
Technische Universität München Winter term 2020/21
I7
Prof. J. Esparza / M. Lazić / C. Weil-Kennedy

Automata and Formal Languages — Exercise Sheet 4

Exercise 4.1

1. Build the automata Bp and Cp for the word pattern p = mammamia.

2. How many transitions are taken when reading t = mami in Bp and Cp?

3. Let n > 0. Find a text t ∈ {a, b}∗ and a word pattern p ∈ {a, b}n such that testing whether p occurs in t
takes n transitions in Bp and 2n− 1 transitions in Cp.

Exercise 4.2

In order to make pattern-matching robust to typos we want to include also “similar” words in our results. For
this we consider words with a small Levenshtein-distance (edit-distance) “similar”.

We transform a word w to a new word w′ using the following operations (with ai, b ∈ Σ):

• replace (R): a1 . . . ai−1aiai+1 . . . al → a1 . . . ai−1bai+1 . . . al

• delete (D): a1 . . . ai−1aiai+1 . . . al → a1 . . . ai−1εai+1 . . . al

• insert (I): a1 . . . ai−1aiai+1 . . . al → a1 . . . ai−1aibai+1 . . . al

The Levenshtein-distance (denoted ∆(w,w′)) of w and w′ is the minimal number of operations (R,D,I) needed
to transform w into w′. We denote with ∆L,i = {w ∈ Σ∗ | ∃w′ ∈ L.∆(w′, w) ≤ i} the language of all words
with edit-distance at most i to some word of L.

(a) Compute ∆(abcde, accd).

(b) Let p be the pattern ABBA. Construct an NFA-ε locating the pattern or variations of it with edit-
distance 1.

(c) Prove the following statement: If L is a regular language, then ∆L,n is a regular language.

Exercise 4.3

Consider transducers whose transitions are labeled by elements of (Σ ∪ {ε}) × (Σ∗ ∪ {ε}). Intuitively, each
transition reads one or zero letter and writes a word of arbitrary length. Such a transducer can be used to
perform operations on strings, e.g. upon reading "singing in the rain" it could write Singing In The

Rain.

Sketch such ε-transducers for the following operations, each of which is informally defined by means of three
examples. For each example, when the transducer reads the string on the left, it should write the string on the
right. You may assume that the alphabet Σ consists of {a, b, . . . , z, A,B, . . . , Z}, a whitespace symbol, and an
end-of-line symbol. Moreover, you may assume that every string ends with an end-of-line symbol and contains
no other occurrence of the end-of-line symbol.

(a)

Input Output
Automata and Formal Languages AFL

Technical University of Munich TUM

Max Planck Institute MPI

(b) For this exercise, Σ is extended with {, , .}.

Input Output
Ada Lovelace Lovelace, A.

Alan Turing Turing, A.

Donald Knuth Knuth, D.

(c) For this exercise, Σ is extended with {0, 1, . . . , 9, (,),+}. We want to transform phone-numbers into a
normal form, where they are prefixed with a country code.

Input Output
004989273452 +49 89 273452

(00)4989273452 +49 89 273452

273452 +49 89 273452

2 7 3 4 5 2 +49 89 273452

498949 +49 89 498949

+49 89 498949 +49 89 498949

Exercise 4.4

Let val : {0, 1}∗ → N be the function that associates to every word w ∈ {0, 1}∗ the number val(w) represented
by w in the least significant bit first encoding.

(a) Give a transducer that doubles numbers, i.e. a transducer accepting

L1 = {[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = 2 · val(x)} .

(b) Give an algorithm that takes k ∈ N as input, and that produces a transducer Ak accepting

Lk =
{

[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = 2k · val(x)
}
.

Hint: use (a) and consider operations seen in class.

(c) Give a transducer for the addition of two numbers, i.e. a transducer accepting

{[x, y, z] ∈ ({0, 1} × {0, 1} × {0, 1})∗ | val(z) = val(x) + val(y)} .

(d) For every k ∈ N>0, let

Xk = {[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = k · val(x)} .

Sketch an algorithm that takes as input transducers A and B, accepting respectively Xa and Xb for some
a, b ∈ N>0, and that produces a transducer C accepting Xa+b.

(e) Let k ∈ N>0. Using (b) and this, how can you build a transducer accepting Xk?

(f) Show that the following language has infinitely many residuals, and hence that it is not regular:{
[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = val(x)2

}
.

