
Technische Universität München Winter term 22/23
I7
Prof. J. Esparza / A. R. Balasubramanian / M. Lazić

Automata and Formal Languages — Exercise Sheet 5

Exercise 5.1

Consider the following NFAs A, B and C:

p0

p1

q0

q1 q2

q3 r0

r1 r2

r3

a

a b

a

b
b

b

a

a

a, b

a

b a

b

a, b

a

b

a
a

b

a

b

(a) Use algorithm UnivNFA to determine whether L(B) = {a, b}∗ and L(C) = {a, b}∗.

(b) For D ∈ {B,C}, if L(D) ̸= {a, b}∗, use algorithm InclNFA to determine whether L(A) ⊆ L(D).

Exercise 5.2

Let A = (Q,Σ, δ, q0, F) be a DFA. For any S ⊆ Q, a word w ∈ Σ∗ is said to be a synchronizing word for S in A
if reading w from any state of S leads to a common state, i.e., if there exists q ∈ Q such that for every p ∈ S,
p

w−→ q. We now define the synchronizing word problem defined as follows:

Given: DFA A and a subset S of the states of A
Decide: If there exists a synchronizing word for S in A

(a) Given states p, q ∈ Q, design a polynomial time algorithm for testing if there is a synchronizing word for
{p, q} in A.

(b) Let A = (Q,Σ, δ, q0, F) be a DFA. Show that there is a synchronizing word for Q in A if and only if for
every p, q ∈ Q, there is a synchronizing word for {p, q} in A.

By (a) and (b), we can conclude that there is a polynomial time algorithm for the special case of the synchronizing
word problem where the subset S is the set of all states of A. However, for the general case, we have the following
result.

(c) ⋆ Show that the synchronizing word problem is PSPACE-hard. You may assume that the following
problem, called the DFA intersection problem is PSPACE-hard:

Given: DFAs A1, A2, . . . , An all over a common alphabet Σ
Decide: If there exists a word w such that w ∈

⋂
1≤i≤n

L(Ai)

Exercise 5.3

Let Σ be a finite alphabet and let L ⊆ Σ∗ be a language accepted by an NFA A. Give an NFA-ε for each of the
following languages:

(a)
√
L = {w ∈ Σ∗ | ww ∈ L},

(b) ⋆ Cyc(L) = {vu ∈ Σ∗ | uv ∈ L}.

Solution 5.1

(a) The trace of the execution for NFA B is as follows:

Iter. Q W

0 ∅ {{q0}}

1 {{q0}} {{q1, q2}}

2 {{q0}, {q1, q2}} {{q2, q3}}

3 {{q0}, {q1, q2}, {q2, q3}} {{q3}}

At the fourth iteration, the algorithm encounters state {q3} which is non final, and hence it returns false.
Therefore, L(B) ̸= {a, b}∗.
The trace of the execution for NFA C is as follows:

Iter. Q W

0 ∅ {{r0, r1}}

1 {{r0, r1}} {{r0, r2, r3}, {r1, r2}}

2 {{r0, r1}, {r0, r2, r3}} {{r1, r2}}

3 {{r0, r1}, {r0, r2, r3}, {r1, r2}} {{r0}, {r2}}

3 {{r0, r1}, {r0, r2, r3}, {r1, r2}, {r0}} {{r2}}

3 {{r0, r1}, {r0, r2, r3}, {r1, r2}, {r0}, {r2}} ∅

At the fifth iteration, W becomes empty and hence the algorithm returns true. Therefore L(C) = {a, b}∗.

(b) The trace of the algorithm for A and B is as follows:

Iter. Q W

0 ∅ {[p0, {q0}]}

1 {[p0, {q0}]} {[p1, {q0}]}

2 {[p0, {q0}], [p1, {q0}]} {[p0, {q1, q2}]}

3 {[p0, {q0}], [p1, {q0}], [p0, {q1, q2}]} ∅

At the third iteration, W becomes empty and hence the algorithm returns true. Therefore L(A) ⊆ L(B).

