Automata and Formal Languages - Exercise Sheet 5

Exercise 5.1

Consider the following NFAs A, B and C :

(a) Use algorithm UnivNFA to determine whether $L(B)=\{a, b\}^{*}$ and $L(C)=\{a, b\}^{*}$.
(b) For $D \in\{B, C\}$, if $L(D) \neq\{a, b\}^{*}$, use algorithm InclNFA to determine whether $L(A) \subseteq L(D)$.

Exercise 5.2

Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. For any $S \subseteq Q$, a word $w \in \Sigma^{*}$ is said to be a synchronizing word for S in A if reading w from any state of S leads to a common state, i.e., if there exists $q \in Q$ such that for every $\mathbf{p} \in \mathbf{S}$, $p \xrightarrow{w} q$. We now define the synchronizing word problem defined as follows:

Given: DFA A and a subset S of the states of A
Decide: If there exists a synchronizing word for S in A
(a) Given states $p, q \in Q$, design a polynomial time algorithm for testing if there is a synchronizing word for $\{p, q\}$ in A.
(b) Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. Show that there is a synchronizing word for Q in A if and only if for every $p, q \in Q$, there is a synchronizing word for $\{p, q\}$ in A.

By (a) and (b), we can conclude that there is a polynomial time algorithm for the special case of the synchronizing word problem where the subset S is the set of all states of A. However, for the general case, we have the following result.
(c) \star Show that the synchronizing word problem is PSPACE-hard. You may assume that the following problem, called the DFA intersection problem is PSPACE-hard:

Given: DFAs $A_{1}, A_{2}, \ldots, A_{n}$ all over a common alphabet Σ
Decide: If there exists a word w such that $w \in \bigcap_{1 \leq i \leq n} \mathcal{L}\left(A_{i}\right)$

Exercise 5.3

Let Σ be a finite alphabet and let $L \subseteq \Sigma^{*}$ be a language accepted by an NFA A. Give an NFA- ε for each of the following languages:
(a) $\sqrt{L}=\left\{w \in \Sigma^{*} \mid w w \in L\right\}$,
(b) $\star \operatorname{Cyc}(L)=\left\{v u \in \Sigma^{*} \mid u v \in L\right\}$.

Solution 5.1

(a) The trace of the execution for NFA B is as follows:

Iter.	\mathcal{Q}	\mathcal{W}
0	\emptyset	$\left\{\left\{q_{0}\right\}\right\}$
1	$\left\{\left\{q_{0}\right\}\right\}$	$\left\{\left\{q_{1}, q_{2}\right\}\right\}$
2	$\left\{\left\{q_{0}\right\},\left\{q_{1}, q_{2}\right\}\right\}$	$\left\{\left\{q_{2}, q_{3}\right\}\right\}$
3	$\left\{\left\{q_{0}\right\},\left\{q_{1}, q_{2}\right\},\left\{q_{2}, q_{3}\right\}\right\}$	$\left\{\left\{q_{3}\right\}\right\}$

At the fourth iteration, the algorithm encounters state $\left\{q_{3}\right\}$ which is non final, and hence it returns false. Therefore, $L(B) \neq\{a, b\}^{*}$.
The trace of the execution for NFA C is as follows:

Iter.	\mathcal{Q}	\mathcal{W}
0	\emptyset	$\left\{\left\{r_{0}, r_{1}\right\}\right\}$
1	$\left\{\left\{r_{0}, r_{1}\right\}\right\}$	$\left\{\left\{r_{0}, r_{2}, r_{3}\right\},\left\{r_{1}, r_{2}\right\}\right\}$
2	$\left\{\left\{r_{0}, r_{1}\right\},\left\{r_{0}, r_{2}, r_{3}\right\}\right\}$	$\left\{\left\{r_{1}, r_{2}\right\}\right\}$
3	$\left\{\left\{r_{0}, r_{1}\right\},\left\{r_{0}, r_{2}, r_{3}\right\},\left\{r_{1}, r_{2}\right\}\right\}$	$\left\{\left\{r_{0}\right\},\left\{r_{2}\right\}\right\}$
3	$\left\{\left\{r_{0}, r_{1}\right\},\left\{r_{0}, r_{2}, r_{3}\right\},\left\{r_{1}, r_{2}\right\},\left\{r_{0}\right\}\right\}$	$\left\{\left\{r_{2}\right\}\right\}$
3	$\left\{\left\{r_{0}, r_{1}\right\},\left\{r_{0}, r_{2}, r_{3}\right\},\left\{r_{1}, r_{2}\right\},\left\{r_{0}\right\},\left\{r_{2}\right\}\right\}$	\emptyset

