
Technische Universität München Winter term 22/23
I7
Prof. J. Esparza / A. R. Balasubramanian / M. Lazić

Automata and Formal Languages — Exercise Sheet 4

Exercise 4.1

Let A and B be respectively the following NFAs:

q0

q1 q2

q3 q4

q5

a, b
a

a

a

b

a

b

ba

b

a

a, b

a

b

q0

q1 q2

q3 q4

q5

b

b

c

c

a, b, c

a

a

b

a, b, c

a

(a) Compute the coarsest stable refinements (CSR) of A and B.

(b) Construct the quotients of A and B with respect to their CSRs.

(c) Show that

L(A) = {w ∈ {a, b}∗ : w contains an occurrence of the subword ab}
L(B) = {w ∈ {a, b, c}∗ : w starts with bc and ends with a}

(d) Are the automata obtained in (b) minimal?

Exercise 4.2

Let Σ = {a, b}. For any n ∈ N, let Ln := {wwR : w ∈ Σn}, where wR is the reverse of w, e.g. (abc)R = cba. In
Exercise 2.3, we have shown that every NFA (and hence also every DFA) recognizing Ln must have at least 2n

states. We refine this bound here for DFAs.

(a) Construct A2, the minimal DFA for L2.

(b) What are the residuals of L2? Assign them to the states of the DFA you gave for (a).

(c) Give a construction for a DFA that accepts Ln.

(d) How many states does the minimal DFA for Ln contain, for n ≥ 2?

Exercise 4.3

Consider the following DFAs A, B, C and D:

p0 p1
a

a, b

q0 q1

a, b
b

a

r0 r1

b

a

a, b

s0 s1
b

a, b

(a) Use pairings to decide algorithmically whether L(A) ∩ L(B) ⊆ L(C).

(b) Use pairings to decide algorithmically whether L(D) ⊆ L(A) ∩ L(B).

Solution 4.1

A) (a)

Iter. Block to split Splitter New partition

0 — — {q0, q1, q2, q3, q4}, {q5}
1 {q0, q1, q2, q3, q4} (b, {q5}) {q0}, {q1, q2, q3, q4}, {q5}
2 none, partition is stable — —

The CSR is P = {{q0}, {q1, q2, q3, q4}, {q5}}.
(b)

[q0]P [q1]P [q5]P

a, b

a
b

a a, b

a, b

(c) The automaton A and the automaton obtained from (b) accept the same language. Notice that in
the automaton from (b), there is an accepting run for a word w which visits the final state exactly
once if and only if w ∈ Σ∗ab. Since there are self-loops at the final state for both a and b, it follows
that the language of this automaton is Σ∗abΣ∗.

(d) Yes. By (c), the language accepted by A is Σ∗abΣ∗. An NFA with one state can only accept
∅, {ε}, a∗, b∗ and {a, b}∗. Suppose there exists an NFA A′ = ({q0, q1}, {a, b}, δ, Q0, F) accepting
L(A). Without loss of generality, we may assume that q0 is initial. A′ must respect the following
properties:

• q0 ̸∈ F , since ε ̸∈ L(A),

• q1 ∈ F , since L(A) ̸= ∅,
• q1 ̸∈ Q0, since ε ̸∈ L(A),

• δ(q0, a) is non-empty, otherwise it is impossible to accept ab. Further, q1 /∈ δ(q0, a), otherwise it
is possible to accept a. Hence, δ(q0, a) = {q0}.

• q1 ∈ δ(q0, b), otherwise it is impossible to accept ab.

This implies that A′ accepts b, yet b ̸∈ L(A). Therefore, no NFA with two states can accept L(A).

B) (a)

Iter. Block to split Splitter New partition

0 — — {q0, q1, q2, q3, q4}, {q5}
1 {q0, q1, q2, q3, q4} (a, {q5}) {q0, q1, q3}, {q2, q4}, {q5}
2 {q2, q4} (b, {q0, q1, q3}) {q0, q1, q3}, {q2}, {q4}, {q5}
3 {q0, q1, q3} (c, {q4}) {q0, q1}, {q3}, {q2}, {q4}, {q5}
4 {q0, q1} (c, {q2}) {q0}, {q1}, {q3}, q2, {q4}, {q5}

The CSR is P = {{q0}, {q1}, {q2}, {q3}, {q4}, {q5}}.
(b) The automaton remains unchanged.

(c) ⊇) Suppose w starts with bc and ends with a. If w = w1w2 . . . wn, then q0, q1, . . . , q2, . . .︸ ︷︷ ︸
n−3 times

, q5 is a valid

accepting run for w.

⊆) Let w ∈ L(B). Note that every outgoing edge from q0 is labelled by a b and goes to either q1 or
q3 and every outgoing edge from both q1 and q3 is labelled by a c. It follows that any path from q0 to
q5 must involve reading a bc at the beginning. Further, all the incoming edges to q5 are labelled by
an a. It follows that any path from q0 to q5 must involve reading an a at the end. Since w ∈ L(B),
it then follows that w must begin with bc and end with a.

(d) No. The following NFA with four states accepts the same language.

b c

a, b, c

a

Solution 4.2

(a) The trap state is omitted for the sake of readability:

L

La

Lb

Laa

Laaa

Lab

Lba

Lbb

Lbbb

Laaaa

a

b

a

b

a

b

a

b

a

b

a

b

(b) We have L2 = {aaaa, abba, baab, bbbb}. We compute the residuals Lw for all words w by increasing length
of w.

• |w| = 0: Lε = {aaaa, abba, baab, bbbb}.
• |w| = 1: La = {aaa, bba} and Lb = {aab, bbb}.
• |w| = 2: Laa = {aa}, Lab = {ba}, Lba = {ab} and Lbb = {bb}.
• |w| = 3: Laaa = {a} = Labb, and Lbaa = {b} = Lbbb.

