Automata and Formal Languages — Exercise Sheet 7

Exercise 7.1

Let val: $\{0,1\}^* \to \mathbb{N}$ be the function that associates to every word $w \in \{0,1\}^*$ the number val(w) represented by w in the *least significant bit first* encoding.

(a) Give a transducer that doubles numbers, i.e. a transducer accepting

 $L_1 = \{ [x, y] \in (\{0, 1\} \times \{0, 1\})^* \mid \operatorname{val}(y) = 2 \cdot \operatorname{val}(x) \}.$

(b) Give an algorithm that takes $k \in \mathbb{N}$ as input, and that produces a transducer A_k accepting

$$L_k = \{ [x, y] \in (\{0, 1\} \times \{0, 1\})^* \mid \operatorname{val}(y) = 2^k \cdot \operatorname{val}(x) \}.$$

Hint: use (a) and consider operations seen in class.

(c) Give a transducer for the addition of two numbers, i.e. a transducer accepting

$$\{[x, y, z] \in (\{0, 1\} \times \{0, 1\} \times \{0, 1\})^* \mid \operatorname{val}(z) = \operatorname{val}(x) + \operatorname{val}(y)\}.$$

(d) For every $k \in \mathbb{N}_{>0}$, let

$$X_k = \{ [x, y] \in (\{0, 1\} \times \{0, 1\})^* \mid \operatorname{val}(y) = k \cdot \operatorname{val}(x) \}$$

Sketch an algorithm that takes as input transducers A and B, accepting respectively X_a and X_b for some $a, b \in \mathbb{N}_{>0}$, and that produces a transducer C accepting X_{a+b} .

- (e) Let $k \in \mathbb{N}_{>0}$. Using (b) and (d), how can you build a transducer accepting X_k ?
- (f) Show that the following language has infinitely many residuals, and hence that it is not regular:

$$\{[x, y] \in (\{0, 1\} \times \{0, 1\})^* \mid \operatorname{val}(y) = \operatorname{val}(x)^2\}.$$

Exercise 7.2

Let $L_1 = \{bba, aba, bbb\}$ and $L_2 = \{aba, abb\}.$

(a) Give an algorithm for the following operation:

INPUT: A fixed-length language $L \subseteq \Sigma^k$ described explicitly as a set of words. OUTPUT: State q of the master automaton over Σ such that L(q) = L.

- (b) Use the previous algorithm to build the states of the master automaton for L_1 and L_2 .
- (c) Compute the state of the master automaton representing $L_1 \cup L_2$.
- (d) Identify the kernels $\langle L_1 \rangle$, $\langle L_2 \rangle$, and $\langle L_1 \cup L_2 \rangle$.

Exercise 7.3

We define the *language* of a Boolean formula φ over variables x_1, \ldots, x_n as:

 $\mathcal{L}(\varphi) = \{a_1 a_2 \cdots a_n \in \{0, 1\}^n : \text{ the assignment } x_1 \mapsto a_1, \dots, x_n \mapsto a_n \text{ satisfies } \varphi\}.$

- (a) Give a polynomial-time algorithm that takes as input a DFA A recognizing a language of length n, and returns a Boolean formula φ such that $\mathcal{L}(\varphi) = \mathcal{L}(A)$.
- (b) Give an exponential-time algorithm that takes a Boolean formula φ as input, and returns a DFA A recognizing $\mathcal{L}(\varphi)$.

Solution 7.1

(a) Let $[x_1x_2\cdots x_n, y_1y_2\cdots y_n] \in (\{0,1\}\times\{0,1\})^n$ where $n \ge 2$. Multiplying a binary number by two shifts its bits and adds a zero. For example, the word

 $\begin{bmatrix} 10110\\01011\end{bmatrix}$

belongs to the language since it encodes [13, 26]. Thus, we have $val(y) = 2 \cdot val(x)$ if and only if $y_1 = 0$, $x_n = 0$, and $y_i = x_{i-1}$ for every $1 < i \le n$. From this observation, we construct a transducer that

- tests whether the first bit of y is 0,
- tests whether y is consistent with x, by keeping the last bit of x in memory,
- accepts [x, y] if the last bit of x is 0.

Note that words $[\varepsilon, \varepsilon]$ and [0, 0] both encode the numerical values [0, 0]. Therefore, they should also be accepted since $2 \cdot 0 = 0$. We obtain the following transducer:

 \star The initial state can be merged with state 0 as they have the same outgoing transitions.

