
Technische Universität München Winter term 2022/23
Prof. J. Esparza / A. R. Balasubramanian / M. Lazić I7

Automata and Formal Languages — Exercise Sheet 7

Exercise 7.1

Let val : {0, 1}∗ → N be the function that associates to every word w ∈ {0, 1}∗ the number val(w) represented
by w in the least significant bit first encoding.

(a) Give a transducer that doubles numbers, i.e. a transducer accepting

L1 = {[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = 2 · val(x)} .

(b) Give an algorithm that takes k ∈ N as input, and that produces a transducer Ak accepting

Lk =
{

[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = 2k · val(x)
}
.

Hint: use (a) and consider operations seen in class.

(c) Give a transducer for the addition of two numbers, i.e. a transducer accepting

{[x, y, z] ∈ ({0, 1} × {0, 1} × {0, 1})∗ | val(z) = val(x) + val(y)} .

(d) For every k ∈ N>0, let

Xk = {[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = k · val(x)} .

Sketch an algorithm that takes as input transducers A and B, accepting respectively Xa and Xb for some
a, b ∈ N>0, and that produces a transducer C accepting Xa+b.

(e) Let k ∈ N>0. Using (b) and (d), how can you build a transducer accepting Xk?

(f) Show that the following language has infinitely many residuals, and hence that it is not regular:{
[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = val(x)2

}
.

Exercise 7.2

Let L1 = {bba, aba, bbb} and L2 = {aba, abb}.

(a) Give an algorithm for the following operation:

Input: A fixed-length language L ⊆ Σk described explicitly as a set of words.
Output: State q of the master automaton over Σ such that L(q) = L.

(b) Use the previous algorithm to build the states of the master automaton for L1 and L2.

(c) Compute the state of the master automaton representing L1 ∪ L2.

(d) Identify the kernels 〈L1〉, 〈L2〉, and 〈L1 ∪ L2〉.

Exercise 7.3

We define the language of a Boolean formula ϕ over variables x1, . . . , xn as:

L(ϕ) = {a1a2 · · · an ∈ {0, 1}n : the assignment x1 7→ a1, . . . , xn 7→ an satisfies ϕ}.

(a) Give a polynomial-time algorithm that takes as input a DFA A recognizing a language of length n, and
returns a Boolean formula ϕ such that L(ϕ) = L(A).

(b) Give an exponential-time algorithm that takes a Boolean formula ϕ as input, and returns a DFA A
recognizing L(ϕ).

Solution 7.1

(a) Let [x1x2 · · ·xn, y1y2 · · · yn] ∈ ({0, 1} × {0, 1})n where n ≥ 2. Multiplying a binary number by two shifts
its bits and adds a zero. For example, the word [

10110
01011

]
belongs to the language since it encodes [13, 26]. Thus, we have val(y) = 2 · val(x) if and only if y1 = 0,
xn = 0, and yi = xi−1 for every 1 < i ≤ n. From this observation, we construct a transducer that

� tests whether the first bit of y is 0,

� tests whether y is consistent with x, by keeping the last bit of x in memory,

� accepts [x, y] if the last bit of x is 0.

Note that words [ε, ε] and [0, 0] both encode the numerical values [0, 0]. Therefore, they should also be
accepted since 2 · 0 = 0. We obtain the following transducer:

0

1

[
0
0

]

[
1
0

]

[
0
0

]

[
1
0

][
0
1

]

[
1
1

]

F The initial state can be merged with state 0 as they have the same outgoing transitions.

(b) We construct A0 as the following transducer accepting {[x, y] ∈ ({0, 1} × {0, 1})∗ : y = x}:

[
0
0

]
,

[
1
1

]

Let A1 be the transducer obtained in (a). For every k > 1, we define Ak = Join(Ak−1, A1). A simple
inductions show that L(Ak) = Lk for every k ∈ N.

