Automata and Formal Languages — Exercise Sheet 5

Exercise 5.1

Let $L_1 = \{baa, aaa, bab\}$ and $L_2 = \{baa, aab\}$.

(a) Give an algorithm for the following operation:

INPUT: A fixed-length language $L \subseteq \Sigma^k$ described explicitly as a set of words.

OUTPUT: State q of the master automaton over Σ such that L(q) = L.

- (b) Use the previous algorithm to build the states of the master automaton for L_1 and L_2 .
- (c) Compute the state of the master automaton representing $L_1 \cup L_2$.
- (d) Identify the kernels $\langle L_1 \rangle$, $\langle L_2 \rangle$, and $\langle L_1 \cup L_2 \rangle$.

Exercise 5.2

(a) Give an recursive algorithm for the following operation:

INPUT: States p and q of the master automaton.

OUTPUT: State r of the master automaton such that $L(r) = L(p) \cdot L(q)$.

Observe that the languages L(p) and L(q) can have different lengths. Try to reduce the problem for p, q to the problem for p^a , q.

(b) Give an recursive algorithm for the following operation:

INPUT: A state q of the master automaton.

OUTPUT: State r of the master automaton such that $L(r) = L(q)^R$

where R is the reverse operator.

(c) A coding over an alphabet Σ is a function $h: \Sigma \mapsto \Sigma$. A coding h can naturally be extended to a morphism over words, i.e. $h(\varepsilon) = \varepsilon$ and $h(w) = h(w_1)h(w_2)\cdots h(w_n)$ for every $w \in \Sigma^n$. Give an algorithm for the following operation:

INPUT: A state q of the master automaton and a coding h.

OUTPUT: State r of the master automaton such that $L(r) = \{h(w) : w \in L(q)\}.$

Can you make your algorithm more efficient when h is a permutation?

Exercise 5.3

Let $k \in \mathbb{N}_{>0}$. Let flip: $\{0,1\}^k \to \{0,1\}^k$ be the function that inverts the bits of its input, e.g. flip(010) = 101. Let val: $\{0,1\}^k \to \mathbb{N}$ be such that val(w) is the number represented by w in the least significant bit first encoding.

(a) Describe the minimal transducer that accepts

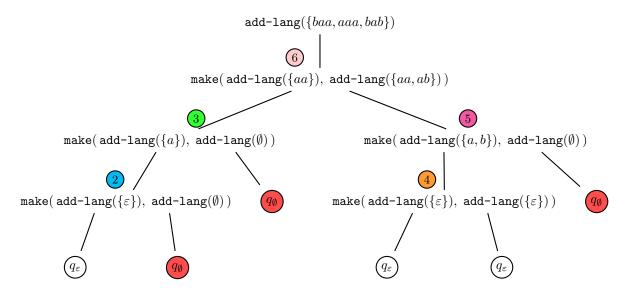
$$L_k = \{ [x, y] \in (\{0, 1\} \times \{0, 1\})^k \mid \operatorname{val}(y) = \operatorname{val}(\operatorname{flip}(x)) + 1 \mod 2^k \}.$$

- (b) Build the state r of the master transducer for L_3 , and the state q of the master automaton for $\{010, 110\}$.
- (c) Adapt the algorithm pre seen in class to compute post and compute using this algorithm post(r,q).

(a)

```
Input: A fixed-length language L \subseteq \Sigma^k described explicitely by a set of words.
    Output: State q of the master automaton over \Sigma such that L(q) = L.
 1 add-lang(L):
        if L = \emptyset then
 2
             return q_{\emptyset}
 3
        else if L = \{\varepsilon\} then
 4
             return q_{\varepsilon}
 5
        else
 6
             for a_i \in \Sigma do
 7
                  L^{a_i} \leftarrow \{u \mid a_i u \in L\}
 8
                  s_i \leftarrow \texttt{add-lang}(L^{a_i})
 9
             return make(s_1, s_2, ..., s_n)
10
```

(b) Executing add-lang(L_1) yields the following computation tree:



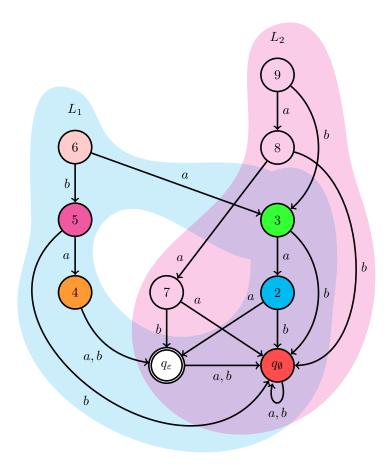
The table obtained after the execution is as follows:

Ident.	a-succ	b-succ
2	$q_{arepsilon}$	q_{\emptyset}
3	2	q_{\emptyset}
4	$q_{arepsilon}$	$q_arepsilon$
5	4	q_{\emptyset}
6	3	5

Calling add-lang(L_2) adds the following rows to the table and returns 9:

Ident.	a-succ	b-succ
7	q_{\emptyset}	$q_{arepsilon}$
8	7	q_{\emptyset}
9	8	3

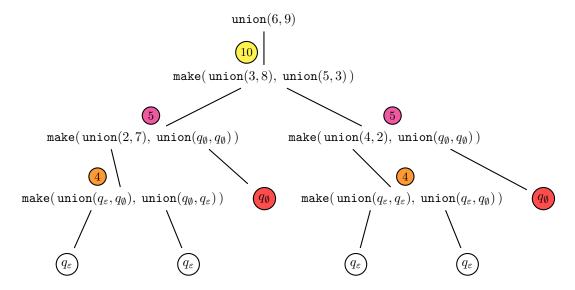
The resulting master automaton fragment is:



(c) Let us first adapt the algorithm for intersection to obtain an algorithm for union:

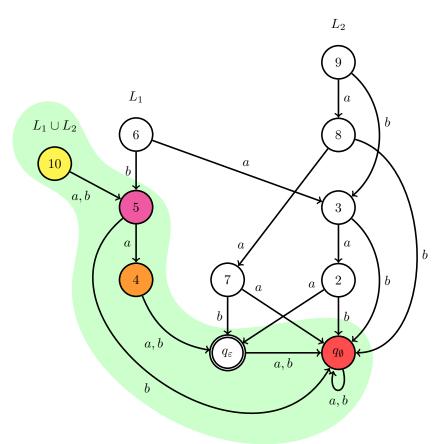
```
Input: States p and q of same length of the master automaton.
    Output: State r of the master automaton such that L(r) = L(p) \cup L(q).
 1 union(p,q):
 \mathbf{2}
        if G(p,q) is not empty then
            return G(p,q)
 3
        else if p = q_{\emptyset} and q = q_{\emptyset} then
 4
 5
             return q_{\emptyset}
        else if p = q_{\varepsilon} or q = q_{\varepsilon} then
 6
 7
             return q_{\varepsilon}
        else
 8
             for a_i \in \Sigma do
 9
                 s_i \leftarrow \mathtt{union}(p^{a_i}, q^{a_i})
10
             G(p,q) \leftarrow \mathtt{make}(s_1,s_2,\ldots,s_n)
11
12
             return G(p,q)
```

Executing union(6,9) yields the following computation tree:



Calling union(6,9) adds the following row to the table and returns 10:

The new fragment of the master automaton is:



★ Note that union could be slightly improved by returning q whenever p = q, and by updating G(q, p) at the same time as G(p, q).

(d) The kernels are:

$$\langle L_1 \rangle = L_1,$$

 $\langle L_2 \rangle = L_2,$
 $\langle L_1 \cup L_2 \rangle = \{aa, ab\}.$

Solution 5.2

(a) Let L and L' be fixed-length languages. The following holds:

$$L \cdot L' = \begin{cases} \emptyset & \text{if } L = \emptyset, \\ L' & \text{if } L = \{\varepsilon\}, \\ \bigcup_{a \in \Sigma} \{a\} \cdot L^a \cdot L' & \text{otherwise.} \end{cases}$$

These identities give rise to the following algorithm:

```
Input: States p and q of the master automaton.
    Output: State r of the master automaton such that L(r) = L(p) \cdot L(q).
 1 concat(p,q):
        if G(p,q) is not empty then
 2
 3
            return G(p,q)
        else if p = q_{\emptyset} then
 4
            return q_{\emptyset}
 5
        else if p = q_{\varepsilon} then
 6
            return q
 7
        else
 8
            for a_i \in \Sigma do
 9
                 s_i \leftarrow \mathtt{concat}(p^{a_i}, q)
10
            G(p,q) \leftarrow \mathtt{make}(s_1, s_2, \dots, s_n)
11
            return G(p,q)
12
```

(b) Let L be a fixed-length language. The following holds:

$$L^{R} = \begin{cases} \emptyset & \text{if } L = \emptyset, \\ \{\varepsilon\} & \text{if } L = \{\varepsilon\}, \\ \bigcup_{a \in \Sigma} (L^{a})^{R} \cdot \{a\} & \text{otherwise.} \end{cases}$$

These identities give rise to the following algorithm:

★ Note that Lines 11 and 12 are introduced in order to represent the language $\{a_i\}$ in Line 13 as a state $\mathtt{make}(s_1, s_2, \ldots, s_n)$ of the master automaton. This can be avoided by using the algorithm from Exercise 8.1, namely the state that represents $\{a_i\}$ is $\mathtt{add-lang}(\{a_i\})$. Thus, Lines 11-13 can be replaced just by $r \leftarrow \mathtt{concat}(\mathtt{reverse}(q^{a_i}),\mathtt{add-lang}(\{a_i\}))$

Input: A state q of the master automaton. **Output:** State r of the master automaton such that $L(r) = L(q)^R$. 1 reverse(q): if G(q) is not empty then $\mathbf{2}$ return G(q)3 else if $q = q_{\emptyset}$ then 4 return q_{\emptyset} 5 else if $q = q_{\varepsilon}$ then 6 7 return q_{ε} 8 else $p \leftarrow q_{\emptyset}$ 9 for $a_i \in \Sigma$ do 10 $s_i \leftarrow q_\varepsilon$ 11 $s_j \leftarrow q_\emptyset$ for every $i \neq j$ **12** $r \leftarrow \mathtt{concat}(\mathtt{reverse}(q^{a_i}),\mathtt{make}(s_1,s_2,\ldots,s_n))$ 13 $p \leftarrow \mathtt{union}(p, r)$ 14 $G(q) \leftarrow p$ 15 **return** G(q)16

(c) Let L be a fixed-length language and let h be a coding. The following holds:

$$h(L) = \begin{cases} \emptyset & \text{if } L = \emptyset, \\ \{\varepsilon\} & \text{if } L = \{\varepsilon\}, \\ \bigcup_{a \in \Sigma} h(a) \cdot h(L^a) & \text{otherwise.} \end{cases}$$

These identities give rise to the following algorithm:

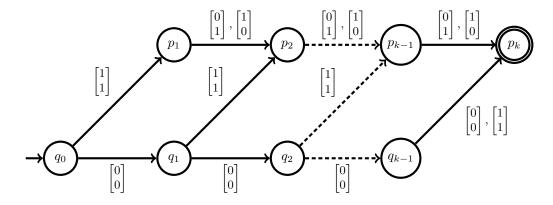
```
Input: A state q of the master automaton and a coding h.
    Output: State r of the master automaton such that L(r) = \{h(w) : w \in L(q)\}.
 1 coding(q, h):
         if G(q) is not empty then
 \mathbf{2}
 3
              return G(q)
         else if q = q_{\emptyset} then
 4
 5
              return q_{\emptyset}
         else if q = q_{\varepsilon} then
 6
              return q_{\varepsilon}
 7
 8
         else
 9
              p \leftarrow q_{\emptyset}
10
              for a \in \Sigma do
                  r \leftarrow \mathtt{coding}(q^a, h)
11
12
                  s_{h(a)} \leftarrow r
                  s_b \leftarrow q_\emptyset for every b \neq h(a)
13
                  p \leftarrow \mathtt{union}(p, \mathtt{make}(s))
14
              G(q) \leftarrow p
15
              return G(q)
16
```

The above algorithm makes use of union because the coding may be the same for distinct letters, i.e. h(a) = h(b) for $a \neq b$ is possible. However, if the coding is a permutation, then this is not possible, and thus each letter maps to a unique residual. Therefore, the algorithm can be adapted as follows:

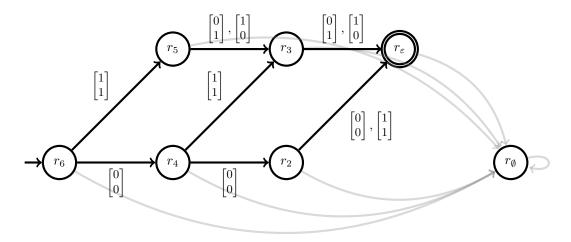
```
Input: A state q of the master automaton and a coding h which is a permutation.
   Output: State r of the master automaton such that L(r) = \{h(w) : w \in L(q)\}.
 1 coding-permutation (q, h):
       if G(q) is not empty then
 2
            return G(q)
 3
 4
        else if q = q_{\emptyset} then
 5
            return q_{\emptyset}
        else if q = q_{\varepsilon} then
 6
 7
            return q_{\varepsilon}
 8
       else
 9
            for a \in \Sigma do
                s_{h(a)} \leftarrow \texttt{coding-permutation}(q^a, h)
10
            G(q) \leftarrow \mathtt{make}(s)
11
            return G(q)
12
```