Solution 4.1

1. Ap :

0 1 2 3 4 5 6 7 8

a, i,m

m a m m a m i a

Bp :

0 0, 1 0, 2 0, 1, 3 0, 1, 4 0, 2, 5 0, 1, 3, 6 0, 7 0, 8

a, i

m a

m

i

m

a, i

m

a

i

a

m

i

m

a, i

i

a

m

a

i

m

a, i

m

Cp :

0 1 2 3 4 5 6 7 8

a, i;R

m;R a;R

i,m;S

m;R

a, i;S

m;R

a, i;S

a;R

i,m;S

m;R

a, i;S

i;R

a,m;S

a;R

i,m;S

a, i,m;S

2. Four transitions taken in Bp: {0}
m−→ {0, 1} a−→ {0, 2} m−→ {0, 1, 3} i−→ {0}.

Six transitions taken in Cp: 0
m−→ 1

a−→ 2
m−→ 3

i−→ 1
i−→ 0

i−→ 0.

3. t = an−1b and p = an. The automata Bp and Cp are as follows:

Bp:

0 0, 1 0, 1, 2 0, 1, . . . , n
a a

a

b

b

b

b

a

Cp:

0 1 2 n− 1 n
a;R a;R a;R

b;R

b;S b;S a, b;S

a;R

The runs over t on Bp and Cp are respectively:

{0} a−→ {0, 1} a−→ {0, 1, 2} a−→ · · · a−→ {0, 1, . . . , n− 1} b−→ {0} ,

and
0
a−→ 1

a−→ 2
a−→ · · · a−→ (n− 1)

b−→ (n− 2)
b−→ (n− 3)

b−→ · · · b−→ 0 .

Solution 4.2

(a) ∆(abcde, accd) = 2.

(b) We use the automaton Ap for pattern p = ABBA and duplicate it carefully in order to allow up to one
“mistake”.

q0 q1 q2 q3 q4

p0 p1 p2 p3 p4

A,B

A B B A

A B B A

A,B A,B A,B A,B A,B
ε,B ε,A ε,A ε,B

(c) Let M = (Q,Σ, δ, q0, F) be a DFA for L. We obtain an NFA-ε N for ∆L,n by adding n “error-levels”.
Formally:

N = (Q× [0, n],Σ, δ′, (q0, 0), F × [0, n])

with

δ′ = {((q, i), a, (p, i)) | q, p ∈ Q ∧ i ≤ n ∧ a ∈ Σ ∧ δ(q, a) = p} no change

∪ {((q, i), ε, (p, i+ 1)) | q, p ∈ Q ∧ i < n ∧ (∃a ∈ Σ. δ(q, a) = p)} delete

∪ {((q, i), a, (q, i+ 1)) | q ∈ Q ∧ i < n ∧ a ∈ Σ} insert

∪ {((q, i), b, (p, i+ 1)) | q, p ∈ Q ∧ i < n ∧ (∃a ∈ Σ \ {b}. δ(q, a) = p)} replace

Let us prove that ∆L,n = L(N).

∆L,n ⊆ L(N). If w ∈ ∆L,n, it means that there is w′ ∈ L such that ∆(w′, w) = k ≤ n, or in other words,
starting from the word w′, we can obtain w by applying k “mistakes” (delete, insert, replace). As
w′ ∈ L (accepted by M) and as the 0-level of N is a copy of M , note that w′ has a run in N that

reaches a final state (qf , 0). By construction of the automaton N , there is a run of the word w that
follows the run of w′ where each ”mistake” can be seen as moving to the next error-level, using the
corresponding transition from δ′ (delete, insert, replace) depending on a mistake. It is easy to see
that if the word w′ reaches a final state (qf , 0) in N , then w can reach (qf , k), and thus w ∈ L(N).

L(N) ⊆ ∆L,n. If w ∈ L(N), this means there is a run of w in N that reaches a final state (qf , k) ∈
F × [0, n]. Intuitively, for each transition of that run that changes the level, we modify w so that it
“stays in the same level”. Formally, we check the nature of the transition that changes the level and
modify w as follows:
(i) If (p, i)

a−→ (p, i+ 1) is an insert edge, this occurrence of the letter a will be removed from w.

(ii) If (p, i)
a−→ (q, i + 1) is a replace edge, and there exists a (p, i)

b−→ (q, i) edge, for some letter b,
then we replace this occurrence of a in w with b.
(iii) If (p, i)

ε−→ (q, i+ 1) is a delete edge, and there exists a (p, i)
a−→ (q, i) edge, for some letter a, then

we add the letter a at this place in w.

Denote the obtained word by w′. It is easy to see that w′ is obtained from w by applying mistakes
(delete, insert, replace) k times, as in the run of w there are exactly k transitions that change the
level. Therefore, ∆(w′, w) ≤ k ≤ n. Moreover, it is easy to see that if w reaches (qf , k), then w′

reaches (qf , 0). As the 0-level is a copy of M , then w′ ∈ L. To summarize, there exists w′ ∈ L such
that ∆(w′, w) ≤ n, that is, w ∈ ∆L,n.

Solution 4.3

(a)

[A,A], [B,B], . . . , [Z,Z]

[a, ε], [b, ε], . . . , [z, ε], [, ε]

[EOL, EOL]

(b)

...

A

Z

A′

...