At the fifth iteration, \mathcal{W} becomes empty and hence the algorithm returns true. Therefore $L(C)=\{a, b\}^{*}$.
(b) The trace of the algorithm for A and B is as follows:

Iter.	\mathcal{Q}	\mathcal{W}
0	\emptyset	$\left\{\left[p_{0},\left\{q_{0}\right\}\right]\right\}$
1	$\left\{\left[p_{0},\left\{q_{0}\right\}\right]\right\}$	$\left\{\left[p_{1},\left\{q_{0}\right\}\right]\right\}$
2	$\left\{\left[p_{0},\left\{q_{0}\right\}\right],\left[p_{1},\left\{q_{0}\right\}\right]\right\}$	$\left\{\left[p_{0},\left\{q_{1}, q_{2}\right\}\right]\right\}$
3	$\left\{\left[p_{0},\left\{q_{0}\right\}\right],\left[p_{1},\left\{q_{0}\right\}\right],\left[p_{0},\left\{q_{1}, q_{2}\right\}\right]\right\}$	\emptyset

At the third iteration, \mathcal{W} becomes empty and hence the algorithm returns true. Therefore $L(A) \subseteq L(B)$.

Solution 5.2

(a) By definition, w is a synchronizing word for $\{p, q\}$ in A if and only if there is a state r such that $r=$ $\delta(p, w)=\delta(q, w)$. Consider the following algorithm: For every state $r \in Q$, we construct two DFAs $A_{r}^{p}=(Q, \Sigma, \delta, p, r)$ and $A_{r}^{q}=(Q, \Sigma, \delta, q, r)$. Notice that w is a synchronizing word for $\{p, q\}$ in A if and only if there exists a state r such that $w \in \mathcal{L}\left(A_{r}^{p}\right) \cap \mathcal{L}\left(A_{r}^{q}\right)$. Hence, the polynomial time algorithm to test if there is a synchronizing word for $\{p, q\}$ in A is as follows: For each $r \in Q$, construct the DFAs A_{r}^{p} and A_{r}^{q} and test if $\mathcal{L}\left(A_{r}^{p}\right) \cap \mathcal{L}\left(A_{r}^{q}\right) \neq \emptyset$ by means of the pairing construction and the emptiness check for DFAs. If for at least one state r, this test is true, then there is a synchronizing word for $\{p, q\}$ in A; otherwise, there is none.
To analyse the running time, note that we are doing at most $|Q|$ pairing constructions and emptiness checks, each of which takes polynomial time. Hence, the overall running time is also a polynomial in the size of the given input.
(b) (\Rightarrow) : Suppose w is a synchronizing word for Q in A. Let $p, q \in Q$. By definition of a synchronizing word, $\delta(p, w)=\delta(q, w)$. Hence, w is also a synchronizing word for $\{p, q\}$ in A.
(\Leftarrow) : Suppose for every $p, q \in Q$, there is a synchronizing word $w_{p, q}$ for the subset $\{p, q\}$. We now construct a synchronizing word w_{S} for every subset $S \subseteq Q$, by induction on $|S|$, the size of S.