Solution 5.3

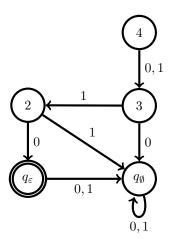
(a) Let $[x, y] \in L_k$. We may flip the bits of x at the same time as adding 1. If $x_1 = 1$, then $\neg x_1 = 0$, and hence adding 1 to val(flip(x)) results in $y_1 = 1$. Thus, for every $1 < i \le k$, we have $y_i = \neg x_i$. If $x_1 = 0$, then $\neg x_1 = 1$. Adding 1 yields $y_1 = 0$ with a carry. This carry is propagated as long as $\neg x_i = 1$, and thus as long as $x_i = 0$. If some position j with $x_j = 1$ is encountered, the carry is "consumed", and we flip the remaining bits of x. These observations give rise to the following minimal transducer for L_k :



(b) The minimal transducer accepting L_3 is



State 4 of the following master automaton fragment accepts {010, 110}:



(c) We can establish the following identities similar to those obtained for pre:

$$post_R(L) = \begin{cases} \emptyset & \text{if } R = \emptyset \text{ or } L = \emptyset, \\ \{\varepsilon\} & \text{if } R = \{[\varepsilon, \varepsilon]\} \text{ and } L = \{\varepsilon\}, \\ \bigcup_{a,b \in \Sigma} b \cdot post_{R^{[a,b]}}(L^a) & \text{otherwise.} \end{cases}$$

To see that these identities hold, let $b \in \Sigma$ and $v \in \Sigma^k$ for some $k \in \mathbb{N}$. We have,

$$bv \in post_{R}(L) \iff \exists a \in \Sigma, u \in \Sigma^{k} \text{ s.t. } au \in L \text{ and } [au, bv] \in R$$

$$\iff \exists a \in \Sigma, u \in L^{a} \text{ s.t. } [au, bv] \in R$$

$$\iff \exists a \in \Sigma, u \in L^{a} \text{ s.t. } [u, v] \in R^{[a,b]}$$

$$\iff \exists a \in \Sigma \text{ s.t. } v \in Post_{R^{[a,b]}}(L^{a})$$

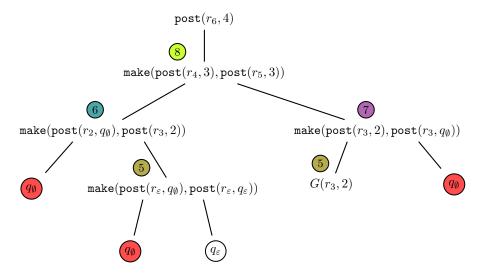
$$\iff v \in \bigcup_{a \in \Sigma} Post_{R^{[a,b]}}(L^{a})$$

$$\iff bv \in \bigcup_{a \in \Sigma} b \cdot Post_{R^{[a,b]}}(L^{a}).$$

We obtain the following algorithm:

```
Input: A state r of the master transducer and a state q of the master automaton.
    Output: State p of the master automaton such that L(p) = Post_R(L) where R = L(r) and L = L(q).
 1 post(r,q):
        if G(r,q) is not empty then
 \mathbf{2}
             return G(r,q)
 3
        else if r = r_{\emptyset} or q = q_{\emptyset} then
 4
             return q_{\emptyset}
 5
        else if r = r_{\varepsilon} and q = q_{\varepsilon} then
 6
 7
             return q_{\varepsilon}
 8
        else
             for b_i \in \Sigma do
9
                 p \leftarrow q_{\emptyset}
10
                  for a \in \Sigma do
11
                      p \leftarrow \mathtt{union}(p, \mathtt{post}(r^{[a,b_i]}, q^a))
12
                  s_i \leftarrow p
13
             G(q,r) \leftarrow \mathtt{make}(s_1,s_2,\ldots,s_n)
14
             return G(q,r)
15
```

Note that the transducer for L_3 has some "strong" deterministic property. Indeed, for every state r and $b \in \{0,1\}$, if $r^{[a,b]} \neq r_{\emptyset}$ then $r^{[\neg a,b]} = r_{\emptyset}$. Hence, for a fixed $b \in \{0,1\}$, at most one term of the form "post $(r^{[a,b]},q^a)$ " can differ from q_{\emptyset} at line 12 of the algorithm. Thus, unions made by the algorithm on this transducer are trivial, and executing post(6,4) yields the following computation tree:



Calling post(6,4) adds the following rows to the master automaton table and returns 8:

Ident.	0-succ	1-succ
5	q_{\emptyset}	$q_arepsilon$
6	q_{\emptyset}	5
7	5	q_{\emptyset}
8	6	7

The resulting master automaton fragment:

