
Technische Universität München Winter term 2021/22
Prof. J. Esparza / A. R. Balasubramanian / C. Weil-Kennedy I7

Automata and Formal Languages — Exercise Sheet 6

Exercise 6.1

Consider the following NFAs A, B and C:

p0

p1

q0

q1 q2

q3 r0

r1 r2

r3

a

a b

a

b
b

b

a

a

a, b

a

b a

b

a, b

a

b

a
a

b

a

b

(a) Use algorithm UnivNFA to determine whether L(B) = {a, b}∗ and L(C) = {a, b}∗.

(b) For D ∈ {B,C}, if L(D) 6= {a, b}∗, use algorithm InclNFA to determine whether L(A) ⊆ L(D).

Exercise 6.2

1. Build the automata Bp and Cp for the word pattern p = aamaamm.

2. How many transitions are taken when reading t = aamm in Bp and Cp?

3. Let n > 0. Find a text t ∈ {a, b}∗ and a word pattern p ∈ {a, b}n such that testing whether p occurs in t
takes n transitions in Bp and 2n− 1 transitions in Cp.

Exercise 6.3

In order to make pattern-matching robust to typos we want to include also “similar” words in our results. For
this we consider words with a small Levenshtein-distance (edit-distance) “similar”.

We transform a word w to a new word w′ using the following operations (with ai, b ∈ Σ):

• replace (R): a1 . . . ai−1aiai+1 . . . al → a1 . . . ai−1bai+1 . . . al

• delete (D): a1 . . . ai−1aiai+1 . . . al → a1 . . . ai−1εai+1 . . . al

• insert (I): a1 . . . ai−1aiai+1 . . . al → a1 . . . ai−1aibai+1 . . . al

The Levenshtein-distance (denoted by ∆(w,w′)) of w and w′ is the minimal number of operations (R,D,I)
needed to transform w into w′. We let ∆L,i = {w ∈ Σ∗ | ∃w′ ∈ L.∆(w′, w) ≤ i}, i.e., ∆L,i is the language of all
words with edit-distance at most i to some word of L.

(a) Compute ∆(tyrion, tywin) and ∆(buzz, zurg).

(b) Prove the following statement: If L is a regular language, then ∆L,n is a regular language.

(c) Let p be the pattern ROCKY . Construct an NFA-ε locating the pattern or variations of it with edit-
distance 1.

Exercise 6.4

Let Σ be an alphabet, and define the shuffle operator ‖ : Σ∗ × Σ∗ → 2Σ∗
as follows, where a, b ∈ Σ and

u, v ∈ Σ∗:
u ‖ ε = {u}
ε ‖ u = {u}
au ‖ bv = {a} (u ‖ bv) ∪ {b} (au ‖ v)

For example we have:

b||d = {bd, db}, ab||d = {abd, adb, dab}, ab||cd = {cabd, acbd, abcd, cadb, acdb, cdab}.

Given DFAs recognizing languages L1, L2 ⊆ Σ∗, construct an NFA recognizing their shuffle

L1 ‖ L2 :=
⋃

u∈L1,v∈L2

u ‖ v .

Solution 6.1

(a) The trace of the execution for NFA B is as follows:

Iter. Q W

0 ∅ {{q0}}

1 {{q0}} {{q1, q2}}

2 {{q0}, {q1, q2}} {{q2, q3}}

3 {{q0}, {q1, q2}, {q2, q3}} {{q3}}

At the fourth iteration, the algorithm encounters state {q3} which is non final, and hence it returns false.
Therefore, L(B) 6= {a, b}∗.
The trace of the execution for NFA C is as follows:

Iter. Q W

0 ∅ {{r0, r1}}

1 {{r0, r1}} {{r0, r2, r3}, {r1, r2}}

2 {{r0, r1}, {r0, r2, r3}} {{r1, r2}}

3 {{r0, r1}, {r0, r2, r3}, {r1, r2}} {{r0}, {r2}}

3 {{r0, r1}, {r0, r2, r3}, {r1, r2}, {r0}} {{r2}}

3 {{r0, r1}, {r0, r2, r3}, {r1, r2}, {r0}, {r2}} ∅

At the fifth iteration, W becomes empty and hence the algorithm returns true. Therefore L(C) = {a, b}∗.

(b) The trace of the algorithm for A and B is as follows:

Iter. Q W

0 ∅ {[p0, {q0}]}

1 {[p0, {q0}]} {[p1, {q0}]}

2 {[p0, {q0}], [p1, {q0}]} {[p0, {q1, q2}]}

3 {[p0, {q0}], [p1, {q0}], [p0, {q1, q2}]} ∅

At the third iteration, W becomes empty and hence the algorithm returns true. Therefore L(A) ⊆ L(B).

Solution 6.2

1. Ap :

0 1 2 3 4 5 6 7

a,m

a a m a a m m

Bp :

0 0, 1 0, 1, 2 0, 3 0, 1, 4 0, 1, 2, 5 0, 3, 6 0, 7

m

a a

m

m

a

a

m

a

m

m

a

m

a

m

a

Cp :

0 1 2 3 4 5 6 7

m;R

a;R a;R

m;N

m;R

a;N

a;R

m;N

a;R

m;N

m;R

a;N

m;R

a;N

a,m;N

2. Four transitions taken in Bp: {0}
a−→ {0, 1} a−→ {0, 1, 2} m−→ {0, 3} m−→ {0}.

Five transitions taken in Cp: 0
a−→ 1

a−→ 2
m−→ 3

m−→ 0
m−→ 0.

