
Technische Universität München Winter term 21/22
I7
Prof. J. Esparza / A. R. Balasubramanian / C. Weil-Kennedy

Automata and Formal Languages — Exercise Sheet 5

Exercise 5.1

Consider the following languages over alphabet Σ = {a, b}:

• L1 is the set of all words where a occurs only at odd positions;

• L2 is the set of all words with an even number of a’s;

• L3 is the set of all words where between any two occurrences of b’s there is at least one a;

• L4 is the set of all words of odd length.

Construct an NFA for the language
(L1 \ L2) ∪ (L34L4),

where L4L′ denotes the symmetric difference of L and L′, i.e. (L\L′)∪ (L′ \L), while sticking to the following
rules:

• Start from DFAs for L1, . . . , L4;

• Any further automaton must be constructed from already existing automata via an algorithm introduced
in the lecture, e.g. Comp, BinOp, UnionNFA, NFAtoDFA, etc.

Exercise 5.2

Let Σ be a finite alphabet. For every u, v ∈ Σ∗, we say that u � v if and only if u can be obtained by deleting
zero or more letters of v. For example, abc � abca, abc � acbac, abc � abc, ε � abc and aab 6� acbac.

Let L ⊆ Σ∗ be a language accepted by an NFA A. Give an NFA-ε for each of the following languages:

(a) ↓L = {w ∈ Σ∗ | w � w′ for some w′ ∈ L},

(b) ↑L = {w ∈ Σ∗ | w′ � w for some w′ ∈ L},

(c)
√
L = {w ∈ Σ∗ | ww ∈ L},

(d) F Cyc(L) = {vu ∈ Σ∗ | uv ∈ L}.

Exercise 5.3

Let L 6= {ε} be an arbitrary non-empty language over a 1-letter alphabet. Prove that there exists words
v1, v2, . . . , vn, w such that L∗ = (v1 + v2 + · · ·+ vn)w∗.

(Hint: Consider the shortest non-empty word w ∈ L. If L∗ = w∗, then we are done. Otherwise, pick the
shortest word v1 ∈ L∗ \ w∗. If L∗ = v1w

∗, then we are done. Otherwise, pick the shortest word v2 ∈ L∗ \ v1w∗
and so on).

Solution 5.1

We start from the following deterministic automata:

L1: a, b

b

a

a, b

L2:
a

a

b b

L3:

a

b

a

b

a, b
L4: a, b

a, b

By applying BinOp (and omitting the trap state on L1 \ L2), we obtain:

L1 \ L2:

a

b

b

b

a
b

L34L4:
a

a
b

a

b

a

b

b

a, b

a, b

By using Comp on the rightmost automaton, we obtain:

L34L4:
a

a
b

a

b

a

b

b

a, b

a, b

By considering the NFA for L1 \ L2 and the above NFA as a single automaton, we obtain an NFA for (L1 \
L2) ∪ (L34L4).

Solution 5.2

Let A = (Q,Σ, δ, Q0, F) be an NFA that accepts L.

(a) We add a nε-transition “parallel” to every transition of A. This simulates the deletion of letters from
words of L. More formally, let B = (Q,Σ, δ′, Q0, F) be such that, for every q ∈ Q and a ∈ Σ ∪ {ε},

δ′(q, a) =

{
δ(q, a) if a ∈ Σ,

{q ∈ Q : q ∈ δ(q, b) for some b ∈ Σ} if a = ε.

(b) For every state of Q, we add self-loops for each letter of Σ. This corresponds to the insertion of letters in
words of L. More formally, let B = (Q,Σ, δ′, Q0, F) be such that δ′(q, a) = δ(q, a) ∪ {q} for every q ∈ Q
and a ∈ Σ.

(c) Intuitively, we construct an automaton B that guesses an intermediate state p and then reads w simul-
taneously from an initial state q0 and from p. The automaton accepts if it simultaneously reaches p and
and an accepting state qF . More formally, let B = (Q′,Σ, δ′, Q′0, F

′) be such that

Q′ = Q×Q×Q,
Q′0 = {(p, q, p) : p ∈ Q, q ∈ Q0},
F ′ = {(p, p, q) : p ∈ Q, q ∈ F},

and, for every p, q, r ∈ Q and a ∈ Σ,

δ′((p, q, r), a) = {(p, q′, r′) : q′ ∈ δ(q, a), r′ ∈ δ(r, a)}.

(d) Intuitively, we construct an automaton B that guesses a state p and reads a prefix v of the input word
until it reaches a final state. Then, B moves non deterministically to an initial state from which it reads
the remainder u of the input word, and it accepts if it reaches p. More formally, let B = (Q′,Σ, δ′, Q′0, F

′)
be such that

Q′ = Q× {0, 1} ×Q,
Q′0 = {(p, 0, p) | p ∈ Q},
F ′ = {(p, 1, p) | p ∈ Q},

and, for every p, q ∈ Q and a ∈ Σ ∪ {ε},

δ′((p, b, q), a) =

{(p, b, q′) : q′ ∈ δ(q, a)} if a ∈ Σ,

{(p, 1, q′) : q′ ∈ Q0} if a = ε, b = 0 and q ∈ F,
∅ otherwise.

Solution 5.3

Without loss of generality, we can assume that the alphabet is {a}. As the hint suggests, we first consider the
shortest non-empty word w ∈ L. If L∗ = w∗, then we are done. Otherwise, there must be a shortest word
v1 ∈ L∗ \ w∗. If L∗ = v1w

∗, then we are done again. Otherwise, there must be a shortest word v2 ∈ L∗ \ v1w∗
and so on.

We claim that in atmost p = |w| steps, this process will terminate and we will find words v1, . . . , vn, w that
satisfy the required claim. Indeed, suppose this process does not terminate in atmost p steps and so we have
constructed words v1, v2, . . . , vp+1. By the pigeonhole principle, there exists 1 ≤ i < j ≤ p + 1 such that
|vi| ≡ |vj | (modp). Notice that |vi| 6= |vj | as otherwise vi = vj , because both of them are words over a singleton
alphabet. Hence we have two cases.

Suppose |vi| < |vj |. Since |vi| ≡ |vj | (mod p), there must be a k > 0 such that |vj | = |vi| + k · p. Hence,
vj = a|vj | = a|vi|+k·p = viw

k ∈ viw∗, contradicting the way vj was picked.

Suppose |vj | < |vi|. Since |vi| ≡ |vj | (mod p), there must be a k > 0 such that |vi| = |vj | + k · p. Hence,
vi = a|vi| = a|vj |+k·p = vjw

k ∈ vjw
∗. If vj ∈ (v1 + v2 + · · · + vi−1)w∗, this would then mean that vi ∈

(v1 + v2 + · · ·+ vi−1)w∗ as well, contradicting the way vi was picked. Otherwise, vj /∈ (v1 + v2 + · · ·+ vi−1)w∗,
but then |vj | < |vi|, which also contradicts the choice of vi. It follows that in either case, we arrive at a
contradiction.

Hence, the process terminates in atmost p steps. Since the process terminates, it means that we have found
v1, . . . , vn, w satisfying the property that L∗ = (v1 + v2 + · · ·+ vn)w∗.

Remark: A previous version of this question which also required that the words v1, . . . , vn, w belong to L, was
wrong. This has now been corrected.

