Automata and Formal Languages - Exercise Sheet 5

Exercise 5.1

Consider the following languages over alphabet $\Sigma=\{a, b\}$:

- L_{1} is the set of all words where a occurs only at odd positions;
- L_{2} is the set of all words with an even number of a 's;
- L_{3} is the set of all words where between any two occurrences of b 's there is at least one a;
- L_{4} is the set of all words of odd length.

Construct an NFA for the language

$$
\left(L_{1} \backslash L_{2}\right) \cup \overline{\left(L_{3} \triangle L_{4}\right)},
$$

where $L \triangle L^{\prime}$ denotes the symmetric difference of L and L^{\prime}, i.e. $\left(L \backslash L^{\prime}\right) \cup\left(L^{\prime} \backslash L\right)$, while sticking to the following rules:

- Start from DFAs for L_{1}, \ldots, L_{4};
- Any further automaton must be constructed from already existing automata via an algorithm introduced in the lecture, e.g. Comp, BinOp, UnionNFA, NFAtoDFA, etc.

Exercise 5.2

Let Σ be a finite alphabet. For every $u, v \in \Sigma^{*}$, we say that $u \preceq v$ if and only if u can be obtained by deleting zero or more letters of v. For example, $a b c \preceq a b c a, a b c \preceq a c b a c, a b c \preceq a b c, \varepsilon \preceq a b c$ and $a a b \npreceq a c b a c$.

Let $L \subseteq \Sigma^{*}$ be a language accepted by an NFA A. Give an NFA- ε for each of the following languages:
(a) $\downarrow L=\left\{w \in \Sigma^{*} \mid w \preceq w^{\prime}\right.$ for some $\left.w^{\prime} \in L\right\}$,
(b) $\uparrow L=\left\{w \in \Sigma^{*} \mid w^{\prime} \preceq w\right.$ for some $\left.w^{\prime} \in L\right\}$,
(c) $\sqrt{L}=\left\{w \in \Sigma^{*} \mid w w \in L\right\}$,
(d) $\star \operatorname{Cyc}(L)=\left\{v u \in \Sigma^{*} \mid u v \in L\right\}$.

Exercise 5.3

Let $L \neq\{\epsilon\}$ be an arbitrary non-empty language over a 1 -letter alphabet. Prove that there exists words $v_{1}, v_{2}, \ldots, v_{n}, w$ such that $L^{*}=\left(v_{1}+v_{2}+\cdots+v_{n}\right) w^{*}$.
(Hint: Consider the shortest non-empty word $w \in L$. If $L^{*}=w^{*}$, then we are done. Otherwise, pick the shortest word $v_{1} \in L^{*} \backslash w^{*}$. If $L^{*}=v_{1} w^{*}$, then we are done. Otherwise, pick the shortest word $v_{2} \in L^{*} \backslash v_{1} w^{*}$ and so on).

Solution 5.1

We start from the following deterministic automata:

By applying BinOp (and omitting the trap state on $L_{1} \backslash L_{2}$), we obtain:

$L_{3} \triangle L_{4}$:

By using Comp on the rightmost automaton, we obtain:

By considering the NFA for $L_{1} \backslash L_{2}$ and the above NFA as a single automaton, we obtain an NFA for $\left(L_{1} \backslash\right.$ $\left.L_{2}\right) \cup \overline{\left(L_{3} \triangle L_{4}\right)}$.

Solution 5.2

Let $A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ be an NFA that accepts L.
(a) We add a ne-transition "parallel" to every transition of A. This simulates the deletion of letters from words of L. More formally, let $B=\left(Q, \Sigma, \delta^{\prime}, Q_{0}, F\right)$ be such that, for every $q \in Q$ and $a \in \Sigma \cup\{\varepsilon\}$,

$$
\delta^{\prime}(q, a)= \begin{cases}\delta(q, a) & \text { if } a \in \Sigma \\ \{q \in Q: q \in \delta(q, b) \text { for some } b \in \Sigma\} & \text { if } a=\varepsilon\end{cases}
$$

(b) For every state of Q, we add self-loops for each letter of Σ. This corresponds to the insertion of letters in words of L. More formally, let $B=\left(Q, \Sigma, \delta^{\prime}, Q_{0}, F\right)$ be such that $\delta^{\prime}(q, a)=\delta(q, a) \cup\{q\}$ for every $q \in Q$ and $a \in \Sigma$.
(c) Intuitively, we construct an automaton B that guesses an intermediate state p and then reads w simultaneously from an initial state q_{0} and from p. The automaton accepts if it simultaneously reaches p and and an accepting state q_{F}. More formally, let $B=\left(Q^{\prime}, \Sigma, \delta^{\prime}, Q_{0}^{\prime}, F^{\prime}\right)$ be such that

$$
\begin{aligned}
Q^{\prime} & =Q \times Q \times Q \\
Q_{0}^{\prime} & =\left\{(p, q, p): p \in Q, q \in Q_{0}\right\}, \\
F^{\prime} & =\{(p, p, q): p \in Q, q \in F\},
\end{aligned}
$$

and, for every $p, q, r \in Q$ and $a \in \Sigma$,

$$
\delta^{\prime}((p, q, r), a)=\left\{\left(p, q^{\prime}, r^{\prime}\right): q^{\prime} \in \delta(q, a), r^{\prime} \in \delta(r, a)\right\} .
$$

