Prof. J. Esparza / A. R. Balasubramanian / M. Lazić

Automata and Formal Languages — Exercise Sheet 3

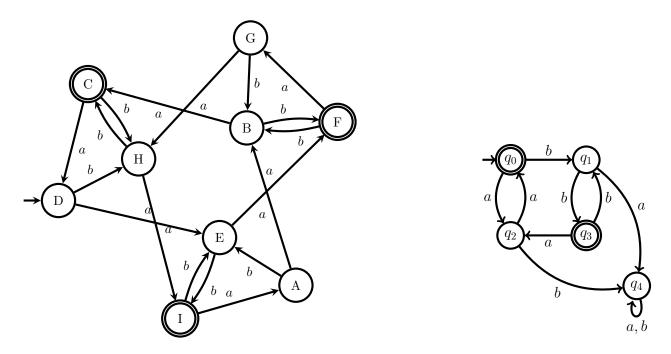
Exercise 3.1

Analyse the residuals of the following languages. If there are finitely many of them, determine them; otherwise prove that there are infinitely many of them.

- (a) $(a + bbc)^*$ over $\Sigma = \{a, b, c\},\$
- (b) $(aa)^*$ over $\Sigma = \{a, b\}$,
- (c) $\{a^n b^{n+1} \mid n \ge 0\}$ over $\Sigma = \{a, b\},\$
- (d) $\{a^{2^n} \mid n \ge 0\}$ over $\Sigma = \{a\}$.

Exercise 3.2

Let A and B be respectively the following DFAs:



- (a) Compute the language partitions of A and B.
- (b) Construct the quotients of A and B with respect to their language partitions.
- (c) Give regular expressions for L(A) and L(B).

Exercise 3.3

Given $n \in \mathbb{N}$, let MSBF(n) be the set of most-significant-bit-first encodings of n, i.e., the words that start with an arbitrary number of leading zeros, followed by n written in binary. For example:

$$MSBF(3) = 0*11$$
 and $MSBF(9) = 0*1001$ $MSBF(0) = 0*$

Similarly, let LSBF(n) denote the set of *least-significant-bit-first* encodings of n, i.e., the set containing for each word $w \in MSBF(n)$ its reverse. For example:

LSBF(6) =
$$0110^*$$
 and LSBF(0) = 0^*

For any $n \ge 2$, let $M_n = \{w \in \{0,1\}^* \mid w \in MSBF(k) \text{ and } k \text{ is a multiple of } n\}$ and $L_n = \{w \in \{0,1\}^* \mid w \in LSBF(k) \text{ and } k \text{ is a multiple of } n\}$.

In the following, let p > 2 be any prime number.

- a) Prove that M_p and L_p have at least p many residuals.
- b) Give the minimal DFA A_p (with p states) for the language M_p .
- c) Prove that the NFA obtained by reversing the transitions of A_p and swapping the initial and final states is a DFA. Conclude that the minimal DFA for L_p has p states.

Solution 3.1

- (a) For $(a + bbc)^*$. We give the residuals as regular expressions: $(a + bbc)^*$ (residual with respect to a); $bc(a + bbc)^*$ (residual with respect to b); \emptyset (residual with respect to c). All other residuals are equal to one of these four.
- (b) For $(aa)^*$. We give the residuals as regular expressions: $(aa)^*$ (residual of ε); $a(aa)^*$ (residual of a); \emptyset (residual of b). All other residuals are equal to one of these three.
- (c) For $\{a^nb^{n+1} \mid n \geq 0\}$. Note that for any $0 \leq i < j$, a^ib^{i+1} belongs to the language, but a^jb^{i+1} does not belong to the language. This implies that a^i and a^j have different residuals and so there are infinitely many residuals.
- (d) For $\{a^{2^n} \mid n \geq 0\}$. Note that for any $0 \leq i < j$, $a^{2^i}a^{2^i}$ belongs to the language because $2^i + 2^i = 2^{i+1}$, but $a^{2^i}a^{2^j}$ does not belong to the language because $2^j < 2^i + 2^j < 2^j + 2^j = 2^{j+1}$. This implies that a^{2^i} and a^{2^j} have different residuals and so there are infinitely many residuals.