Z ′

[A, ε]

[Z, ε]

[a, ε], [b, ε], . . . , [z, ε]

[a, ε], [b, ε], . . . , [z, ε]

[, ε]

[, ε]

[A,A], [B,B], . . . , [Z,Z]
[a, a], [b, b], . . . , [z, z]

[A,A], [B,B], . . . , [Z,Z]
[a, a], [b, b], . . . , [z, z]

[EOL, , A.EOL]

[EOL, , Z.EOL]

(c)

[(, ε] [0, ε] [0, ε]

[), ε]

[0, ε]
[0, ε] [4, +4] [9, 9] [8, 8] [9, 9]

[0, 0], [1, 1], . . . , [9, 9], [, ε]

[EOL, EOL]

[1, +49 89 1], . . . , [9, +49 89 9]

Solution 4.4

(a) Let [x1x2 · · ·xn, y1y2 · · · yn] ∈ ({0, 1} × {0, 1})n where n ≥ 2. Multiplying a binary number by two shifts
its bits and adds a zero. For example, the word [

10110
01011

]
belongs to the language since it encodes [13, 26]. Thus, we have val(y) = 2 · val(x) if and only if y1 = 0,
xn = 0, and yi = xi−1 for every 1 < i ≤ n. From this observation, we construct a transducer that

• tests whether the first bit of y is 0,

• tests whether y is consistent with x, by keeping the last bit of x in memory,

• accepts [x, y] if the last bit of x is 0.

Note that words [ε, ε] and [0, 0] both encode the numerical values [0, 0]. Therefore, they should also be
accepted since 2 · 0 = 0. We obtain the following transducer:

0

1

[
0
0

]

[
1
0

]

[
0
0

]

[
1
0

][
0
1

]

[
1
1

]

F The initial state can be merged with state 0 as they have the same outgoing transitions.

(b) We construct A0 as the following transducer accepting {[x, y] ∈ ({0, 1} × {0, 1})∗ : y = x}:

[
0
0

]
,

[
1
1

]

Let A1 be the transducer obtained in (a). For every k > 1, we define Ak = Join(Ak−1, A1). A simple
inductions show that L(Ak) = Lk for every k ∈ N.

(c) We construct a transducer that computes the addition by keeping the current carry bit. Consider some
tuple [x, y, z] ∈ {0, 1}3 and a carry bit r. Adding x, y and r leads to the bit

z = (x+ y + r) mod 2. (1)

Moreover, it yields a new carry bit r′ such that r′ = 1 if x+y+r > 1 and r′ = 0 otherwise. The folllowing
table identifies the new carry bit r′ of the tuples that satisfy (??):0

0
0

 0
0
1

 0
1
0

 0
1
1

 1
0
0

 1
0
1

 1
1
0

 1
1
1

r = 0 0 x x 0 x 0 1 x
r = 1 x 0 1 x 1 x x 1

We construct our transducer from the above table:

q0

q1

11
0

 00
1

00
0

 ,
01
1

 ,
10
1

01
0

 ,
10
0

 ,
11
1

(d) We construct a transducer C that, intuitively, feeds its input to both A and B, and then feed the respective
outputs of A and B to a transducer performing addition. More formally, let A = (QA, {0, 1}, δA, q0A, FA),
B = (QB , {0, 1}, δB , q0B , FB), and let D = (QD, {0, 1}, δD, q0D, FD) be the transducer for addition ob-
tained in (c). We define C as C = (QC , {0, 1}, δC , q0C , FC) where

• QC = QA ×QB ×QD,

• q0C = (q0A, q0B , q0D),

• FC = FA × FB × FD,

and

δC((p, p′, p′′), [x, z]) = {(q, q′, q′′) : ∃y, y′ ∈ {0, 1} s.t. p
[x,y]−−−→A q, p

′ [x,y′]−−−→B q′ and p′′
[y,y′,z]−−−−→D q′′}.

(e) Let ` = dlog2(k)e. There exist c0, c1, . . . , c` ∈ {0, 1} such that k = c0 · 20 + c1 · 21 + · · · + c` · 2`. Let
I = {0 ≤ i ≤ ` : ci = 1}. Note that k =

∑
i∈I 2i. Therefore, we may use transducer Ai from (b) for each

i ∈ I, and combine these transducers using (d).

(f) For every n ∈ N>0, let

un =

[
0n1
0n0

]
and vn =

[
0n−10
0n−11

]
.

Let i, j ∈ N>0 be such that i 6= j. We claim that Lui 6= Luj . We have

uivi =

[
0i10i

02i1

]
and ujvi =

[
0j10i

0i+j1

]
.

Therefore, uivi encodes [2i, 22i], and uivj encodes [2j , 2i+j]. We observe that uivi belongs to the language
since 22i = (2i)2. However, ujvi does not belong to the language since 2i+j 6= 22j = (2j)2.