(c) We construct a transducer that computes the addition by keeping the current carry bit. Consider some
tuple [x, y, z] ∈ {0, 1}3 and a carry bit r. Adding x, y and r leads to the bit

z = (x+ y + r) mod 2. (1)

Moreover, it yields a new carry bit r′ such that r′ = 1 if x+y+r > 1 and r′ = 0 otherwise. The folllowing
table identifies the new carry bit r′ of the tuples that satisfy (1):0

0
0

 0
0
1

 0
1
0

 0
1
1

 1
0
0

 1
0
1

 1
1
0

 1
1
1


r = 0 0 x x 0 x 0 1 x
r = 1 x 0 1 x 1 x x 1

We construct our transducer from the above table:

q0

q1

11
0

 00
1



00
0

 ,
01
1

 ,
10
1



01
0

 ,
10
0

 ,
11
1



(d) We construct a transducer C that, intuitively, feeds its input to both A and B, and then feed the respective
outputs of A and B to a transducer performing addition. More formally, let A = (QA, {0, 1}, δA, q0A, FA),
B = (QB , {0, 1}, δB , q0B , FB), and let D = (QD, {0, 1}, δD, q0D, FD) be the transducer for addition ob-
tained in (c). We define C as C = (QC , {0, 1}, δC , q0C , FC) where

� QC = QA ×QB ×QD,

� q0C = (q0A, q0B , q0D),

� FC = FA × FB × FD,

and

δC((p, p′, p′′), [x, z]) = {(q, q′, q′′) : ∃y, y′ ∈ {0, 1} s.t. p
[x,y]−−−→A q, p

′ [x,y′]−−−→B q′ and p′′
[y,y′,z]−−−−→D q′′}.

(e) Let ` = dlog2(k)e. There exist c0, c1, . . . , c` ∈ {0, 1} such that k = c0 · 20 + c1 · 21 + · · · + c` · 2`. Let
I = {0 ≤ i ≤ ` : ci = 1}. Note that k =

∑
i∈I 2i. Therefore, we may use transducer Ai from (b) for each

i ∈ I, and combine these transducers using (d).

(f) For every n ∈ N>0, let

un =

[
0n1
0n0

]
and vn =

[
0n−10
0n−11

]
.

Let i, j ∈ N>0 be such that i 6= j. We claim that Lui 6= Luj . We have

uivi =

[
0i10i

02i1

]
and ujvi =

[
0j10i

0i+j1

]
.

Therefore, uivi encodes [2i, 22i], and uivj encodes [2j , 2i+j]. We observe that uivi belongs to the language
since 22i = (2i)2. However, ujvi does not belong to the language since 2i+j 6= 22j = (2j)2.

Solution 7.2

(a)

(b) Executing add-lang(L1) yields the following computation tree:

Input: A fixed-length language L ⊆ Σk described explicitely by a set of words.
Output: State q of the master automaton over Σ such that L(q) = L.

1 add-lang(L):
2 if L = ∅ then
3 return q∅
4 else if L = {ε} then
5 return qε
6 else
7 for ai ∈ Σ do
8 Lai ← {u | aiu ∈ L}
9 si ← add-lang(Lai)

10 return make(s1, s2, ..., sn)

add-lang({bba, aba, bbb})

make(add-lang({ba}), add-lang({ba, bb}))

make(add-lang(∅), add-lang({a})) make(add-lang(∅), add-lang({a, b}))

make(add-lang({ε}), add-lang(∅)) make(add-lang({ε}), add-lang({ε}))q∅

q∅qε

q∅

qε qε

2

3

4

5

6

The table obtained after the execution is as follows:

Ident. a-succ b-succ
2 qε q∅
3 q∅ 2
4 qε qε
5 q∅ 4
6 3 5

Executing add-lang(L2) yields the following computation tree:

add-lang({aba, abb})

make(add-lang({ba, bb}), add-lang(∅))

make(add-lang(∅), add-lang({a, b}))

make(add-lang({ε}), add-lang({ε}))

q∅

q∅

qε qε

4

5

7

The table obtained after the execution is as follows:

Ident. a-succ b-succ
7 5 q∅
4 qε qε
5 q∅ 4

The resulting master automaton fragment is:

qε q∅

2
4

3
5

7
6

L1
L2

a, b

a, b

b

a

a, b

b

a

b

a

ab b

a

(c) Let us first adapt the algorithm for intersection to obtain an algorithm for union:

Input: States p and q of same length of the master automaton.
Output: State r of the master automaton such that L(r) = L(p) ∪ L(q).

1 union(p, q):
2 if G(p, q) is not empty then
3 return G(p, q)
4 else if p = q∅ and q = q∅ then
5 return q∅
6 else if p = qε or q = qε then
7 return qε
8 else
9 for ai ∈ Σ do

10 si ← union(pai , qai)
11 G(p, q)← make(s1, s2, . . . , sn)
12 return G(p, q)

Executing union(6, 7) yields the following computation tree:

union(6, 7)

make(union(3, 5), union(5, q∅))

make(union(q∅, q∅), union(2, 4)) make(union(q∅, q∅), union(4, q∅))

make(union(qε, qε), union(q∅, qε)) make(union(qε, q∅), union(qε, q∅))q∅

qε qε

q∅

qε qε

4

5

4

5

8

The table obtained after the execution is as follows:

Ident. a-succ b-succ
8 5 5
5 q∅ 4
4 qε qε

The new fragment of the master automaton is:

qε q∅

2
4

3
5

7
6

10

L1
L2

L1 ∪ L2

a, b

a, b

b

a

a, b

b

a

b

a

ab b

a

a, b

F Note that union could be slightly improved by returning q whenever p = q, and by updating G(q, p)
at the same time as G(p, q).

(d) The kernels are:

〈L1〉 = L1,

〈L2〉 = L2,

〈L1 ∪ L2〉 = {ba, bb}.

Solution 7.3

(a) The algorithm takes as input a state of the master automaton and the length of the language it recognizes,
and recursively constructs a formula as follows:

Input: state q recognizing a language of length n
Output: formula ϕq such that L(ϕq) = L(q)

1 DFAtoFormula(q, n):
2 if G(q) is not empty then
3 return G(q)
4 if q = q∅ then
5 return false
6 else if q = qε then
7 return true
8 else
9 ϕ0 ← DFAtoFormula(q0, n− 1)

10 ϕ1 ← DFAtoFormula(q1, n− 1)
11 ϕq ← (¬x1 ∧ ϕ0) ∨ (x1 ∧ ϕ1)
12 G(q)← ϕq
13 return G(q)

Observe that the parameter n is needed to identify the variable at line 11.

Our algorithm takes as input a table with the state identifiers and successors of all the descendants of q
(i.e., the fragment of the master automaton starting at q). This is a polynomial time algorithm because
we compute ϕq′ once for every descendant q′ of q.

Note that this algorithm could be improved by adding an else that checks if q0 = q1 before the last else:

1 else if q0 = q1 then
2 ϕ← DFAtoFormula(q0, n− 1)
3 ϕq ← ϕ
4 G(q)← ϕq
5 return G(q)

(b) Given a formula ϕ over variables x1, . . . , xn, we write ϕ[xi/true] and ϕ[xi/false] to denote the for-
mulas obtained by replacing all occurrences of xi in ϕ by true and false, respectively. We have that
L(ϕ[x1/false]) = L(ϕ)0 and L(ϕ[x1/true]) = L(ϕ)1. This yields the following algorithm:

Input: formula ϕ over variables x1, . . . , xn, total number of variables n, k initially equal to 1
Output: state q such that L(ϕ) = L(q)

1 FormulatoDFA(ϕ, n, k):
2 if G(ϕ) is not empty then
3 return G(ϕ)
4 if ϕ = true then
5 return qε
6 else if ϕ = false then
7 return q∅
8 else
9 r0 ← FormulatoDFA(ϕ[xk/false], n, k + 1)

10 r1 ← FormulatoDFA(ϕ[xk/true], n, k + 1)
11 G(ϕ)← make(r0, r1)
12 return G(ϕ)