3. t = an−1b and p = an. The automata Bp and Cp are as follows:

Bp:

0 0, 1 0, 1, 2 0, 1, . . . , n
a a

a

b

b

b

b

a

Cp:

0 1 2 n− 1 n
a;R a;R a;R

b;R

b;S b;S a, b;S

a;R

The runs over t on Bp and Cp are respectively:

{0} a−→ {0, 1} a−→ {0, 1, 2} a−→ · · · a−→ {0, 1, . . . , n− 1} b−→ {0} ,

and
0
a−→ 1

a−→ 2
a−→ · · · a−→ (n− 1)

b−→ (n− 2)
b−→ (n− 3)

b−→ · · · b−→ 0 .

Solution 6.3

(a) ∆(tyrion, tywin) = 2, because the r can be replaced by a w and the o can be removed. ∆(buzz, zurg) = 3,
because the u can be fixed and the others can be replaced.

(b) Let M = (Q,Σ, δ, q0, F) be a DFA for L. We obtain an NFA-ε N for ∆L,n by adding n “error-levels”.
Formally:

N = (Q× [0, n],Σ, δ′, (q0, 0), F × [0, n])

with

δ′ = {((q, i), a, (p, i)) | δ(q, a) = p and i ≤ n} no change

∪ {((q, i), ε, (p, i+ 1)) | ∃a ∈ Σ. δ(q, a) = p and i < n} delete

∪ {((q, i), a, (q, i+ 1)) | q ∈ and i < n} insert

∪ {((q, i), b, (p, i+ 1)) | ∃a ∈ Σ \ {b}. δ(q, a) = p and i < n} replace

Let us prove that ∆L,n = L(N).

∆L,n ⊆ L(N). If w ∈ ∆L,n, it means that there is w′ ∈ L such that ∆(w′, w) = k ≤ n, or in other words,
starting from the word w′, we can obtain w by applying k “mistakes” (delete, insert, replace). As
w′ ∈ L (accepted by M) and as the 0-level of N is a copy of M , note that w′ has a run in N that
reaches a final state (qf , 0). By construction of the automaton N , there is a run of the word w that
follows the run of w′ where each ”mistake” can be seen as moving to the next error-level, using the
corresponding transition from δ′ (delete, insert, replace) depending on a mistake. It is easy to see
that if the word w′ reaches a final state (qf , 0) in N , then w can reach (qf , k), and thus w ∈ L(N).

L(N) ⊆ ∆L,n. If w ∈ L(N), this means there is a run of w in N that reaches a final state (qf , k) ∈
F × [0, n]. Intuitively, for each transition of that run that changes the level, we modify w so that it
“stays in the same level”. Formally, we check the nature of the transition that changes the level and
modify w as follows:
(i) If (p, i)

a−→ (p, i+ 1) is an insert edge, this occurrence of the letter a will be removed from w.

(ii) If (p, i)
a−→ (q, i+ 1) is a replace edge, then there exists a (p, i)

b−→ (q, i) edge for some letter b, and
we replace this occurrence of a in w with b.
(iii) If (p, i)

ε−→ (q, i+ 1) is a delete edge, then there exists a (p, i)
a−→ (q, i) edge for some letter a, and

we add the letter a at this place in w.

Denote the obtained word by w′. It is easy to see that w′ is obtained from w by applying mistakes
(delete, insert, replace) k times, as in the run of w there are exactly k transitions that change the
level. Therefore, ∆(w′, w) ≤ k ≤ n. Moreover, it is easy to see that if w reaches (qf , k), then w′

reaches (qf , 0). As the 0-level is a copy of M , we have w′ ∈ L. To summarize, there exists w′ ∈ L
such that ∆(w′, w) ≤ n, that is, w ∈ ∆L,n.

(c) We use the same construction as in (b) with the automaton Ap for pattern p = ROCKY . Let Σ =
{R,O,C,K, Y } and Σa = Σ \ {a} ∪ {ε} for every a ∈ Σ.

q0 q1 q2 q3 q4 q5

p0 p1 p2 p3 p4 p5

Σ

R O C K Y

R O C K Y

Σ Σ Σ Σ Σ Σ
ΣR ΣO ΣC ΣK ΣY

Solution 6.4

Let Ai = (Qi,Σ, δi, q
(i)
0 , Fi) be a DFA with Li = L(Ai) (for i = 1, 2). We use a variation of the pairing

construction, i.e., we construct an automaton with states Q1 ×Q2. While in the standard pairing construction
both automata move when a symbol is read, we now choose nondeterministically one of the two automata,
which is to move accordingly to the symbol read, while the other one does not change its state, i.e.,

δ((q, q′), a) := {(δ1(q, a), q′), (q, δ2(q′, a))}.

It is left to the reader to show that this automaton indeed accepts exactly L1 ‖ L2.

