Technische Universitat Miinchen Winter term 22/23
I7
Prof. J. Esparza / A. R. Balasubramanian / M. Lazié

Automata and Formal Languages — Exercise Sheet 5

Exercise 5.1
Consider the following NFAs A, B and C:

(a) Use algorithm UnivNFA to determine whether L(B) = {a,b}* and L(C) = {a, b}*.
(b) For D € {B,C}, if L(D) # {a,b}*, use algorithm IncINFA to determine whether L(A4) C L(D).

Exercise 5.2

Let A =(Q,X%,4,qo, F) be a DFA. For any S C @, a word w € ¥* is said to be a synchronizing word for S in A
if reading w from any state of S leads to a common state, i.e., if there exists ¢ € @) such that for every p € S,

w

p — q. We now define the synchronizing word problem defined as follows:

Given: DFA A and a subset S of the states of A
Decide: If there exists a synchronizing word for S in A

(a) Given states p,q € @, design a polynomial time algorithm for testing if there is a synchronizing word for
{p,q} in A.

(b) Let A =(Q,%,0,q0, F) be a DFA. Show that there is a synchronizing word for @ in A if and only if for
every p,q € @, there is a synchronizing word for {p, ¢} in A.

By (a) and (b), we can conclude that there is a polynomial time algorithm for the special case of the synchronizing
word problem where the subset S is the set of all states of A. However, for the general case, we have the following
result.

(c) % Show that the synchronizing word problem is PSPACE-hard. You may assume that the following
problem, called the DFA intersection problem is PSPACE-hard:

Given: DFAs A, Ao, ..., A, all over a common alphabet %

Decide: 1If there exists a word w such that w e (] L(4;)
1<i<n

Exercise 5.3

Let ¥ be a finite alphabet and let L C ¥* be a language accepted by an NFA A. Give an NFA-¢ for each of the
following languages:

(a) VL = {w € X* |ww € L},
(b) % Cyc(L) = {vu € * | uv € L}.

Solution 5.1

(a) The trace of the execution for NFA B is as follows:

Iter. Q w
0 0 Hao}}
1 Hao}} Ha, a2}}
2 {{go} {a1, a2}} {{az. a5}
3 Haot {a1, a2}, {a2, g3} } {{as}}

At the fourth iteration, the algorithm encounters state {g3} which is non final, and hence it returns false.

Therefore, L(B) # {a,b}*.

The trace of the execution for NFA C is as follows:

Iter. Q W
0 0 {{ro,m1}}
1 Hro,r1}} {{ro.r2,rs}, {r1,r2}}
2 Hro.mit {ro,ra, st} {{ri,ra}}
3 {{ro,m1} {ro,r2,r3}, {r1, ra}} {{ro},{r2}}
3 Hrosri}, {ro, r2, m3}, {r1, m2}, {ro}} {{r2}}
3| {drosrat Ao rarab {r re} {ro}, {r2}} 0

At the fifth iteration, W becomes empty and hence the algorithm returns true. Therefore L(C) = {a, b}*.

(b) The trace of the algorithm for A and B is as follows:

Iter. Q w
0 0 {lpo. {a0}]}
1 {[po, {a0}]} {lp1, {a0}]}
2 {[po, {90}, [p1, {a0}]} {lpo. {a1, a=}]}
3 | {lpo. {ao}]: 1. {a0}]; [Po. {a1, a2}]} 0

At the third iteration, W becomes empty and hence the algorithm returns true. Therefore L(A) C L(B).

Solution 5.2

(a) By definition, w is a synchronizing word for {p,q} in A if and only if there is a state r such that r =

é(p,w) = (g, w).

A2 = (Q,,6,p,r) and Al

Consider the following algorithm: For every state r €), we construct two DFAs
(Q,%,9,q,7). Notice that w is a synchronizing word for {p, ¢} in A if and

only if there exists a state r such that w € L(AP) N L(A?). Hence, the polynomial time algorithm to test
if there is a synchronizing word for {p, ¢} in A is as follows: For each r € @, construct the DFAs A? and
A% and test if L(AP)NL(AZ) # 0 by means of the pairing construction and the emptiness check for DFAs.
If for at least one state r, this test is true, then there is a synchronizing word for {p, ¢} in A; otherwise,

there is none.

To analyse the running time, note that we are doing at most |@Q| pairing constructions and emptiness
checks, each of which takes polynomial time. Hence, the overall running time is also a polynomial in the

size of the given input.

(=) : Suppose w is a synchronizing word for @ in A. Let p,q € Q. By definition of a synchronizing word,

d(p,w) = §(q, w). Hence, w is also a synchronizing word for {p, ¢} in A.

(<) : Suppose for every p,q € @, there is a synchronizing word w, , for the subset {p,q}. We now
construct a synchronizing word wg for every subset S C @, by induction on |S|, the size of S.

For the base case, note that if |S| = 1, then € is a synchronizing word for S. Assume that we have shown
that whenever |S| < ¢ for some number ¢ > 1, there is a synchronizing word for S. Suppose S is a subset
such that |S| =i+ 1. Hence, |S| > 2 and let S = {p1,pa2,...,pit1}. By assumption, there is a synchro-
nizing word wp, p, for the subset {p1,p2}. Let S = {d(p1, Wpy ps)s 0(P2: Wpy ps)s - - - s O (Pit1, Wpy py)} Since
Wp, p, 18 a synchronizing word for {pi,ps}, it follows that |S’| < ¢. By induction hypothesis, there is a
synchronizing word wg: for the subset S’. It is then easy to see that the word wy, p,ws is a synchronizing
word for S in A. Hence, the induction step is complete.

