Automata and Formal Languages - Exercise Sheet 7

Exercise 7.1

Let val : $\{0,1\}^{*} \rightarrow \mathbb{N}$ be the function that associates to every word $w \in\{0,1\}^{*}$ the number $\operatorname{val}(w)$ represented by w in the least significant bit first encoding.
(a) Give a transducer that doubles numbers, i.e. a transducer accepting

$$
L_{1}=\left\{[x, y] \in(\{0,1\} \times\{0,1\})^{*} \mid \operatorname{val}(y)=2 \cdot \operatorname{val}(x)\right\}
$$

(b) Give an algorithm that takes $k \in \mathbb{N}$ as input, and that produces a transducer A_{k} accepting

$$
L_{k}=\left\{[x, y] \in(\{0,1\} \times\{0,1\})^{*} \mid \operatorname{val}(y)=2^{k} \cdot \operatorname{val}(x)\right\} .
$$

Hint: use (a) and consider operations seen in class.
(c) Give a transducer for the addition of two numbers, i.e. a transducer accepting

$$
\left\{[x, y, z] \in(\{0,1\} \times\{0,1\} \times\{0,1\})^{*} \mid \operatorname{val}(z)=\operatorname{val}(x)+\operatorname{val}(y)\right\} .
$$

(d) For every $k \in \mathbb{N}_{>0}$, let

$$
X_{k}=\left\{[x, y] \in(\{0,1\} \times\{0,1\})^{*} \mid \operatorname{val}(y)=k \cdot \operatorname{val}(x)\right\} .
$$

Sketch an algorithm that takes as input transducers A and B, accepting respectively X_{a} and X_{b} for some $a, b \in \mathbb{N}_{>0}$, and that produces a transducer C accepting X_{a+b}.
(e) Let $k \in \mathbb{N}_{>0}$. Using (b) and (d), how can you build a transducer accepting X_{k} ?
(f) Show that the following language has infinitely many residuals, and hence that it is not regular:

$$
\left\{[x, y] \in(\{0,1\} \times\{0,1\})^{*} \mid \operatorname{val}(y)=\operatorname{val}(x)^{2}\right\}
$$

Exercise 7.2

Let $L_{1}=\{b b a, a b a, b b b\}$ and $L_{2}=\{a b a, a b b\}$.
(a) Give an algorithm for the following operation:

Input: A fixed-length language $L \subseteq \Sigma^{k}$ described explicitly as a set of words.
Output: State q of the master automaton over Σ such that $L(q)=L$.
(b) Use the previous algorithm to build the states of the master automaton for L_{1} and L_{2}.
(c) Compute the state of the master automaton representing $L_{1} \cup L_{2}$.
(d) Identify the kernels $\left\langle L_{1}\right\rangle,\left\langle L_{2}\right\rangle$, and $\left\langle L_{1} \cup L_{2}\right\rangle$.

Exercise 7.3

We define the language of a Boolean formula φ over variables x_{1}, \ldots, x_{n} as:

$$
\mathcal{L}(\varphi)=\left\{a_{1} a_{2} \cdots a_{n} \in\{0,1\}^{n}: \text { the assignment } x_{1} \mapsto a_{1}, \ldots, x_{n} \mapsto a_{n} \text { satisfies } \varphi\right\} .
$$

(a) Give a polynomial-time algorithm that takes as input a DFA A recognizing a language of length n, and returns a Boolean formula φ such that $\mathcal{L}(\varphi)=\mathcal{L}(A)$.
(b) Give an exponential-time algorithm that takes a Boolean formula φ as input, and returns a DFA A recognizing $\mathcal{L}(\varphi)$.

