Automata and Formal Languages — Exercise Sheet 5

Exercise 5.1 Consider the following NFAs A, B and C:

- (a) Use algorithm UnivNFA to determine whether $L(B) = \{a, b\}^*$ and $L(C) = \{a, b\}^*$.
- (b) For $D \in \{B, C\}$, if $L(D) \neq \{a, b\}^*$, use algorithm *InclNFA* to determine whether $L(A) \subseteq L(D)$.

Exercise 5.2

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA. For any $S \subseteq Q$, a word $w \in \Sigma^*$ is said to be a synchronizing word for S in A if reading w from any state of S leads to a common state, i.e., if there exists $q \in Q$ such that for every $\mathbf{p} \in \mathbf{S}$, $p \xrightarrow{w} q$. We now define the synchronizing word problem defined as follows:

Given: DFA A and a subset S of the states of A Decide: If there exists a synchronizing word for S in A

- (a) Given states $p, q \in Q$, design a polynomial time algorithm for testing if there is a synchronizing word for $\{p, q\}$ in A.
- (b) Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Show that there is a synchronizing word for Q in A if and only if for every $p, q \in Q$, there is a synchronizing word for $\{p, q\}$ in A.

By (a) and (b), we can conclude that there is a polynomial time algorithm for the special case of the synchronizing word problem where the subset S is the set of all states of A. However, for the general case, we have the following result.

(c) \bigstar Show that the synchronizing word problem is PSPACE-hard. You may assume that the following problem, called the *DFA intersection problem* is PSPACE-hard:

Given: DFAs A_1, A_2, \ldots, A_n all over a common alphabet Σ Decide: If there exists a word w such that $w \in \bigcap_{1 \le i \le n} \mathcal{L}(A_i)$

Exercise 5.3

Let Σ be a finite alphabet and let $L \subseteq \Sigma^*$ be a language accepted by an NFA A. Give an NFA- ε for each of the following languages:

- (a) $\sqrt{L} = \{ w \in \Sigma^* \mid ww \in L \},\$
- (b) \bigstar Cyc(L) = { $vu \in \Sigma^* \mid uv \in L$ }.

Solution 5.1

(a) The trace of the execution for NFA B is as follows:

Iter.	$\mathcal Q$	\mathcal{W}
0	Ø	$\{\{q_0\}\}$
1	$\{\{q_0\}\}$	$\{\{q_1, q_2\}\}$
2	$\{\{q_0\}, \{q_1, q_2\}\}$	$\{\{q_2, q_3\}\}$
3	$\{\{q_0\},\{q_1,q_2\},\{q_2,q_3\}\}\$	$\{\{q_3\}\}$

At the fourth iteration, the algorithm encounters state $\{q_3\}$ which is non final, and hence it returns *false*. Therefore, $L(B) \neq \{a, b\}^*$.

The trace of the execution for NFA C is as follows:

Iter.	Q	\mathcal{W}
0	Ø	$\{\{r_0,r_1\}\}$
1	$\{\{r_0,r_1\}\}$	$\{\{r_0, r_2, r_3\}, \{r_1, r_2\}\}$
2	$\{\{r_0, r_1\}, \{r_0, r_2, r_3\}\}$	$\{\{r_1,r_2\}\}$
3	$\{\{r_0, r_1\}, \{r_0, r_2, r_3\}, \{r_1, r_2\}\}$	$\{\{r_0\}, \{r_2\}\}$
3	$\{\{r_0, r_1\}, \{r_0, r_2, r_3\}, \{r_1, r_2\}, \{r_0\}\}$	$\{\{r_2\}\}$
3	$\{\{r_0, r_1\}, \{r_0, r_2, r_3\}, \{r_1, r_2\}, \{r_0\}, \{r_2\}\}\$	Ø

At the fifth iteration, W becomes empty and hence the algorithm returns *true*. Therefore $L(C) = \{a, b\}^*$.

(b) The trace of the algorithm for A and B is as follows:

Iter.	\mathcal{Q}	W
0	Ø	$\{[p_0, \{q_0\}]\}$
1	$\{[p_0, \{q_0\}]\}$	$\{[p_1, \{q_0\}]\}$
2	$\{[p_0, \{q_0\}], [p_1, \{q_0\}]\}$	$\{[p_0, \{q_1, q_2\}]\}$
3	$\{[p_0, \{q_0\}], [p_1, \{q_0\}], [p_0, \{q_1, q_2\}]\}$	Ø

At the third iteration, \mathcal{W} becomes empty and hence the algorithm returns *true*. Therefore $L(A) \subseteq L(B)$.

Solution 5.2

(a) By definition, w is a synchronizing word for $\{p,q\}$ in A if and only if there is a state r such that $r = \delta(p,w) = \delta(q,w)$. Consider the following algorithm: For every state $r \in Q$, we construct two DFAs $A_r^p = (Q, \Sigma, \delta, p, r)$ and $A_r^q = (Q, \Sigma, \delta, q, r)$. Notice that w is a synchronizing word for $\{p,q\}$ in A if and only if there exists a state r such that $w \in \mathcal{L}(A_r^p) \cap \mathcal{L}(A_r^q)$. Hence, the polynomial time algorithm to test if there is a synchronizing word for $\{p,q\}$ in A is as follows: For each $r \in Q$, construct the DFAs A_r^p and A_r^q and test if $\mathcal{L}(A_r^p) \cap \mathcal{L}(A_r^q) \neq \emptyset$ by means of the pairing construction and the emptiness check for DFAs. If for at least one state r, this test is true, then there is a synchronizing word for $\{p,q\}$ in A; otherwise, there is none.

To analyse the running time, note that we are doing at most |Q| pairing constructions and emptiness checks, each of which takes polynomial time. Hence, the overall running time is also a polynomial in the size of the given input.

(b) (\Rightarrow) : Suppose w is a synchronizing word for Q in A. Let $p, q \in Q$. By definition of a synchronizing word, $\delta(p, w) = \delta(q, w)$. Hence, w is also a synchronizing word for $\{p, q\}$ in A.

 (\Leftarrow) : Suppose for every $p, q \in Q$, there is a synchronizing word $w_{p,q}$ for the subset $\{p,q\}$. We now construct a synchronizing word w_S for every subset $S \subseteq Q$, by induction on |S|, the size of S.

For the base case, note that if |S| = 1, then ϵ is a synchronizing word for S. Assume that we have shown that whenever $|S| \leq i$ for some number $i \geq 1$, there is a synchronizing word for S. Suppose S is a subset such that |S| = i + 1. Hence, $|S| \geq 2$ and let $S = \{p_1, p_2, \ldots, p_{i+1}\}$. By assumption, there is a synchronizing word w_{p_1,p_2} for the subset $\{p_1, p_2\}$. Let $S' = \{\delta(p_1, w_{p_1,p_2}), \delta(p_2, w_{p_1,p_2}), \ldots, \delta(p_{i+1}, w_{p_1,p_2})\}$. Since w_{p_1,p_2} is a synchronizing word for $\{p_1, p_2\}$, it follows that $|S'| \leq i$. By induction hypothesis, there is a synchronizing word $w_{S'}$ for the subset S'. It is then easy to see that the word $w_{p_1,p_2}w_{S'}$ is a synchronizing word for S in A. Hence, the induction step is complete.

It then follows that there is a synchronizing word for the set Q in A.

(c) We give a polynomial-time reduction from the DFA intersection problem to the synchronizing word problem, which will prove that the latter is PSPACE-hard. Let A_1, A_2, \ldots, A_n be *n* DFAs all over a common alphabet Σ such that each $A_i = (Q_i, \Sigma, \delta_i, q_0^i, F_i)$. In polynomial time, we have to construct a DFA *B* and a subset *S* of the states of *B* so that

S has a synchronizing word in B if and only if $\bigcap_{1\leq i\leq n}\mathcal{L}(A_i)\neq \emptyset$

Let us construct $B = (Q_B, \Sigma_B, \delta_B, q_0^B, F_B)$ and S as follows.

- The set Q_B will consist all the states of all the A_i 's and in addition, it will have two new states p and t. More formally, $Q = \bigcup_{1 \le i \le n} Q_i \cup \{p, t\}$ where p and t are two new states.
- The alphabet Σ_B will be $\Sigma \cup \{\#\}$ where # is a fresh letter not present in Σ .
- The transition function δ_B will behave in the following way:
 - If $q \in Q_i$ for some i and $a \in \Sigma$, then $\delta_B(q, a) = \delta_i(q, a)$. Intuitively, if q is a state of some A_i and a is not #, then the transition function behaves in exactly the same way as δ_i .
 - If $q \in F_i$ for some *i*, then $\delta_B(q, \#) = p$. Intuitively, upon reading a # from some accepting state of some A_i , we move to *p*.
 - If $q \in Q_i \setminus F_i$ for some *i*, then $\delta_B(q, \#) = t$. Intuitively, upon reading a # from some rejecting state of A_i , we move to *t*.
 - If $q \in \{p, t\}$ and $a \in \Sigma_B$, then $\delta_B(q, a) = q$. Intuitively, the states p and t have a self-loop corresponding to any letter.
- We set q_0^B to be p and F_B to be $\{p\}$.
- Finally we set S to be the subset of states given by $\{q_0^1, q_0^2, \dots, q_0^n, p\}$.
- Suppose $w \in \bigcap_{1 \le i \le n} \mathcal{L}(A_i)$. By construction, it then follows that w# is a synchronizing word for S in B.

Suppose w is a synchronizing word for S in B. By definition of w and by construction of B, it follows that

$$\delta_B(q_0^1, w) = \delta_B(q_0^2, w) = \dots = \delta_B(q_0^n, w) = \delta_B(p, w) = p$$

Notice that to move from the state q_0^1 to p, it is necessary to read a # at some point. Hence, w must contain an occurrence of #. Split w as w' # w'' so that w' has no occurrences of #. For each i, let $q_i = \delta_B(q_0^i, w')$. By construction of B, it follows that for each i, $q_i \in Q_i$. Suppose for some i, $q_i \notin F_i$. It then follows that $\delta_B(q_i, \# w'') = t$, which contradicts the fact that $\delta_B(q_0^i, w \# w'') = p$. Hence, $q_i \in F_i$ for every i and this implies that w' is a word which is accepted by all of the A_i 's.

Solution 5.3

Let $A = (Q, \Sigma, \delta, Q_0, F)$ be an NFA that accepts L. Without loss of generality, we can assume that $Q_0 = \{q_0\}$ and $F = \{q_f\}$ for some states q_0 and q_f .

- (a) To begin with we have the following observation:
 - $w \in \sqrt{L}$ if and only if there exists a state $p \in Q$ such that $p \in \delta(q_0, w)$ and $q_f \in \delta(p, w)$.

With this observation in mind, let us do the following construction: For every state $p \in Q$, construct two NFAs A_p^1, A_p^2 defined as $A_p^1 = (Q, \Sigma, \delta, q_0, p)$ and $A_p^2 = (Q, \Sigma, \delta, p, q_f)$. Notice that we can now rephrase the above observation as:

 $w \in \sqrt{L}$ if and only if there exists a state $p \in Q$ such that $w \in \mathcal{L}(A_p^1) \cap \mathcal{L}(A_p^2)$.

Let B be any NFA for the language $\cup_{p \in Q} \mathcal{L}(A_p^1) \cap \mathcal{L}(A_p^2)$. By the above observation, it follows that B recognizes \sqrt{L} . Note that B can be obtained by pairing operations on the NFAs from the set $\{A_p^i : p \in Q, i \in \{1,2\}\}$ and each element in this set can be easily constructed from A. It follows then that we can explicitly construct B from A.

(b) Once again we begin with an observation:

 $w = w_1 w_2 \dots w_n \in \operatorname{Cyc}(L)$ if and only if there exists $1 \leq i \leq n$ and $p \in Q$ such that $q_f \in \delta(p, w_1 w_2 \dots w_i)$ and $p \in \delta(q_0, w_{i+1} w_{i+2} \dots w_n)$.

Indeed, suppose for some word w, such an i and p exist. Then, notice that if we set $v = w_1 w_2 \dots w_i$ and $u = w_{i+1} \dots w_n$, then $uv \in L$ and so $w = vu \in \operatorname{Cyc}(L)$. On the other hand if $w \in \operatorname{Cyc}(L)$, then there is a partition of w into some $v = w_1 w_2 \dots w_i$ and $u = w_{i+1} \dots w_n$ such that $uv \in L$. Since $uv \in L$, there must be an accepting run of uv in A. Let p be the state reached after reading u along this run. It follows then that $p \in \delta(q_0, w_{i+1} \dots w_n)$ and $q_f \in \delta(p, w_1 w_2 \dots w_i)$.

With this observation, we can do the following: For every state $p \in Q$, construct the two NFAs A_p^1 and A_p^2 as defined in the subproblem a). Now, notice that

 $w \in \operatorname{Cyc}(L)$ if and only if there exists $p \in Q$ such that $w \in \mathcal{L}(A_p^2)\mathcal{L}(A_p^1)$, i.e., w is in the concatenation of the languages of A_p^2 and A_p^1 for some p.

Let B be any NFA for the regular language $\bigcup_{p \in Q} \mathcal{L}(A_p^2)\mathcal{L}(A_p^1)$. By the above observation, it follows that B recognizes $\operatorname{Cyc}(L)$. Note that given the NFAs A_p^2 and A_p^1 , we can obtain an NFA- ϵ for their concatenation by simply adding an ϵ transition from the final state of A_p^2 to the initial state of A_p^1 . By using additional pairing operations, we can explicitly construct B from A.