Solution 5.2

(a) By definition, w is a synchronizing word for {p, q} in A if and only if there is a state r such that r =
δ(p, w) = δ(q, w). Consider the following algorithm: For every state r ∈ Q, we construct two DFAs
Ap

r = (Q,Σ, δ, p, r) and Aq
r = (Q,Σ, δ, q, r). Notice that w is a synchronizing word for {p, q} in A if and

only if there exists a state r such that w ∈ L(Ap
r) ∩ L(Aq

r). Hence, the polynomial time algorithm to test
if there is a synchronizing word for {p, q} in A is as follows: For each r ∈ Q, construct the DFAs Ap

r and
Aq

r and test if L(Ap
r)∩L(Aq

r) ̸= ∅ by means of the pairing construction and the emptiness check for DFAs.
If for at least one state r, this test is true, then there is a synchronizing word for {p, q} in A; otherwise,
there is none.

To analyse the running time, note that we are doing at most |Q| pairing constructions and emptiness
checks, each of which takes polynomial time. Hence, the overall running time is also a polynomial in the
size of the given input.

(b) (⇒) : Suppose w is a synchronizing word for Q in A. Let p, q ∈ Q. By definition of a synchronizing word,
δ(p, w) = δ(q, w). Hence, w is also a synchronizing word for {p, q} in A.

(⇐) : Suppose for every p, q ∈ Q, there is a synchronizing word wp,q for the subset {p, q}. We now
construct a synchronizing word wS for every subset S ⊆ Q, by induction on |S|, the size of S.

For the base case, note that if |S| = 1, then ϵ is a synchronizing word for S. Assume that we have shown
that whenever |S| ≤ i for some number i ≥ 1, there is a synchronizing word for S. Suppose S is a subset
such that |S| = i + 1. Hence, |S| ≥ 2 and let S = {p1, p2, . . . , pi+1}. By assumption, there is a synchro-
nizing word wp1,p2 for the subset {p1, p2}. Let S′ = {δ(p1, wp1,p2), δ(p2, wp1,p2), . . . , δ(pi+1, wp1,p2)}. Since
wp1,p2

is a synchronizing word for {p1, p2}, it follows that |S′| ≤ i. By induction hypothesis, there is a
synchronizing word wS′ for the subset S′. It is then easy to see that the word wp1,p2

wS′ is a synchronizing
word for S in A. Hence, the induction step is complete.

It then follows that there is a synchronizing word for the set Q in A.

(c) We give a polynomial-time reduction from the DFA intersection problem to the synchronizing word prob-
lem, which will prove that the latter is PSPACE-hard. Let A1, A2, . . . , An be n DFAs all over a commmon
alphabet Σ such that each Ai = (Qi,Σ, δi, q

i
0, Fi). In polynomial time, we have to construct a DFA B and

a subset S of the states of B so that

S has a synchronizing word in B if and only if
⋂

1≤i≤n

L(Ai) ̸= ∅

Let us construct B = (QB ,ΣB , δB , q
B
0 , FB) and S as follows.

• The set QB will consist all the states of all the Ai’s and in addition, it will have two new states p
and t. More formally, Q =

⋃
1≤i≤n

Qi ∪ {p, t} where p and t are two new states.

• The alphabet ΣB will be Σ ∪ {#} where # is a fresh letter not present in Σ.

• The transition function δB will behave in the following way:

– If q ∈ Qi for some i and a ∈ Σ, then δB(q, a) = δi(q, a). Intuitively, if q is a state of some Ai

and a is not #, then the transition function behaves in exactly the same way as δi.

– If q ∈ Fi for some i, then δB(q,#) = p. Intuitively, upon reading a # from some accepting state
of some Ai, we move to p.

– If q ∈ Qi \ Fi for some i, then δB(q,#) = t. Intuitively, upon reading a # from some rejecting
state of Ai, we move to t.

