give an algorithm for the following operation:

INPUT: A fixed-length language L C ¥* described explicitly as a set of words.
OuTpPUT: State ¢ of the master automaton over ¥ such that L(q) = L.

(b) Use the previous algorithm to build the states of the master automaton for L; and Lo.

(¢) Compute the state of the master automaton representing L; U Lo.

(d) Identify the kernels (L), (L2), and (L1 U Lo).

Exercise 7.3
We define the language of a Boolean formula ¢ over variables zq,...,z, as:

L(p) ={aras---a, € {0,1}" : the assignment 1 — aq,...,x, — a, satisfies p}.
(a) Give a polynomial-time algorithm that takes as input a DFA A recognizing a language of length n, and

returns a Boolean formula ¢ such that L(¢) = L(A).

(b) Give an exponential-time algorithm that takes a Boolean formula ¢ as input, and returns a DFA A
recognizing L(p).

Solution 7.1
(a) Let [z120 - @n,y1y2- - Yn] € ({0,1} x {0,1})™ where n > 2. Multiplying a binary number by two shifts
its bits and adds a zero. For example, the word
10110
01011

belongs to the language since it encodes [13,26]. Thus, we have val(y) = 2 - val(z) if and only if y; = 0,
T, =0, and y; = x;_1 for every 1 < i < n. From this observation, we construct a transducer that

e tests whether the first bit of y is 0,
e tests whether y is consistent with x, by keeping the last bit of z in memory,

e accepts [z,y] if the last bit of z is 0.

Note that words [e,] and [0,0] both encode the numerical values [0,0]. Therefore, they should also be
accepted since 2 - 0 = 0. We obtain the following transducer:

g
@4 ;
o (1)

1
1
% The initial state can be merged with state 0 as they have the same outgoing transitions.

(b) We construct Ay as the following transducer accepting {[z,y] € ({0,1} x {0,1})* : y = a}:

Let A; be the transducer obtained in (a). For every k > 1, we define Ay = Join(Ar_1,A1). A simple
inductions show that L(Ag) = Ly for every k € N.

(¢c) We construct a transducer that computes the addition by keeping the current carry bit. Consider some
tuple [z,y, z] € {0,1}3 and a carry bit 7. Adding x,y and r leads to the bit

z=(x+y+r) mod 2. (1)

Moreover, it yields a new carry bit 7’ such that v’ = 1if z+y+r > 1 and r’ = 0 otherwise. The folllowing
table identifies the new carry bit 7’ of the tuples that satisfy (1):

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

r=20 0 X X 0 X 0 1
r=1 X 0 1 X 1 X X 1

We construct our transducer from the above table:

(d)

We construct a transducer C that, intuitively, feeds its input to both A and B, and then feed the respective
outputs of A and B to a transducer performing addition. More formally, let A = (Q4,{0,1},04, goa, Fa),
B = (Qp,{0,1},65, 908, FB), and let D = (Qp,{0,1},0p, 9D, Fp) be the transducer for addition ob-
tained in (c). We define C as C' = (Q¢, {0, 1}, d¢, goc,s Fo) where

e Qc =04 xQp xQp,
® Joc = (q()Aa qoB, q()D)u
° FC:FAXFBXFD,

and

Sc((p.p0") [,) = {00 q") : .y € (0.1} st p %y g pf T8 o and " P2 gy
Let £ = [logy(k)]. There exist co,ci,...,ce € {0,1} such that & = ¢o - 20 + ¢ - 21 + - + ¢ - 28, Let

I={0<i<{:¢ =1} Note that k =>",.; 2". Therefore, we may use transducer A; from (b) for each
i € I, and combine these transducers using (d).

0m1 om0
Un = | ng and v, = on-11 -

Let 4,5 € N5 be such that ¢ # j. We claim that L% £ L% . We have

{OilOi] [01101]
U V; = and ujv; = .

For every n € Ny, let

0%1 0171

Therefore, u;v; encodes [2¢,22%%], and u,;v; encodes [27,2777]. We observe that u;v; belongs to the language
since 2% = (2%)2. However, u;v; does not belong to the language since 2/ =£ 227 = (27)2, O

Solution 7.2

(a)
(b)

Executing add-lang(L;) yields the following computation tree:

Input: A fixed-length language L C ©* described explicitely by a set of words.
Output: State g of the master automaton over ¥ such that L(g) = L.

