Automata and Formal Languages - Exercise Sheet 7

Exercise 7.1

Let $\Sigma=\{a, b\}$. Give formulations in plain English of the languages described by the following formulas of $\mathrm{FO}(\Sigma)$, and give a corresponding regular expression:
(a) $\exists x \cdot \operatorname{first}(x)$
(b) $\forall x \cdot \operatorname{last}(x)$
(c) $\neg \exists x . \exists y .\left(x<y \wedge Q_{a}(x) \wedge Q_{b}(y)\right) \wedge \forall x .\left(Q_{b}(x) \rightarrow \exists y . x<y \wedge Q_{a}(y)\right) \wedge \exists x . \neg \exists y . x<y$

Exercise 7.2

Let $\Sigma=\{a, b\}$.
(a) Give an $\operatorname{MSO}(\Sigma)$ sentence for $a a^{*} b^{*}$.
(b) Give an $\operatorname{MSO}(\Sigma)$ sentence for the set of words with an a at every odd position.
(c) Give a $\operatorname{MSO}(\Sigma)$ formula $\operatorname{Odd} \mathrm{C}_{\mathrm{C}} \operatorname{Card}(X)$ expressing that the cardinality of the set of positions X is odd.
(d) Give an $\operatorname{MSO}(\Sigma)$ sentence for the set of words with an even number of occurrences of a 's.

Exercise 7.3

Recall the syntax of $\operatorname{MSO}(\Sigma)$:

$$
\varphi:=Q_{a}(x)|x<y| x \in X|\neg \varphi| \varphi \vee \varphi|\exists x \varphi| \exists X \varphi
$$

We have introduced $y=x+1$ (" y is the successor position of x ") as an abbreviation

$$
y=x+1:=x<y \wedge \neg \exists z(x<z \wedge z<y)
$$

Consider now the variant $\operatorname{MSO}^{\prime}(\Sigma)$ in which, instead of an abbreviation, $y=x+1$ is part of the syntax and replaces $x<y$. In other words, the syntax of $\operatorname{MSO}^{\prime}(\Sigma)$ is

$$
\varphi:=Q_{a}(x)|y=x+1| x \in X|\neg \varphi| \varphi \vee \varphi|\exists x \varphi| \exists X \varphi
$$

Prove that $\mathrm{MSO}^{\prime}(\Sigma)$ has the same expressive power as $\mathrm{MSO}(\Sigma)$ by finding a formula of $\mathrm{MSO}^{\prime}(\Sigma)$ with the same meaning as $x<y$.

Exercise 7.4

Let Σ be a finite alphabet. A language $L \subseteq \Sigma^{*}$ is star-free if it can be expressed by a star-free regular expression, i.e. a regular expression where the Kleene star operation is forbidden, but complementation is allowed. For example, Σ^{*} is star-free since $\Sigma^{*}=\bar{\emptyset}$, but $(a a)^{*}$ is not.
(a) Give star-free regular expressions and $\operatorname{FO}(\Sigma)$ sentences for the following star-free languages with $\Sigma=$ $\{a, b\}$:
(i) Σ^{+}.
(ii) $\Sigma^{*} A \Sigma^{*}$ for some $A \subseteq \Sigma$.
(iii) A^{*} for some $A \subseteq \Sigma$.
(iv) $(a b)^{*}$.
(v) $\left\{w \in \Sigma^{*} \mid w\right.$ does not contain $\left.a a\right\}$.
(b) Show that finite and cofinite languages are star-free.
(c) Show that for every sentence $\varphi \in \mathrm{FO}(\Sigma)$, there exists a formula $\varphi^{+}(x, y)$, with two free variables x and y, such that for every $w \in \Sigma^{+}$and for every $1 \leq i \leq j \leq w$,

$$
w \neq \varphi^{+}(i, j) \quad \text { iff } \quad w_{i} w_{i+1} \cdots w_{j} \models \varphi .
$$

(d) Give a polynomial time algorithm that decides whether the empty word satisfies a given sentence of $\mathrm{FO}(\Sigma)$.
(e) Show that every star-free language can be expressed by an $\mathrm{FO}(\Sigma)$ sentence.