• |w| ≥ 4: Lw =

{
{ε} if w ∈ Lk,

∅ otherwise.

(c) Notice that Lk+1 is simply aLka+ bLkb for any k ≥ 2. Using this observation, we generalize the construc-
tion given in (a) for k = 2, by induction on k. The base case of k = 2 has been done already. Suppose
we have already constructed Ak = (Qk, {a, b, }, δk, qk0 , qkf) with the property that it has exactly one initial
state, one final state and one trap state trapk (Note that A2 satisfies this property). We now construct
Ak+1 = (Qk+1, {a, b, }, δk+1, q

k+1
0 , qk+1

f) as follows:

The set of statesQk+1 is taken to be {qk+1
0 , qk+1

f , trapk+1}∪((Qk\{trapk})×{1, 2}), where qk+1
0 , qk+1

f , trapk+1

are three fresh states. Intuitively we add a fresh initial state, a fresh final state, a fresh trap state and
take two copies of the states of Ak while removing trapk.

The transition function δk+1 is defined as follows:

• δk+1(q
k+1
0 , a) = (qk0 , 1) and δk+1(q

k+1
0 , b) = (qk0 , 2). Intuitively, upon reading an a (resp. b) from the

initial state of Ak+1, we move to the initial state of the first (resp. second) copy of Ak.

• δk+1(q
k
f , a) = qk+1

f and δk+1(q
k
f , b) = qk+1

f . Intuitively, upon reading an a (resp. b) from the final
state of the first (resp. second) copy of Ak+1, we move to the final state of of Ak+1.

• δk+1((q, i), a) = p where p = (δk(q, a), i) if δk(q, a) ̸= trapk and otherwise p = trapk+1. Intuitively,
within a copy of Ak, we follow the transitions of Ak and stay within that copy itself if the state that
we are supposed to go to is not the trap state of Ak. Otherwise, instead of going to the trap state of
Ak, we go to the trap state of Ak+1.

Assuming that Ak recognizes Lk, we can then show that Ak+1 recognizes Lk+1. By induction, this will
show that our construction is correct.

(d) Note that if f(k) is the number of states that Ak has, (where Ak is the DFA defined in the previous
subproblem), then f(2) = 11 and f(k+1) = 2(f(k)−1)+3 = 2f(k)+1. Solving this, we get f(k) = 3·2k−1.
We claim that Ak is a minimal DFA, by induction on k. The base case of k = 2 is already done. For the
induction step, suppose p, q are two distinct states of Ak+1. We will show that LAk+1

(p) ̸= LAk+1
(q).

Notice that the initial state qk+1
0 recognizes only strings of length 2k+2 and the final state qk+1

f recognizes
only ϵ, whereas the other states of Ak+1 do not recognize any of these strings. This implies that the
languages of the initial and the final states are different from the rest. Similarly, the language of the trap
state is also different from the rest.

Hence, we can assume that p = (p′, i) and q = (q′, j) for some p′, q′ ∈ Qk and some i, j ∈ {1, 2}. If i ̸= j,
then p and q belong to different copies of Ak. Let i = 1 and j = 2. Notice that LAk+1

(p) = LAk
(p′)a and

LAk+1
(q) = LAk

(q′)b. Hence LAk+1
(p) ̸= LAk+1

(q).

The only case left is when i = j. In this case notice that LAk+1
(p) = LAk

(p′)c and LAk+1
(q) = LAk

(q′)c
where c is either a or b, depending on whether i is 1 or 2. By induction hypothesis, Ak is the minimal
DFA for Lk and so LAk

(p′) and LAk
(q′) are different. Hence LAk+1

(p) ̸= LAk+1
(q), thereby concluding

the proof.

Solution 4.3

(a) We first build the pairing accepting L(A) ∩ L(B). Note that it is not necessary to explore the implicit
trap states of A and B as they cannot lead to final states in the pairing. We obtain:

p0, q0 p1, q1 p1, q0
a

b

a, b

a

Now, we build the pairing accepting (L(A) ∩ L(B)) \ L(C), or equivalently (L(A) ∩ L(B)) ∩ L(C), from
the above automaton and C. Recall that the complement of C is the following automaton:

r0 r1

b

a

a, b

Once again, it is not necessary to explore the implicit trap states of the automaton for L(A)∩L(B). The
following automaton is the pairing accepting (L(A) ∩ L(B)) ∩ L(C):

p0, q0, r0 p1, q1, r1 p1, q0, r1
a

b

a, b

a

Since the above automaton does not contain final states, its language is empty and hence L(A)∩L(B) ⊆
L(C).

(b) This time we want to check whether L(D) \ (L(A) ∩ L(B)) is empty. That is, we need to construct
the pairing L(D) ∩ (L(A) ∩ L(B)). Thus, it is not necessary to explore the implicit trap states of the
automaton D, but it is necessary for A and B, as their trap states may be part of final states in the
pairing. First we obtain the automaton accepting (L(A) ∩ L(B)):

p0, q0 p1, q1 p1, q0

t, q1

a

b

a, b

b

a, b

a

Now, we build the pairing accepting L(D) ∩ (L(A) ∩ L(B)). We obtain:

s0, p0, q0 s1, t, q1
b

a, b

Since the above automaton contains a final state, it means that there is a word in the language L(D) \
(L(A) ∩ L(B)), that is, there is a word accepted by D, but not by A and B. For example, any word
starting with a letter b. Therefore, it is not true that L(D) ⊆ L(A) ∩ L(B).