(b) We construct A_0 as the following transducer accepting $\{[x, y] \in (\{0, 1\} \times \{0, 1\})^* : y = x\}$:

Let A_1 be the transducer obtained in (a). For every k > 1, we define $A_k = Join(A_{k-1}, A_1)$. A simple inductions show that $L(A_k) = L_k$ for every $k \in \mathbb{N}$.

(c) We construct a transducer that computes the addition by keeping the current carry bit. Consider some tuple $[x, y, z] \in \{0, 1\}^3$ and a carry bit r. Adding x, y and r leads to the bit

$$z = (x + y + r) \mod 2. \tag{1}$$

Moreover, it yields a new carry bit r' such that r' = 1 if x + y + r > 1 and r' = 0 otherwise. The following table identifies the new carry bit r' of the tuples that satisfy (1):

We construct our transducer from the above table:

- (d) We construct a transducer C that, intuitively, feeds its input to both A and B, and then feed the respective outputs of A and B to a transducer performing addition. More formally, let $A = (Q_A, \{0, 1\}, \delta_A, q_{0A}, F_A)$, $B = (Q_B, \{0, 1\}, \delta_B, q_{0B}, F_B)$, and let $D = (Q_D, \{0, 1\}, \delta_D, q_{0D}, F_D)$ be the transducer for addition obtained in (c). We define C as $C = (Q_C, \{0, 1\}, \delta_C, q_{0C}, F_C)$ where
 - $Q_C = Q_A \times Q_B \times Q_D$,
 - $q_{0C} = (q_{0A}, q_{0B}, q_{0D}),$
 - $F_C = F_A \times F_B \times F_D$,

and

$$\delta_C((p,p',p''),[x,z]) = \{(q,q',q'') : \exists y, y' \in \{0,1\} \text{ s.t. } p \xrightarrow{[x,y]}_A q, p' \xrightarrow{[x,y']}_B q' \text{ and } p'' \xrightarrow{[y,y',z]}_D q'' \}.$$

- (e) Let $\ell = \lceil \log_2(k) \rceil$. There exist $c_0, c_1, \ldots, c_\ell \in \{0, 1\}$ such that $k = c_0 \cdot 2^0 + c_1 \cdot 2^1 + \cdots + c_\ell \cdot 2^\ell$. Let $I = \{0 \le i \le \ell : c_i = 1\}$. Note that $k = \sum_{i \in I} 2^i$. Therefore, we may use transducer A_i from (b) for each $i \in I$, and combine these transducers using (d).
- (f) For every $n \in \mathbb{N}_{>0}$, let

$$u_n = \begin{bmatrix} 0^{n}1\\ 0^n0 \end{bmatrix}$$
 and $v_n = \begin{bmatrix} 0^{n-1}0\\ 0^{n-1}1 \end{bmatrix}$.

Let $i, j \in \mathbb{N}_{>0}$ be such that $i \neq j$. We claim that $L^{u_i} \neq L^{u_j}$. We have

$$u_i v_i = \begin{bmatrix} 0^i 10^i \\ 0^{2i} 1 \end{bmatrix}$$
 and $u_j v_i = \begin{bmatrix} 0^j 10^i \\ 0^{i+j} 1 \end{bmatrix}$

Therefore, $u_i v_i$ encodes $[2^i, 2^{2i}]$, and $u_i v_j$ encodes $[2^j, 2^{i+j}]$. We observe that $u_i v_i$ belongs to the language since $2^{2i} = (2^i)^2$. However, $u_j v_i$ does not belong to the language since $2^{i+j} \neq 2^{2j} = (2^j)^2$.

Solution 7.2

(a)

(b) Executing $add-lang(L_1)$ yields the following computation tree:

Input: A fixed-length language $L \subseteq \Sigma^k$ described explicitly by a set of words. **Output:** State q of the master automaton over Σ such that L(q) = L. 1 add-lang(L): if $L = \emptyset$ then $\mathbf{2}$ return q_{\emptyset} 3 else if $L = \{\varepsilon\}$ then $\mathbf{4}$ $\mathbf{5}$ return q_{ε} else 6 for $a_i \in \Sigma$ do 7 $L^{a_i} \leftarrow \{u \mid a_i u \in L\}$ 8 $s_i \leftarrow add-lang(L^{a_i})$ 9 return make $(s_1, s_2, ..., s_n)$ 10

The table obtained after the execution is as follows:

Ident.	a-succ	b-succ
2	q_{ε}	q_{\emptyset}
3	q_{\emptyset}	2
4	q_{ε}	q_{ε}
5	q_{\emptyset}	4
6	3	5

Executing $add-lang(L_2)$ yields the following computation tree:

The table obtained after the execution is as follows:

Ident.	a-succ	<i>b</i> -succ
7	5	q_{\emptyset}
4	q_{ε}	q_{ε}
5	q_{\emptyset}	4

The resulting master automaton fragment is:

(c) Let us first adapt the algorithm for intersection to obtain an algorithm for union:

```
Input: States p and q of same length of the master automaton.
    Output: State r of the master automaton such that L(r) = L(p) \cup L(q).
 1 union(p,q):
         if G(p,q) is not empty then
 \mathbf{2}
 3
             return G(p,q)
         else if p = q_{\emptyset} and q = q_{\emptyset} then
 4
             return q_{\emptyset}
 \mathbf{5}
         else if p = q_{\varepsilon} or q = q_{\varepsilon} then
 6
 7
             return q_{\varepsilon}
         else
 8
             for a_i \in \Sigma do
 9
                  s_i \leftarrow \texttt{union}(p^{a_i}, q^{a_i})
10
             G(p,q) \leftarrow \mathtt{make}(s_1, s_2, \ldots, s_n)
11
             return G(p,q)
\mathbf{12}
```

Executing union(6,7) yields the following computation tree:

The table obtained after the execution is as follows:

Ident.	a-succ	<i>b</i> -succ
8	5	5
5	q_{\emptyset}	4
4	q_{ε}	q_{ε}

The new fragment of the master automaton is:

★ Note that union could be slightly improved by returning q whenever p = q, and by updating G(q, p) at the same time as G(p, q).

(d) The kernels are:

$$\begin{split} \langle L_1 \rangle &= L_1, \\ \langle L_2 \rangle &= L_2, \\ \langle L_1 \cup L_2 \rangle &= \{ba, bb\}. \end{split}$$

Solution 7.3

(a) The algorithm takes as input a state of the master automaton and the length of the language it recognizes, and recursively constructs a formula as follows:

```
Input: state q recognizing a language of length n
    Output: formula \varphi_q such that \mathcal{L}(\varphi_q) = \mathcal{L}(q)
   DFAtoFormula(q, n):
 1
 \mathbf{2}
         if G(q) is not empty then
              return G(q)
 3
         if q = q_{\emptyset} then
 \mathbf{4}
              return false
 \mathbf{5}
 6
         else if q = q_{\epsilon} then
              return true
 \mathbf{7}
 8
          else
               \varphi_0 \leftarrow DFAtoFormula(q^0, n-1)
 9
               \varphi_1 \leftarrow DFAtoFormula(q^1, n-1)
10
               \varphi_q \leftarrow (\neg x_1 \land \varphi_0) \lor (x_1 \land \varphi_1)
11
               G(q) \leftarrow \varphi_q
\mathbf{12}
               return G(q)
13
```

Observe that the parameter n is needed to identify the variable at line 11.

Our algorithm takes as input a table with the state identifiers and successors of all the descendants of q (i.e., the fragment of the master automaton starting at q). This is a polynomial time algorithm because we compute $\varphi_{q'}$ once for every descendant q' of q.

Note that this algorithm could be improved by adding an *else* that checks if $q^0 = q^1$ before the last else:

```
1 else if q^0 = q^1 then

2 \varphi \leftarrow DFAtoFormula(q^0, n-1)

3 \varphi_q \leftarrow \varphi

4 G(q) \leftarrow \varphi_q

5 return G(q)
```

(b) Given a formula φ over variables x_1, \ldots, x_n , we write $\varphi[x_i/\mathbf{true}]$ and $\varphi[x_i/\mathbf{false}]$ to denote the formulas obtained by replacing all occurrences of x_i in φ by **true** and **false**, respectively. We have that $\mathcal{L}(\varphi[x_1/\mathbf{false}]) = \mathcal{L}(\varphi)^0$ and $\mathcal{L}(\varphi[x_1/\mathbf{true}]) = \mathcal{L}(\varphi)^1$. This yields the following algorithm:

Input: formula φ over variables x_1, \ldots, x_n , total number of variables n, k initially equal to 1 **Output:** state q such that $L(\varphi) = L(q)$

1 FormulatoDFA(φ, n, k): if $G(\varphi)$ is not empty then $\mathbf{2}$ 3 return $G(\varphi)$ $\mathbf{4}$ if $\varphi =$ true then return q_{ε} $\mathbf{5}$ else if $\varphi =$ false then 6 7 return q_{\emptyset} 8 else $r_0 \leftarrow FormulatoDFA(\varphi[x_k/\mathbf{false}], n, k+1)$ 9 $r_1 \leftarrow FormulatoDFA(\varphi[x_k/\mathbf{true}], n, k+1)$ 10 $G(\varphi) \leftarrow make(r_0, r_1)$ 11 return $G(\varphi)$ 12