Solution 7.1

(a) All nonempty words. The regular expression is $\Sigma \Sigma^{*}$
(b) The empty word and words of one letter. The regular expression is $\epsilon+\Sigma$.
(c) The first conjunct expresses that no a precedes a b. The corresponding regular expression is $b^{*} a^{*}$. The second conjunct states that every b is followed (not necessarily immediately) by an a; this excludes the words of b^{*}. Finally, the third conjunct expresses that the last letter exists (and, by the second conjunct, must be an a), which excludes the empty word. So the regular expression is $b^{*} a a^{*}$

Solution 7.2

(a) $\exists x Q_{a}(x) \wedge\left(\forall x \forall y\left(Q_{a}(x) \wedge Q_{b}(y)\right) \rightarrow x<y\right)$
(b) We first define a formula that asserts that a set contains the odd positions:

$$
\operatorname{odd}(P)=\forall p:(p \in P \leftrightarrow(\operatorname{first}(p) \vee \exists q:(p=q+2 \wedge q \in P)))
$$

The sentence for the given language is:

$$
\exists O:\left(\operatorname{odd}(O) \wedge\left(\forall p: p \in O \rightarrow Q_{a}(p)\right)\right.
$$

(c) We first give formulas $\operatorname{First}(x, X)$ and Last (x, X) expressing that x is the first/last position among those in X. We also give a formula $\operatorname{Next}(x, y, X)$ expressing that y is the succesor of x in X. It is then easy to give a formula $\operatorname{Odd}(Y, X)$ expressing that Y is the set of odd positions of X (more precisely, Y contains the first position among those in X, the third, the fifth, etc.). Finally, the formula Odd_card (X) expresses that the last position of X belongs to the set of odd positions of X.

$$
\begin{aligned}
\text { First }(x, X) & :=x \in X \wedge \forall y y<x \rightarrow y \notin X \\
\operatorname{Last}(x, X) & :=x \in X \wedge \forall y y>x \rightarrow y \notin X \\
\operatorname{Next}(x, y, X) & :=x \in X \wedge y \in X \wedge x<y \wedge \neg \exists z x<z \wedge z<y \wedge z \in X \\
\operatorname{Odd}(Y, X) & :=\forall x(x \in Y \leftrightarrow(\operatorname{First}(x, X) \vee \exists z \exists u z \in Y \wedge \operatorname{Next}(z, u, X) \wedge \operatorname{Next}(u, x, X)) \\
\operatorname{Odd_ card}(X) & =\exists Y(\operatorname{Odd}(Y, X) \wedge \forall x \operatorname{Last}(x, X) \rightarrow x \in Y) \wedge \exists x x \in X
\end{aligned}
$$

The subformula $\exists x x \in X$ is added to $\operatorname{Odd} \operatorname{card}(X)$ to make sure that X is not the empty set. Indeed $\exists Y(\operatorname{Odd}(Y, \emptyset) \wedge \forall x \operatorname{Last}(x, \emptyset) \rightarrow x \in Y)$ evaluates to true for Y the empty set (thanks to Jakob Schulz for pointing this out).
(d) Let Even_card $(X)=\exists Y(\operatorname{Odd}(Y, X) \wedge \forall x \operatorname{Last}(x, X) \rightarrow x \notin Y)$. Then the solution is

$$
\exists X: \operatorname{Even} _\operatorname{card}(X) \wedge\left(\forall x: x \in X \leftrightarrow Q_{a}(x)\right)
$$

Solution 7.3

Observe that $x<y$ holds iff there is a set Y of positions containing y and satisfying the following property: every $z \in Y$ is either the successor of x, or the successor of another element of Y. Formally:

$$
x<y:=\exists Y(y \in Y) \wedge(\forall z z \in Y \leftrightarrow(z=x+1 \vee \exists u \in Y z=u+1))
$$