Solution 7.1

(a) Let $\left[x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{n}\right] \in(\{0,1\} \times\{0,1\})^{n}$ where $n \geq 2$. Multiplying a binary number by two shifts its bits and adds a zero. For example, the word

$$
\left[\begin{array}{l}
10110 \\
01011
\end{array}\right]
$$

belongs to the language since it encodes [13,26]. Thus, we have $\operatorname{val}(y)=2 \cdot \operatorname{val}(x)$ if and only if $y_{1}=0$, $x_{n}=0$, and $y_{i}=x_{i-1}$ for every $1<i \leq n$. From this observation, we construct a transducer that

- tests whether the first bit of y is 0 ,
- tests whether y is consistent with x, by keeping the last bit of x in memory,
- accepts $[x, y]$ if the last bit of x is 0 .

Note that words $[\varepsilon, \varepsilon]$ and $[0,0]$ both encode the numerical values $[0,0]$. Therefore, they should also be accepted since $2 \cdot 0=0$. We obtain the following transducer:

The initial state can be merged with state 0 as they have the same outgoing transitions.
(b) We construct A_{0} as the following transducer accepting $\left\{[x, y] \in(\{0,1\} \times\{0,1\})^{*}: y=x\right\}$:

$\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Let A_{1} be the transducer obtained in (a). For every $k>1$, we define $A_{k}=\operatorname{Join}\left(A_{k-1}, A_{1}\right)$. A simple inductions show that $L\left(A_{k}\right)=L_{k}$ for every $k \in \mathbb{N}$.
(c) We construct a transducer that computes the addition by keeping the current carry bit. Consider some tuple $[x, y, z] \in\{0,1\}^{3}$ and a carry bit r. Adding x, y and r leads to the bit

$$
\begin{equation*}
z=(x+y+r) \bmod 2 . \tag{1}
\end{equation*}
$$

Moreover, it yields a new carry bit r^{\prime} such that $r^{\prime}=1$ if $x+y+r>1$ and $r^{\prime}=0$ otherwise. The folllowing table identifies the new carry bit r^{\prime} of the tuples that satisfy (1):

	$\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$	$\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$	$\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$	$\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$	$\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$	$\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$	$\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$	$\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$r=0$	0	X	X	0	x	0	1	x
$r=1$	x	0	1	\times	1	\times	\times	1

We construct our transducer from the above table:

(d) We construct a transducer C that, intuitively, feeds its input to both A and B, and then feed the respective outputs of A and B to a transducer performing addition. More formally, let $A=\left(Q_{A},\{0,1\}, \delta_{A}, q_{0 A}, F_{A}\right)$, $B=\left(Q_{B},\{0,1\}, \delta_{B}, q_{0 B}, F_{B}\right)$, and let $D=\left(Q_{D},\{0,1\}, \delta_{D}, q_{0 D}, F_{D}\right)$ be the transducer for addition obtained in (c). We define C as $C=\left(Q_{C},\{0,1\}, \delta_{C}, q_{0 C}, F_{C}\right)$ where

- $Q_{C}=Q_{A} \times Q_{B} \times Q_{D}$,
- $q_{0 C}=\left(q_{0 A}, q_{0 B}, q_{0 D}\right)$,
- $F_{C}=F_{A} \times F_{B} \times F_{D}$,
and

$$
\delta_{C}\left(\left(p, p^{\prime}, p^{\prime \prime}\right),[x, z]\right)=\left\{\left(q, q^{\prime}, q^{\prime \prime}\right): \exists y, y^{\prime} \in\{0,1\} \text { s.t. } p \xrightarrow{[x, y]}_{A} q, p^{\prime}{\xrightarrow{\left[x, y y^{\prime}\right]}}_{B} q^{\prime} \text { and } p^{\prime \prime}{\xrightarrow{\left[y, y^{\prime}, z\right]}}_{D} q^{\prime \prime}\right\}
$$