For the base case, note that if $|S|=1$, then ϵ is a synchronizing word for S. Assume that we have shown that whenever $|S| \leq i$ for some number $i \geq 1$, there is a synchronizing word for S. Suppose S is a subset such that $|S|=i+1$. Hence, $|S| \geq 2$ and let $S=\left\{p_{1}, p_{2}, \ldots, p_{i+1}\right\}$. By assumption, there is a synchronizing word $w_{p_{1}, p_{2}}$ for the subset $\left\{p_{1}, p_{2}\right\}$. Let $S^{\prime}=\left\{\delta\left(p_{1}, w_{p_{1}, p_{2}}\right), \delta\left(p_{2}, w_{p_{1}, p_{2}}\right), \ldots, \delta\left(p_{i+1}, w_{p_{1}, p_{2}}\right)\right\}$. Since $w_{p_{1}, p_{2}}$ is a synchronizing word for $\left\{p_{1}, p_{2}\right\}$, it follows that $\left|S^{\prime}\right| \leq i$. By induction hypothesis, there is a synchronizing word $w_{S^{\prime}}$ for the subset S^{\prime}. It is then easy to see that the word $w_{p_{1}, p_{2}} w_{S^{\prime}}$ is a synchronizing word for S in A. Hence, the induction step is complete.
It then follows that there is a synchronizing word for the set Q in A.
(c) We give a polynomial-time reduction from the DFA intersection problem to the synchronizing word problem, which will prove that the latter is PSPACE-hard. Let $A_{1}, A_{2}, \ldots, A_{n}$ be n DFAs all over a commmon alphabet Σ such that each $A_{i}=\left(Q_{i}, \Sigma, \delta_{i}, q_{0}^{i}, F_{i}\right)$. In polynomial time, we have to construct a DFA B and a subset S of the states of B so that
S has a synchronizing word in B if and only if $\bigcap_{1 \leq i \leq n} \mathcal{L}\left(A_{i}\right) \neq \emptyset$
Let us construct $B=\left(Q_{B}, \Sigma_{B}, \delta_{B}, q_{0}^{B}, F_{B}\right)$ and S as follows.

- The set Q_{B} will consist all the states of all the A_{i} 's and in addition, it will have two new states p and t. More formally, $Q=\bigcup_{1 \leq i \leq n} Q_{i} \cup\{p, t\}$ where p and t are two new states.
- The alphabet Σ_{B} will be $\Sigma \cup\{\#\}$ where $\#$ is a fresh letter not present in Σ.
- The transition function δ_{B} will behave in the following way:
- If $q \in Q_{i}$ for some i and $a \in \Sigma$, then $\delta_{B}(q, a)=\delta_{i}(q, a)$. Intuitively, if q is a state of some A_{i} and a is not $\#$, then the transition function behaves in exactly the same way as δ_{i}.
- If $q \in F_{i}$ for some i, then $\delta_{B}(q, \#)=p$. Intuitively, upon reading a \# from some accepting state of some A_{i}, we move to p.
- If $q \in Q_{i} \backslash F_{i}$ for some i, then $\delta_{B}(q, \#)=t$. Intuitively, upon reading a $\#$ from some rejecting state of A_{i}, we move to t.
- If $q \in\{p, t\}$ and $a \in \Sigma_{B}$, then $\delta_{B}(q, a)=q$. Intuitively, the states p and t have a self-loop corresponding to any letter.
- We set q_{0}^{B} to be p and F_{B} to be $\{p\}$.
- Finally we set S to be the subset of states given by $\left\{q_{0}^{1}, q_{0}^{2}, \ldots, q_{0}^{n}, p\right\}$.

Suppose $w \in \bigcap_{1 \leq i \leq n} \mathcal{L}\left(A_{i}\right)$. By construction, it then follows that $w \#$ is a synchronizing word for S in B.
Suppose w is a synchronizing word for S in B. By definition of w and by construction of B, it follows that

$$
\delta_{B}\left(q_{0}^{1}, w\right)=\delta_{B}\left(q_{0}^{2}, w\right)=\cdots=\delta_{B}\left(q_{0}^{n}, w\right)=\delta_{B}(p, w)=p
$$

Notice that to move from the state q_{0}^{1} to p, it is necessary to read a $\#$ at some point. Hence, w must contain an occurrence of \#. Split w as $w^{\prime} \# w^{\prime \prime}$ so that w^{\prime} has no occurrences of \#. For each i, let $q_{i}=\delta_{B}\left(q_{0}^{i}, w^{\prime}\right)$. By construction of B, it follows that for each $i, q_{i} \in Q_{i}$. Suppose for some $i, q_{i} \notin F_{i}$. It then follows that $\delta_{B}\left(q_{i}, \# w^{\prime \prime}\right)=t$, which contradicts the fact that $\delta_{B}\left(q_{0}^{i}, w \# w^{\prime \prime}\right)=p$. Hence, $q_{i} \in F_{i}$ for every i and this implies that w^{\prime} is a word which is accepted by all of the A_{i} 's.