(d) Intuitively, we construct an automaton B that guesses a state p and reads a prefix v of the input word until it reaches a final state. Then, B moves non deterministically to an initial state from which it reads the remainder u of the input word, and it accepts if it reaches p. More formally, let $B=\left(Q^{\prime}, \Sigma, \delta^{\prime}, Q_{0}^{\prime}, F^{\prime}\right)$ be such that

$$
\begin{aligned}
Q^{\prime} & =Q \times\{0,1\} \times Q, \\
Q_{0}^{\prime} & =\{(p, 0, p) \mid p \in Q\}, \\
F^{\prime} & =\{(p, 1, p) \mid p \in Q\},
\end{aligned}
$$

and, for every $p, q \in Q$ and $a \in \Sigma \cup\{\varepsilon\}$,

$$
\delta^{\prime}((p, b, q), a)= \begin{cases}\left\{\left(p, b, q^{\prime}\right): q^{\prime} \in \delta(q, a)\right\} & \text { if } a \in \Sigma, \\ \left\{\left(p, 1, q^{\prime}\right): q^{\prime} \in Q_{0}\right\} & \text { if } a=\varepsilon, b=0 \text { and } q \in F, \\ \emptyset & \text { otherwise. }\end{cases}
$$

Solution 5.3

Without loss of generality, we can assume that the alphabet is $\{a\}$. As the hint suggests, we first consider the shortest non-empty word $w \in L$. If $L^{*}=w^{*}$, then we are done. Otherwise, there must be a shortest word $v_{1} \in L^{*} \backslash w^{*}$. If $L^{*}=v_{1} w^{*}$, then we are done again. Otherwise, there must be a shortest word $v_{2} \in L^{*} \backslash v_{1} w^{*}$ and so on.

We claim that in atmost $p=|w|$ steps, this process will terminate and we will find words v_{1}, \ldots, v_{n}, w that satisfy the required claim. Indeed, suppose this process does not terminate in atmost p steps and so we have constructed words $v_{1}, v_{2}, \ldots, v_{p+1}$. By the pigeonhole principle, there exists $1 \leq i<j \leq p+1$ such that $\left|v_{i}\right| \equiv\left|v_{j}\right|(\bmod p)$. Notice that $\left|v_{i}\right| \neq\left|v_{j}\right|$ as otherwise $v_{i}=v_{j}$, because both of them are words over a singleton alphabet. Hence we have two cases.

Suppose $\left|v_{i}\right|<\left|v_{j}\right|$. Since $\left|v_{i}\right| \equiv\left|v_{j}\right|(\bmod p)$, there must be a $k>0$ such that $\left|v_{j}\right|=\left|v_{i}\right|+k \cdot p$. Hence, $v_{j}=a^{\left|v_{j}\right|}=a^{\left|v_{i}\right|+k \cdot p}=v_{i} w^{k} \in v_{i} w^{*}$, contradicting the way v_{j} was picked.

Suppose $\left|v_{j}\right|<\left|v_{i}\right|$. Since $\left|v_{i}\right| \equiv\left|v_{j}\right|(\bmod p)$, there must be a $k>0$ such that $\left|v_{i}\right|=\left|v_{j}\right|+k \cdot p$. Hence, $v_{i}=a^{\left|v_{i}\right|}=a^{\left|v_{j}\right|+k \cdot p}=v_{j} w^{k} \in v_{j} w^{*}$. If $v_{j} \in\left(v_{1}+v_{2}+\cdots+v_{i-1}\right) w^{*}$, this would then mean that $v_{i} \in$ $\left(v_{1}+v_{2}+\cdots+v_{i-1}\right) w^{*}$ as well, contradicting the way v_{i} was picked. Otherwise, $v_{j} \notin\left(v_{1}+v_{2}+\cdots+v_{i-1}\right) w^{*}$, but then $\left|v_{j}\right|<\left|v_{i}\right|$, which also contradicts the choice of v_{i}. It follows that in either case, we arrive at a contradiction.

Hence, the process terminates in atmost p steps. Since the process terminates, it means that we have found v_{1}, \ldots, v_{n}, w satisfying the property that $L^{*}=\left(v_{1}+v_{2}+\cdots+v_{n}\right) w^{*}$.

Remark: A previous version of this question which also required that the words v_{1}, \ldots, v_{n}, w belong to L, was wrong. This has now been corrected.

