
Technische Universität München Winter term 2021/22
Prof. J. Esparza / A. R. Balasubramanian / C. Weil-Kennedy I7

Automata and Formal Languages — Exercise Sheet 7

Exercise 7.1

Let val : {0, 1}∗ → N be the function that associates to every word w ∈ {0, 1}∗ the number val(w) represented
by w in the least significant bit first encoding.

(a) Give a transducer that doubles numbers, i.e. a transducer accepting

L1 = {[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = 2 · val(x)} .

(b) Give an algorithm that takes k ∈ N as input, and that produces a transducer Ak accepting

Lk =
{

[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = 2k · val(x)
}
.

Hint: use (a) and consider operations seen in class.

(c) Give a transducer for the addition of two numbers, i.e. a transducer accepting

{[x, y, z] ∈ ({0, 1} × {0, 1} × {0, 1})∗ | val(z) = val(x) + val(y)} .

(d) Show that the following language has infinitely many residuals, and hence that it is not regular:{
[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = val(x)2

}
.

Exercise 7.2

As we have seen, the application of the Post and Pre operations to transducers requires to compute the padding
closure in order to guarantee that the resulting automaton accepts either all or none of the encodings of an
object. The padding closure has been defined for encodings where padding occurs on the right, i.e., w belongs
to the padding closure of an NFA A iff w#k ∈ L (A) for some k ∈ N. However, in some natural encodings, like
the most-significant-bit-first encoding of natural numbers, padding occurs on the left. Give an algorithm for
computing the padding closure of an NFA when padding occurs on the left, i.e. where we consider #kw.

Exercise 7.3

Let L1 = {baa, aaa, bab} and L2 = {baa, aab}.

(a) Give an algorithm for the following operation:

Input: A fixed-length language L ⊆ Σk described explicitly as a set of words.
Output: State q of the master automaton over Σ such that L(q) = L.

(b) Use the previous algorithm to build the states of the master automaton for L1 and L2.

(c) Compute the state of the master automaton representing L1 ∪ L2.

(d) Identify the kernels 〈L1〉, 〈L2〉, and 〈L1 ∪ L2〉.

Exercise 7.4

We define the language of a Boolean formula ϕ over variables x1, . . . , xn as:

L (ϕ) = {a1a2 · · · an ∈ {0, 1}n : the assignment x1 7→ a1, . . . , xn 7→ an satisfies ϕ}.

(a) Give a polynomial-time algorithm that takes as input a DFA A recognizing a language of length n, and
returns a Boolean formula ϕ such that L (ϕ) = L (A).

(b) Give an exponential-time algorithm that takes a Boolean formula ϕ as input, and returns a DFA A
recognizing L (ϕ).

Solution 7.1

(a) Let [x1x2 · · ·xn, y1y2 · · · yn] ∈ ({0, 1} × {0, 1})n where n ≥ 2. Multiplying a binary number by two shifts
its bits and adds a zero. For example, the word [

10110
01011

]
belongs to the language since it encodes [13, 26]. Thus, we have val(y) = 2 · val(x) if and only if y1 = 0,
xn = 0, and yi = xi−1 for every 1 < i ≤ n. From this observation, we construct a transducer that

• tests whether the first bit of y is 0,

• tests whether y is consistent with x, by keeping the last bit of x in memory,

• accepts [x, y] if the last bit of x is 0.

Note that words [ε, ε] and [0, 0] both encode the numerical values [0, 0]. Therefore, they should also be
accepted since 2 · 0 = 0. We obtain the following transducer:

0

1

[
0
0

]

[
1
0

]

[
0
0

]

[
1
0

][
0
1

]

[
1
1

]

F The initial state can be merged with state 0 as they have the same outgoing transitions.

0 1

[
0
0

] [
1
0

]

[
0
1

]

[
1
1

]

(b) We construct A0 as the following transducer accepting {[x, y] ∈ ({0, 1} × {0, 1})∗ : y = x}:

[
0
0

]
,

[
1
1

]

Let A1 be the transducer obtained in (a). For every k > 1, we define Ak = Join(Ak−1, A1). A simple
inductions show that L(Ak) = Lk for every k ∈ N.

(c) We construct a transducer that computes the addition by keeping the current carry bit. Consider some
tuple [x, y, z] ∈ {0, 1}3 and a carry bit r. Adding x, y and r leads to the bit

z = (x+ y + r) mod 2. (1)

Moreover, it yields a new carry bit r′ such that r′ = 1 if x+y+r > 1 and r′ = 0 otherwise. The folllowing
table identifies the new carry bit r′ of the tuples that satisfy (1):0

0
0

 0
0
1

 0
1
0

 0
1
1

 1
0
0

 1
0
1

 1
1
0

 1
1
1


r = 0 0 x x 0 x 0 1 x
r = 1 x 0 1 x 1 x x 1

We construct our transducer from the above table:

q0

q1

11
0

 00
1



00
0

 ,
01
1

 ,
10
1



01
0

 ,
10
0

 ,
11
1



(d) For every n ∈ N>0, let

un =

[
0n1
0n0

]
and vn =

[
0n−10
0n−11

]
.

Let i, j ∈ N>0 be such that i 6= j. We claim that Lui 6= Luj . We have

uivi =

[
0i10i

02i1

]
and ujvi =

[
0j10i

0i+j1

]
.

Therefore, uivi encodes [2i, 22i], and ujvi encodes [2j , 2i+j]. We observe that uivi belongs to the language
since 22i = (2i)2. However, ujvi does not belong to the language since 2i+j 6= 22j = (2j)2. Thus vi ∈ Lui

and vi /∈ Luj . This shows that Lui 6= Luj for any i, j ∈ N>0 such that i 6= j. There are an infinite number
of such pairs, and thus an infinite number of residuals.

Solution 7.2

Instead of enlarging the set of final states as done by PadClosure, we symmetrically enlarge the set of initial
states Q0 to the the set

Q′0 = {q : q0
0n−→ q for some q0 ∈ Q0, n ∈ N}.

This modification yields the following algorithm:

For example, the NFA depicted below on the left recognizes the set of numbers {1, 3} under MSBF encodings
(# = 0). Its padding closure, whichs recognizes the same set, is depicted on the right:

0

0

0 1 1

1

0

0

0 1 1

1

Input: NFA A = (Σ× Σ, Q, δ,Q0, F)
Output: new set Q′0 of initial states

1 PadClosure′(A,#):

2 W ← Q0; Q′0 ← ∅;
3 while W 6= ∅ do
4 pick q from W
5 add q to Q′0
6 forall (q,#, q′) ∈ δ do
7 if q′ /∈ Q′0 then
8 add q′ to W

9 return Q′0

In the lecture notes, the padding closure of an NFA A is defined as an NFA A′ that accepts a word w if and
only if the first NFA accepts w#n for some n ≥ 0 and padding symbol #. With this definition, if A accepts a#
but not a##, then A′ will accept a and a# but it also will not accept a##. However, it makes sense to want
our padding closure to accept all encodings of a word. To do this, we replace the last line by the following

1 forall q ∈ Q′0 do
2 add (q,#, q) to δ′

3 return Q′0, δ
′

Solution 7.3

(a)

Input: A fixed-length language L ⊆ Σk described explicitely by a set of words.
Output: State q of the master automaton over Σ such that L(q) = L.

1 add-lang(L):
2 if L = ∅ then
3 return q∅
4 else if L = {ε} then
5 return qε
6 else
7 for ai ∈ Σ do
8 Lai ← {u | aiu ∈ L}
9 si ← add-lang(Lai)

10 return make(s1, s2, ..., sn)

(b) Executing add-lang(L1) yields the following computation tree:

add-lang({baa, aaa, bab})

make(add-lang({aa}), add-lang({aa, ab}))

make(add-lang({a}), add-lang(∅)) make(add-lang({a, b}), add-lang(∅))

make(add-lang({ε}), add-lang(∅)) make(add-lang({ε}), add-lang({ε}))q∅

q∅qε

q∅

qε qε

2

3

4

5

6

The table obtained after the execution is as follows:

Ident. a-succ b-succ
2 qε q∅
3 2 q∅
4 qε qε
5 4 q∅
6 3 5

Calling add-lang(L2) adds the following rows to the table and returns 9:

Ident. a-succ b-succ
7 q∅ qε
8 7 q∅
9 8 3

The resulting master automaton fragment is:

qε q∅

7 24

35

86

9

L1

L2

a, b

a, b

b

a

b

a

a, b

a

b

a

b

b
a

a
b

a

b

(c) Let us first adapt the algorithm for intersection to obtain an algorithm for union:

Input: States p and q of same length of the master automaton.
Output: State r of the master automaton such that L(r) = L(p) ∪ L(q).