1 add-lang(L) :

2 if L =0 then
3 return g
4 else if L = {¢} then
5 return q.
6 else

7 for a; € ¥ do

8 L% + {u|auelL}

9 s; add-lang(L%)
10 return make(si, Sa, ..., Sn)

add-lang({bba, aba, bbb})

® |

make(add-lang({ba}), add-lang({ba,bb}))

@/ \

make(add-lang(f)), add-lang({a})) make(add-lang()), add-lang({a,b}))
e/ / ©/
. make(add-lang({c}), add-lang((})) make(add-lang({c}), add-lang({c}))

/o /o

The table obtained after the execution is as follows:

Ident. | a-succ b-succ
2 4e qp
3 qp 2
4 qe ge
5 qp 4
6 3 5

Executing add-lang(Ls) yields the following computation tree:

add-lang({aba, abb})

o

make(add-lang({ba, bb}), add-lang(f))

/\

make(add-lang(), add-lang({a,b}))

e/

. make(add-lang({c}), add-lang({c}))

/)

The table obtained after the execution is as follows:

Ident. ‘ a-succ b-succ

7 5 qp
4 qe qe
) qp 4

The resulting master automaton fragment is:

(¢) Let us first adapt the algorithm for intersection to obtain an algorithm for union:

Input: States p and ¢ of same length of the master automaton.
Output: State r of the master automaton such that L(r) = L(p) U L(q).
1 union(p,q) :

2 if G(p,q) is not empty then

3 return G(p, q)

4 else if p = gy and ¢ = gy then
5 return gy

6 else if p = ¢. or ¢ = ¢. then

7 return q.

8 else

9 for a; € ¥ do

10 $; < union(p®, ¢%)

11 G(p, q) < make(s1,$2,.-.,8n)
12 return G(p, q)

Executing union(6,7) yields the following computation tree:

union(6,7)

make(union(3,5), union(5,qp))

./ \.

make(union(gy,qg), union(2,4)) make(union(gy, qg), union(4, qp))
. make(union(q, ¢-), union(gp,g:)) . make(union(q.,qp), union(q., qp))

/o [\

The table obtained after the execution is as follows:

Ident. ‘ a-succ b-succ

8) 5
) qp 4
4 qe qe

The new fragment of the master automaton is:

% Note that union could be slightly improved by returning ¢ whenever p = ¢, and by updating G(q, p)
at the same time as G(p, q).

(d) The kernels are:

(L1) = Lu,
(L2) = Lo,
<L1 U L2> = {ba, bb}

Solution 7.3

(a) The algorithm takes as input a state of the master automaton and the length of the language it recognizes,
and recursively constructs a formula as follows:

Input: state ¢ recognizing a language of length n
Output: formula ¢, such that L(¢,) = L(q)
1 DFAtoFormula(q,n) :
if G(q) is not empty then
return G(q)
if ¢ = gy then
return false
else if ¢ = ¢. then
return true
else
o + DFAtoFormula(q®,n — 1)
1 + DFAtoFormula(q*,n — 1)
Pq < (721 A o) V (21 A 1)
G(q) < ¢q
return G(q)

© 00 N O ok W N

[G
W N = O

Observe that the parameter n is needed to identify the variable at line 11.

Our algorithm takes as input a table with the state identifiers and successors of all the descendants of ¢
(i.e., the fragment of the master automaton starting at ¢). This is a polynomial time algorithm because
we compute ¢, once for every descendant ¢’ of .

Note that this algorithm could be improved by adding an else that checks if ¢° = ¢' before the last else:

1 else if ¢° = ¢' then

2 ¢ < DFAtoFormula(q®,n — 1)
3 Pq < ®

4 G(q) < ¢4

5 return G(q)

(b) Given a formula ¢ over variables x1,...,2,, we write ¢[z;/true] and ¢[z;/false| to denote the for-

mulas obtained by replacing all occurrences of x; in ¢ by true and false, respectively. We have that
L(p[x1/false]) = L(p)? and L(p[r1/true]) = L(p)*. This yields the following algorithm:

1

© 00 N O A W N

[
N = O

Input: formula ¢ over variables x1, ..., z,, total number of variables n, k initially equal to 1
Output: state g such that L(yp) = L(q)
FormulatoDFA(p,n, k) :
if G(¢) is not empty then
return G(p)
if ¢ = true then
return g,
else if ¢ = false then
return gy
else
ro + FormulatoDF A(p|xy /false],n, k + 1)
r1 + FormulatoDF A(plzg/true],n, k + 1)
G(p) < make(rg,m1)
return G(p)