– If q ∈ {p, t} and a ∈ ΣB , then δB(q, a) = q. Intuitively, the states p and t have a self-loop
corresponding to any letter.

• We set qB0 to be p and FB to be {p}.
• Finally we set S to be the subset of states given by {q10 , q20 , . . . , qn0 , p}.

Suppose w ∈
⋂

1≤i≤n

L(Ai). By construction, it then follows that w# is a synchronizing word for S in B.

Suppose w is a synchronizing word for S in B. By definition of w and by construction of B, it follows that

δB(q
1
0 , w) = δB(q

2
0 , w) = · · · = δB(q

n
0 , w) = δB(p, w) = p

Notice that to move from the state q10 to p, it is necessary to read a # at some point. Hence, w must
contain an occurrence of #. Split w as w′#w′′ so that w′ has no occurrences of #. For each i, let
qi = δB(q

i
0, w

′). By construction of B, it follows that for each i, qi ∈ Qi. Suppose for some i, qi /∈ Fi. It
then follows that δB(qi,#w′′) = t, which contradicts the fact that δB(q

i
0, w#w′′) = p. Hence, qi ∈ Fi for

every i and this implies that w′ is a word which is accepted by all of the Ai’s.

Solution 5.3

Let A = (Q,Σ, δ, Q0, F) be an NFA that accepts L. Without loss of generality, we can assume that Q0 = {q0}
and F = {qf} for some states q0 and qf .

(a) To begin with we have the following observation:

w ∈
√
L if and only if there exists a state p ∈ Q such that p ∈ δ(q0, w) and qf ∈ δ(p, w).

With this observation in mind, let us do the following construction: For every state p ∈ Q, construct two
NFAs A1

p, A
2
p defined as A1

p = (Q,Σ, δ, q0, p) and A2
p = (Q,Σ, δ, p, qf). Notice that we can now rephrase

the above observation as:

w ∈
√
L if and only if there exists a state p ∈ Q such that w ∈ L(A1

p) ∩ L(A2
p).

Let B be any NFA for the language ∪p∈Q L(A1
p) ∩ L(A2

p). By the above observation, it follows that B

recognizes
√
L. Note that B can be obtained by pairing operations on the NFAs from the set {Ai

p : p ∈
Q, i ∈ {1, 2}} and each element in this set can be easily constructed from A. It follows then that we can
explicitly construct B from A.

(b) Once again we begin with an observation:

w = w1w2 . . . wn ∈ Cyc(L) if and only if there exists 1 ≤ i ≤ n and p ∈ Q such that qf ∈
δ(p, w1w2 . . . wi) and p ∈ δ(q0, wi+1wi+2 . . . wn).

Indeed, suppose for some word w, such an i and p exist. Then, notice that if we set v = w1w2 . . . wi and
u = wi+1 . . . wn, then uv ∈ L and so w = vu ∈ Cyc(L). On the other hand if w ∈ Cyc(L), then there is a
partition of w into some v = w1w2 . . . wi and u = wi+1 . . . wn such that uv ∈ L. Since uv ∈ L, there must
be an accepting run of uv in A. Let p be the state reached after reading u along this run. It follows then
that p ∈ δ(q0, wi+1 . . . wn) and qf ∈ δ(p, w1w2 . . . wi).

With this observation, we can do the following: For every state p ∈ Q, construct the two NFAs A1
p and

A2
p as defined in the subproblem a). Now, notice that

w ∈ Cyc(L) if and only if there exists p ∈ Q such that w ∈ L(A2
p)L(A1

p), i.e., w is in the
concatenation of the languages of A2

p and A1
p for some p.

Let B be any NFA for the regular language ∪p∈Q L(A2
p)L(A1

p). By the above observation, it follows that B
recognizes Cyc(L). Note that given the NFAs A2

p and A1
p, we can obtain an NFA-ϵ for their concatenation

by simply adding an ϵ transition from the final state of A2
p to the initial state of A1

p. By using additional
pairing operations, we can explicitly construct B from A.