Solution 5.3

Let $A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ be an NFA that accepts L. Without loss of generality, we can assume that $Q_{0}=\left\{q_{0}\right\}$ and $F=\left\{q_{f}\right\}$ for some states q_{0} and q_{f}.
(a) To begin with we have the following observation:
$w \in \sqrt{L}$ if and only if there exists a state $p \in Q$ such that $p \in \delta\left(q_{0}, w\right)$ and $q_{f} \in \delta(p, w)$.
With this observation in mind, let us do the following construction: For every state $p \in Q$, construct two NFAs A_{p}^{1}, A_{p}^{2} defined as $A_{p}^{1}=\left(Q, \Sigma, \delta, q_{0}, p\right)$ and $A_{p}^{2}=\left(Q, \Sigma, \delta, p, q_{f}\right)$. Notice that we can now rephrase the above observation as:
$w \in \sqrt{L}$ if and only if there exists a state $p \in Q$ such that $w \in \mathcal{L}\left(A_{p}^{1}\right) \cap \mathcal{L}\left(A_{p}^{2}\right)$.
Let B be any NFA for the language $\cup_{p \in Q} \mathcal{L}\left(A_{p}^{1}\right) \cap \mathcal{L}\left(A_{p}^{2}\right)$. By the above observation, it follows that B recognizes \sqrt{L}. Note that B can be obtained by pairing operations on the NFAs from the set $\left\{A_{p}^{i}: p \in\right.$ $Q, i \in\{1,2\}\}$ and each element in this set can be easily constructed from A. It follows then that we can explicitly construct B from A.
(b) Once again we begin with an observation:
$w=w_{1} w_{2} \ldots w_{n} \in \operatorname{Cyc}(L)$ if and only if there exists $1 \leq i \leq n$ and $p \in Q$ such that $q_{f} \in$ $\delta\left(p, w_{1} w_{2} \ldots w_{i}\right)$ and $p \in \delta\left(q_{0}, w_{i+1} w_{i+2} \ldots w_{n}\right)$.

Indeed, suppose for some word w, such an i and p exist. Then, notice that if we set $v=w_{1} w_{2} \ldots w_{i}$ and $u=w_{i+1} \ldots w_{n}$, then $u v \in L$ and so $w=v u \in \operatorname{Cyc}(L)$. On the other hand if $w \in \operatorname{Cyc}(L)$, then there is a partition of w into some $v=w_{1} w_{2} \ldots w_{i}$ and $u=w_{i+1} \ldots w_{n}$ such that $u v \in L$. Since $u v \in L$, there must be an accepting run of $u v$ in A. Let p be the state reached after reading u along this run. It follows then that $p \in \delta\left(q_{0}, w_{i+1} \ldots w_{n}\right)$ and $q_{f} \in \delta\left(p, w_{1} w_{2} \ldots w_{i}\right)$.
With this observation, we can do the following: For every state $p \in Q$, construct the two NFAs A_{p}^{1} and A_{p}^{2} as defined in the subproblem a). Now, notice that
$w \in \operatorname{Cyc}(L)$ if and only if there exists $p \in Q$ such that $w \in \mathcal{L}\left(A_{p}^{2}\right) \mathcal{L}\left(A_{p}^{1}\right)$, i.e., w is in the concatenation of the languages of A_{p}^{2} and A_{p}^{1} for some p.
Let B be any NFA for the regular language $\cup_{p \in Q} \mathcal{L}\left(A_{p}^{2}\right) \mathcal{L}\left(A_{p}^{1}\right)$. By the above observation, it follows that B recognizes $\operatorname{Cyc}(L)$. Note that given the NFAs A_{p}^{2} and A_{p}^{1}, we can obtain an NFA- ϵ for their concatenation by simply adding an ϵ transition from the final state of A_{p}^{2} to the initial state of A_{p}^{1}. By using additional pairing operations, we can explicitly construct B from A.