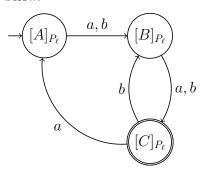
Solution 3.2

A) (a)

Iter.	Block to split	${f Splitter}$	New partition
0	_	_	${C, F, I}, {A, B, D, E, G, H}$
1	$\{A,B,D,E,G,H\}$	$(b, \{A, B, D, E, G, H\})$	${C, F, I}, {B, E, H}, {A, D, G}$
3	none, partition is stable	_	_

The language partition is $P_{\ell} = \{\{A, D, G\}, \{B, E, H\}, \{C, F, I\}\}.$

(b) The minimal automaton is given below:



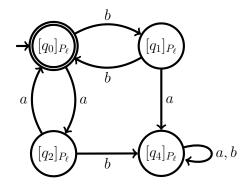
(c)
$$\Sigma^2(a\Sigma^2 + b\Sigma)^*$$

B) (a)

Iter.	Block to split	${f Splitter}$	New partition
0	_	_	${q_0, q_3}, {q_1, q_2, q_4}$
1	$\{q_1,q_2,q_4\}$	$(b, \{q_1, q_2, q_4\})$	${q_0, q_3}, {q_1}, {q_2, q_4}$
2	$\{q_2,q_4\}$	$(a,\{q_0,q_3\})$	${q_0, q_3}, {q_1}, {q_2}, {q_4}$
3	none, partition is stable	_	_

The language partition is $P_{\ell} = \{\{q_0, q_3\}, \{q_1\}, \{q_2\}, \{q_4\}\}.$

(b) The minimal automaton is given below:



(c) $(aa + bb)^*$ or $((aa)^*(bb)^*)^*$.

Solution 3.3

(a) For a word $w \in \{0,1\}^*$, let msbf(w) denote the number n such that $w \in MSBF(n)$. Similarly, let lsbf(w) denote the number n such that $w \in LSBF(n)$. Note that the functions msbf and lsbf satisfy the following identities.

$$\operatorname{msbf}(uv) = 2^{|v|} \cdot \operatorname{msbf}(u) + \operatorname{msbf}(v) \tag{1}$$

$$lsbf(uv) = lsbf(u) + 2^{|u|} \cdot lsbf(v)$$
(2)

First, let us show that M_p has at least p many residuals. For every $0 \le i < p$, let u_i be a word such that $\operatorname{msbf}(u_i) = i$ and $|u_i| = p - 1$. Note that such an u_i exists since the smallest encoding of i has at most p-1 bits, and it can be extended to length p-1 by padding with zeros on the left. Let $0 \le k < p$, and let $\ell = (p-i) \mod p$. We have:

Let $0 \le i < j < p$. We have $u_i u_\ell \in M_p$ since $\mathrm{msbf}(u_i u_\ell) \equiv i - i \bmod p \equiv 0 \bmod p$, but we have $u_j u_\ell \not\in M_p$ since $\mathrm{msbf}(u_j u_\ell) \equiv j - i \bmod p \not\equiv 0 \bmod p$. Therefore, the u_i -residual and u_j -residual of M_p are distinct. It follows that M_p has at least p many residuals.

To show that L_p has at least p many residuals, we use the same technique, except that we now let u_i be a word such that lsbf(w) = i and $|u_i| = p - 1$ and we use equation 2 instead of 1.

(b) We now give a DFA A_p for M_p with p states. By the previous subproblem, A_p has to be the minimal DFA for M_p . A_p is given by $A_p = (Q_p, \{0, 1\}, \delta_p, 0, \{0\})$ where

$$Q_p = \{0, 1, \dots, p-1\},$$

$$\delta_p(q, b) = (2q + b) \bmod p \text{ for every } q \in Q_p \text{ and } b \in \{0, 1\}.$$

By using equation 1 and by induction on the length of w, we can show that $\delta_p(0, w) = q$ if and only if $\mathrm{msbf}(w) \equiv q \bmod p$. It will then follow that A_p recognizes M_p .

(c) Let $B_p = (Q_p, \{0, 1\}, \delta'_p, 0, \{0\})$ be the NFA obtained by reversing the transitions of A_p and then swapping its initial and final states. Note that $\delta'_p(q, b) = \{q' : \delta_p(q', b) = q\}$. Hence, to show that B_p is a DFA, it is enough to show that for every $b \in \{0, 1\}$, the function $\delta^b_p : q \mapsto \delta_p(q, b)$ is bijective.

First, for every $b \in \{0,1\}$, we will show that δ_p^b is injective. Fix a $b \in \{0,1\}$. Note that $\delta_p^b(q) = (2q+b) \mod p$. Suppose $2q_1+b \equiv (2q_2+b) \mod p$ for some $q_1,q_2 \in Q_p$. Then $2(q_1-q_2) \equiv 0 \mod p$ and since p>2 is a prime, this would imply that $q_1=q_2$. Hence, the function δ_p^b is indeed injective.

Further, note that any injective function from a finite set to itself must also be a surjective function, i.e., the range of the function must be the entire finite set. It follows then that δ_p^b is bijective for every $b \in \{0, 1\}$ and this concludes the proof.