(e) Let $\ell=\left\lceil\log _{2}(k)\right\rceil$. There exist $c_{0}, c_{1}, \ldots, c_{\ell} \in\{0,1\}$ such that $k=c_{0} \cdot 2^{0}+c_{1} \cdot 2^{1}+\cdots+c_{\ell} \cdot 2^{\ell}$. Let $I=\left\{0 \leq i \leq \ell: c_{i}=1\right\}$. Note that $k=\sum_{i \in I} 2^{i}$. Therefore, we may use transducer A_{i} from (b) for each $i \in I$, and combine these transducers using (d).
(f) For every $n \in \mathbb{N}_{>0}$, let

$$
u_{n}=\left[\begin{array}{l}
0^{n} 1 \\
0^{n} 0
\end{array}\right] \text { and } v_{n}=\left[\begin{array}{l}
0^{n-1} 0 \\
0^{n-1} 1
\end{array}\right]
$$

Let $i, j \in \mathbb{N}_{>0}$ be such that $i \neq j$. We claim that $L^{u_{i}} \neq L^{u_{j}}$. We have

$$
u_{i} v_{i}=\left[\begin{array}{c}
0^{i} 10^{i} \\
0^{2 i} 1
\end{array}\right] \text { and } u_{j} v_{i}=\left[\begin{array}{l}
0^{j} 10^{i} \\
0^{i+j} 1
\end{array}\right] .
$$

Therefore, $u_{i} v_{i}$ encodes $\left[2^{i}, 2^{2 i}\right]$, and $u_{i} v_{j}$ encodes $\left[2^{j}, 2^{i+j}\right]$. We observe that $u_{i} v_{i}$ belongs to the language since $2^{2 i}=\left(2^{i}\right)^{2}$. However, $u_{j} v_{i}$ does not belong to the language since $2^{i+j} \neq 2^{2 j}=\left(2^{j}\right)^{2}$.

Solution 7.2

(a)
(b) Executing add-lang $\left(L_{1}\right)$ yields the following computation tree:

Input: A fixed-length language $L \subseteq \Sigma^{k}$ described explicitely by a set of words.
Output: State q of the master automaton over Σ such that $L(q)=L$.
add-lang (L) :
if $L=\emptyset$ then
return q_{\emptyset}
else if $L=\{\varepsilon\}$ then
return q_{ε}
else
for $a_{i} \in \Sigma$ do
$L^{a_{i}} \leftarrow\left\{u \mid a_{i} u \in L\right\}$
$s_{i} \leftarrow \operatorname{add}-\operatorname{lang}\left(L^{a_{i}}\right)$
return make $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$

$$
\text { add-lang(\{bba, aba, bbb\}) }
$$

The table obtained after the execution is as follows:

Ident.	a-succ	b-succ
2	q_{ε}	q_{\emptyset}
3	q_{\emptyset}	2
4	q_{ε}	q_{ε}
5	q_{\emptyset}	4
6	3	5

Executing add-lang $\left(L_{2}\right)$ yields the following computation tree:

The table obtained after the execution is as follows:

Ident.	a-succ	b-succ
7	5	q_{\emptyset}
4	q_{ε}	q_{ε}
5	q_{\emptyset}	4

The resulting master automaton fragment is:

(c) Let us first adapt the algorithm for intersection to obtain an algorithm for union:

```
Input: States \(p\) and \(q\) of same length of the master automaton.
Output: State \(r\) of the master automaton such that \(L(r)=L(p) \cup L(q)\).
union \((p, q)\) :
    if \(G(p, q)\) is not empty then
        return \(G(p, q)\)
    else if \(p=q_{\emptyset}\) and \(q=q_{\emptyset}\) then
        return \(q_{\emptyset}\)
        else if \(p=q_{\varepsilon}\) or \(q=q_{\varepsilon}\) then
        return \(q_{\varepsilon}\)
    else
        for \(a_{i} \in \Sigma\) do
            \(s_{i} \leftarrow \operatorname{union}\left(p^{a_{i}}, q^{a_{i}}\right)\)
        \(G(p, q) \leftarrow \operatorname{make}\left(s_{1}, s_{2}, \ldots, s_{n}\right)\)
        return \(G(p, q)\)
```

Executing union $(6,7)$ yields the following computation tree:

The table obtained after the execution is as follows:

Ident.	a-succ	b-succ
8	5	5
5	q_{\emptyset}	4
4	q_{ε}	q_{ε}

The new fragment of the master automaton is:

Note that union could be slightly improved by returning q whenever $p=q$, and by updating $G(q, p)$ at the same time as $G(p, q)$.
(d) The kernels are:

$$
\begin{aligned}
\left\langle L_{1}\right\rangle & =L_{1}, \\
\left\langle L_{2}\right\rangle & =L_{2}, \\
\left\langle L_{1} \cup L_{2}\right\rangle & =\{b a, b b\} .
\end{aligned}
$$

Solution 7.3

(a) The algorithm takes as input a state of the master automaton and the length of the language it recognizes, and recursively constructs a formula as follows:

```
Input: state \(q\) recognizing a language of length \(n\)
Output: formula \(\varphi_{q}\) such that \(\mathcal{L}\left(\varphi_{q}\right)=\mathcal{L}(q)\)
DFAtoFormula \((q, n)\) :
        if \(G(q)\) is not empty then
            return \(G(q)\)
        if \(q=q_{\emptyset}\) then
            return false
        else if \(q=q_{\epsilon}\) then
            return true
        else
            \(\varphi_{0} \leftarrow\) DFAtoFormula \(\left(q^{0}, n-1\right)\)
            \(\varphi_{1} \leftarrow\) DFAtoFormula \(\left(q^{1}, n-1\right)\)
            \(\varphi_{q} \leftarrow\left(\neg x_{1} \wedge \varphi_{0}\right) \vee\left(x_{1} \wedge \varphi_{1}\right)\)
            \(G(q) \leftarrow \varphi_{q}\)
            return \(G(q)\)
```

Observe that the parameter n is needed to identify the variable at line 11.
Our algorithm takes as input a table with the state identifiers and successors of all the descendants of q (i.e., the fragment of the master automaton starting at q). This is a polynomial time algorithm because we compute $\varphi_{q^{\prime}}$ once for every descendant q^{\prime} of q.
Note that this algorithm could be improved by adding an else that checks if $q^{0}=q^{1}$ before the last else:

```
else if \(q^{0}=q^{1}\) then
    \(\varphi \leftarrow\) DFAtoFormula \(\left(q^{0}, n-1\right)\)
    \(\varphi_{q} \leftarrow \varphi\)
    \(G(q) \leftarrow \varphi_{q}\)
    return \(G(q)\)
```

(b) Given a formula φ over variables x_{1}, \ldots, x_{n}, we write $\varphi\left[x_{i} /\right.$ true $]$ and $\varphi\left[x_{i} /\right.$ false $]$ to denote the formulas obtained by replacing all occurrences of x_{i} in φ by true and false, respectively. We have that $\mathcal{L}\left(\varphi\left[x_{1} /\right.\right.$ false $\left.]\right)=\mathcal{L}(\varphi)^{0}$ and $\mathcal{L}\left(\varphi\left[x_{1} /\right.\right.$ true $\left.]\right)=\mathcal{L}(\varphi)^{1}$. This yields the following algorithm:

```
Input: formula \(\varphi\) over variables \(x_{1}, \ldots, x_{n}\), total number of variables \(n, k\) initially equal to 1
Output: state \(q\) such that \(L(\varphi)=L(q)\)
FormulatoDFA \((\varphi, n, k)\) :
    if \(G(\varphi)\) is not empty then
        return \(G(\varphi)\)
        if \(\varphi=\) true then
            return \(q_{\varepsilon}\)
        else if \(\varphi=\) false then
            return \(q_{\emptyset}\)
        else
            \(r_{0} \leftarrow\) FormulatoDFA( \(\varphi\left[x_{k} /\right.\) false \(\left.], n, k+1\right)\)
            \(r_{1} \leftarrow\) Formulato \(D F A\left(\varphi\left[x_{k} /\right.\right.\) true \(\left.], n, k+1\right)\)
            \(G(\varphi) \leftarrow \operatorname{make}\left(r_{0}, r_{1}\right)\)
            return \(G(\varphi)\)
```