It then follows that there is a synchronizing word for the set @ in A.

(c) We give a polynomial-time reduction from the DFA intersection problem to the synchronizing word prob-
lem, which will prove that the latter is PSPACE-hard. Let A1, Ao, ..., A, be n DFAs all over a commmon
alphabet 3 such that each 4; = (Q;, %, 8, ¢, F;). In polynomial time, we have to construct a DFA B and
a subset S of the states of B so that

S has a synchronizing word in B if and only if [L(A4;) #0

1<i<n
Let us construct B = (Qp,Yp,05,q¢5, Fg) and S as follows.

e The set Qp will consist all the states of all the A;’s and in addition, it will have two new states p

and t. More formally, @ = |J @; U{p,t} where p and ¢ are two new states.
1<i<n

e The alphabet Y5 will be ¥ U {#} where # is a fresh letter not present in X.
e The transition function dg will behave in the following way:
— If g € Q; for some i and a € X, then dg(q,a) = d;(¢,a). Intuitively, if ¢ is a state of some A;
and a is not #, then the transition function behaves in exactly the same way as J;.

— If ¢ € F; for some i, then d5(q, #) = p. Intuitively, upon reading a # from some accepting state
of some A;, we move to p.

— If g € Q; \ F; for some i, then d5(q,#) = t. Intuitively, upon reading a # from some rejecting
state of A;, we move to t.

—If ¢ € {p,t} and a € ¥p, then d5(¢q,a) = ¢. Intuitively, the states p and ¢t have a self-loop
corresponding to any letter.
e We set ¢ to be p and Fp to be {p}.

e Finally we set S to be the subset of states given by {q¢¢, 43, ..., q%,p}

Suppose w € (] L(A;). By construction, it then follows that w# is a synchronizing word for S in B.
1<i<n

Suppose w is a synchronizing word for S in B. By definition of w and by construction of B, it follows that
5B(q:0va) = 63((]3)“}) == 53((]3»10) = 5B(paw) =P

Notice that to move from the state g} to p, it is necessary to read a # at some point. Hence, w must
contain an occurrence of #. Split w as w'#w” so that w’ has no occurrences of #. For each 7, let
¢ = 05(gh,w"). By construction of B, it follows that for each i, ¢; € Q;. Suppose for some i, ¢; ¢ F;. It
then follows that dp(g;, #w”) = t, which contradicts the fact that 65 (g}, w#w”) = p. Hence, ¢; € F; for
every ¢ and this implies that w’ is a word which is accepted by all of the A;’s.

Solution 5.3

Let A = (Q,%,0,Qo, F) be an NFA that accepts L. Without loss of generality, we can assume that Qo = {qo}
and F = {qy} for some states gy and ¢y.

(a) To begin with we have the following observation:
w € /L if and only if there exists a state p € Q such that p € 6(go, w) and qr € 6(p,w).

With this observation in mind, let us do the following construction: For every state p € @), construct two
NFAs A}, A2 defined as A, = (Q,%,6,qo,p) and A2 = (Q,%,8,p,qs). Notice that we can now rephrase
the above observation as:

w € VL if and only if there exists a state p € Q such that w € ﬁ(A}D) N E(A%).

Let B be any NFA for the language Upeq [,(Azl,) N E(Af,). By the above observation, it follows that B
recognizes v/L. Note that B can be obtained by pairing operations on the NFAs from the set {A; ip €
Q, i € {1,2}} and each element in this set can be easily constructed from A. It follows then that we can
explicitly construct B from A.

Once again we begin with an observation:

w = wiws ... w, € Cyc(L) if and only if there exists 1 < ¢ < n and p € @ such that ¢ €
0(p, wiws ... w;) and p € §(qgo, Wit1Wit2 ... Wy).

Indeed, suppose for some word w, such an i and p exist. Then, notice that if we set v = wjws ... w; and
U= W41 ... Wy, then uv € L and so w = vu € Cyc(L). On the other hand if w € Cyc(L), then there is a
partition of w into some v = wyws ... w; and © = w;41 ... w, such that uwv € L. Since uv € L, there must
be an accepting run of uv in A. Let p be the state reached after reading u along this run. It follows then
that p € 6(go, Wit1 ... wy) and g5 € 6(p, wrws ... w;).

With this observation, we can do the following: For every state p € @), construct the two NFAs All) and
Ag as defined in the subproblem a). Now, notice that

w € Cyc(L) if and only if there exists p € Q such that w € L(A2)L(A}), i.e., w is in the
concatenation of the languages of A> and A} for some p.

Let B be any NFA for the regular language Upeq £(A2)L(A}). By the above observation, it follows that B
recognizes Cyc(L). Note that given the NFAs Af, and Azl,, we can obtain an NFA-¢ for their concatenation
by simply adding an € transition from the final state of Ai to the initial state of A}r By using additional
pairing operations, we can explicitly construct B from A.