1 union(p, q):
2 if G(p, q) is not empty then
3 return G(p, q)
4 else if p = q∅ and q = q∅ then
5 return q∅
6 else if p = qε or q = qε then
7 return qε
8 else
9 for ai ∈ Σ do

10 si ← union(pai , qai)
11 G(p, q)← make(s1, s2, . . . , sn)
12 return G(p, q)

Executing union(6, 9) yields the following computation tree:

union(6, 9)

make(union(3, 8), union(5, 3))

make(union(2, 7), union(q∅, q∅)) make(union(4, 2), union(q∅, q∅))

make(union(qε, q∅), union(q∅, qε)) make(union(qε, qε), union(qε, q∅))q∅

qε qε

q∅

qε qε

4

5

4

5

10

Calling union(6, 9) adds the following row to the table and returns 10:

Ident. a-succ b-succ
10 5 5

The new fragment of the master automaton is:

qε q∅

7 24

35

86

9

10

L1

L2

L1 ∪ L2

a, b

a, b

b

a

b

a

a, b

a

b

a

b

b
a

a
b

a

b

a, b

F Note that union could be slightly improved by returning q whenever p = q, and by updating G(q, p)
at the same time as G(p, q).

(d) The kernels are:

〈L1〉 = L1,

〈L2〉 = L2,

〈L1 ∪ L2〉 = {aa, ab}.

Solution 7.4

(a) The algorithm takes as input a state of the master automaton and the length of the language it recognizes,
and recursively constructs a formula as follows:

Input: state q recognizing a language of length n
Output: formula ϕq such that L (ϕq) = L (q)

1 DFAtoFormula(q, n):
2 if G(q) is not empty then
3 return G(q)
4 if q = q∅ then
5 return false
6 else if q = qε then
7 return true
8 else
9 ϕ0 ← DFAtoFormula(q0, n− 1)

10 ϕ1 ← DFAtoFormula(q1, n− 1)
11 ϕq ← (¬xn ∧ ϕ0) ∨ (xn ∧ ϕ1)
12 G(q)← ϕq
13 return G(q)

Observe that the parameter n is needed to identify the variable at line 11.

Our algorithm takes as input a table with the state identifiers and successors of all the descendants of q
(i.e. the fragment of the master automaton starting in q). This is a polynomial time algorithm because
we compute ϕq′ once for every q′ descendant of q.

As remarked in the tutorial, this algorithm could be improved by adding an else that checks if q0 = q1

before the last else:

1 else if q0 = q1 then
2 ϕ← DFAtoFormula(q0, n− 1)
3 ϕq ← ϕ
4 G(q)← ϕq
5 return G(q)

(b) Given a formula ϕ over variables x1, . . . , xn, we write ϕ[xi/true] and ϕ[xi/false] to denote the for-
mulas obtained by replacing all occurrences of xi in ϕ by true and false, respectively. We have that
L (ϕ[x1/false]) = L (ϕ)

0
and L (ϕ[x1/true]) = L (ϕ)

1
. This yields the following algorithm:

Input: formula ϕ over variables x1, . . . , xn, total number of variables n, k initially equal to n
Output: state q such that L(ϕ) = L(q)

1 FormulatoDFA(ϕ, n, k):
2 if G(ϕ) is not empty then
3 return G(ϕ)
4 if ϕ = true then
5 return qε
6 else if ϕ = false then
7 return q∅
8 else
9 r0 ← FormulatoDFA(ϕ[xn−k+1/false], n, k − 1)

10 r1 ← FormulatoDFA(ϕ[xn−k+1/true], n, k − 1)
11 G(ϕ)← make(r0, r1)
12 return G(ϕ)