Solution 7.4

(a) (i) $\bar{\emptyset} \cdot \Sigma$ and $\exists x \operatorname{first}(x)$.
(ii) $\bar{\emptyset} \cdot A \cdot \bar{\emptyset}$ and $\exists x \bigvee_{a \in A} Q_{a}(x)$.
(iii) $\overline{\Sigma^{*} \bar{A} \Sigma^{*}}$ and $\forall x \bigvee_{a \in A} Q_{a}(x)$.
(iv) $\overline{b \Sigma^{*}+\Sigma^{*} a+\Sigma^{*} a a \Sigma^{*}+\Sigma^{*} b b \Sigma^{*}}$ and

$$
\begin{aligned}
& (\neg \exists x \operatorname{first}(x)) \vee \\
& \left(\left(\exists x \operatorname{first}(x) \wedge Q_{a}(x)\right) \wedge\left(\exists y \operatorname{last}(y) \wedge Q_{b}(y)\right) \wedge\right. \\
& \left.\left(\forall x \forall y\left(Q_{a}(x) \wedge y=x+1\right) \rightarrow Q_{b}(y)\right) \wedge\left(\forall x \forall y\left(Q_{b}(x) \wedge y=x+1\right) \rightarrow Q_{a}(y)\right)\right)
\end{aligned}
$$

(v) $\overline{\Sigma^{*} a a \Sigma^{*}}$ and $\forall x \forall y\left(Q_{a}(x) \wedge y=x+1\right) \rightarrow \neg Q_{a}(y)$.

Notice that the FO sentences presented here are correct even if Σ is more than $\{a, b\}$. However the regular expression of (iv) does require $\Sigma=\{a, b\}$. For example if $\Sigma=\{a, b, c\}$ we would have c in the language of the star-free expression, but c is not in $(a b)^{*}$.
(b) Every finite language $L=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ can be expressed as $w_{1}+w_{2}+\cdots+w_{m}$. For every cofinite language L, there exists a finite language A such that $L=\bar{A}$. Since star-free regular expressions allow for complementation, cofinite languages are also star-free.
(c) We build φ^{+}using the following inductive rules:

$$
\begin{aligned}
(x<y)^{+}(i, j) & =x<y \\
Q_{a}(x)^{+}(i, j) & =Q_{a}(x) \\
(\neg \psi)^{+}(i, j) & =\neg \psi^{+}(i, j) \\
\left(\psi_{1} \vee \psi_{2}\right)^{+}(i, j) & =\psi_{1}^{+}(i, j) \vee \psi_{2}^{+}(i, j) \\
(\exists x \psi)^{+}(i, j) & =\exists x(i \leq x \wedge x \leq j) \wedge \psi^{+}(i, j) .
\end{aligned}
$$

(d)

```
Input: sentence \(\varphi \in \mathrm{FO}(\Sigma)\).
Output: \(\varepsilon \vDash \varphi\) ?
has-empty ( \(\varphi\) ) :
    if \(\varphi=\neg \psi\) then
        return \(\neg\) has-empty \((\psi)\)
    else if \(\varphi=\psi_{1} \vee \psi_{2}\) then
            return has-empty \(\left(\psi_{1}\right) \vee\) has-empty \(\left(\psi_{2}\right)\)
        else if \(\varphi=\exists \psi\) then
            return false
```

(e) Given a star-free regular expression r, we build sentence $\varphi_{r} \in \mathrm{FO}(\Sigma)$ s.t. $L\left(\varphi_{r}\right)=L(r)$ using the following inductive rules:
$r=\emptyset \rightarrow \varphi_{r}=\exists x$ false
$r=\varepsilon \rightarrow \varphi_{r}=\forall x$ false
$r=a \rightarrow \varphi_{r}=(\exists x$ true $) \wedge\left(\forall x\right.$ first $\left.(x) \wedge Q_{a}(x)\right)$
$r=\bar{s} \rightarrow \varphi_{r}=\neg \varphi_{s}$
$r=s_{1}+s_{2} \rightarrow \varphi_{r}=\varphi_{s_{1}} \vee \varphi_{s_{2}}$
$r=s_{1} \cdot s_{2} \rightarrow \varphi_{r}=\left(\varphi_{s_{1}} \wedge \varepsilon \in L\left(s_{2}\right)\right) \vee\left(\varepsilon \in L\left(s_{1}\right) \wedge \varphi_{s_{2}}\right) \vee\left(\exists x, y, y^{\prime}, z \operatorname{first}(x) \wedge y^{\prime}=y+1 \wedge \operatorname{last}(z) \wedge\right.$ $\left.\varphi_{s_{1}}^{+}(x, y) \wedge \varphi_{s_{2}}^{+}\left(y^{\prime}, z\right)\right)$
where $\varepsilon \in L\left(s_{i}\right)$ is syntactic sugar for true or false, and we can decide which of these it stands for using the algorithm of (d).

