Automata and Formal Languages - Exercise Sheet 3

Exercise 3.1

For each of the following languages, determine if the number of its residuals is finite or not. If they are finite, state all of the residuals; Otherwise, give a proof that the number of residuals is infinite.
(a) $\{w \mid w$ does not have any two consecutive occurrences of $a\}$ over $\Sigma=\{a, b\}$
(b) $\{w \mid w \neq u u$ for any word $u\}$ over $\Sigma=\{a, b\}$
(c) $\left\{a^{2 n} \mid n \geq 0\right\}$ over $\Sigma=\{a, b\}$
(d) $\left\{a^{n^{2}} \mid n \geq 0\right\}$ over $\Sigma=\{a\}$

Exercise 3.2

For any natural number $n \geq 2$, let $M_{n}=\left\{w \in\{0,1\}^{*} \mid w \in \operatorname{MSBF}(k)\right.$ and k is a multiple of $\left.n\right\}$. (For the definition of the MSBF notation, see Tutorial sheet 1).
(a) Show that M_{3} and M_{5} have exactly 3 and 5 residuals respectively.
(b) Show that M_{4} has strictly less than 4 residuals.
(c) What is the number of residuals that M_{p} has when p is a prime number? Can you assign an intuitive meaning behind each residual?

Exercise 3.3

Let $\Sigma=\{a, b\}$. Let L_{k} be the language $\left\{w \# w^{R}: w \in \Sigma^{k}\right\}$, where w^{R} is the reverse of w, e.g. $(a b c)^{R}=c b a$.
(a) Construct A_{2}, the minimal DFA such that $\mathcal{L}\left(A_{2}\right)=L_{2}$.
(b) What are the residuals of L_{2} ? Assign them to the states of the DFA you gave for (a).
(c) Give a construction for a DFA that accepts L_{k}.
(d) How many states does the minimal DFA for L_{k} contain, for $k \geq 2$?

Exercise 3.4

\star We introduce a new notion of automata called alternating automata. An alternating automaton is a tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ which is similar to the definition of a non-deterministic automaton, except now the finite set of states Q is partitioned into existential and universal states. We say that an existential state q accepts a word w (i.e., $w \in L(q))$ if $w=\varepsilon$ and $q \in F$ or $w=a w^{\prime}$ and there exists a transition $\left(q, a, q^{\prime}\right)$ such that q^{\prime} accepts w^{\prime}. Similarly, we say that a universal state q accepts a word w if $w=\varepsilon$ and $q \in F$ or $w=a w^{\prime}$ and for every transition $\left(q, a, q^{\prime}\right)$ the state q^{\prime} accepts w^{\prime}. The language recognized by an alternating automaton is the set of words accepted by its initial state.

Give an algorithm that transforms an alternating automaton into a DFA recognizing the same language.

Solution 3.1

- For $\{w \mid w$ does not have any two consecutive occurrences of $a\}$: Notice that this is the same as the language given by the regular expression $(a b+b)^{*}$. We give the residuals as regular expressions: $(a b+b)^{*}$ (residual of $\varepsilon) ; b(a b+b)^{*}$ (residual of $\left.a\right) ; \emptyset$ (residual of $a a$). All other residuals are equal to one of these three.
- For $L=\{w \mid w \neq u u$ for any word $u\}$ over $\Sigma=\{a, b\}$: The number of residuals is infinite. To prove this, notice that if $m<n$, then the words $a^{m} b$ and $a^{n} b$ have different residues over M, because $a^{m} b a^{m} b \notin L$ but $a^{n} b a^{m} b \in L$.
- For $\left\{a^{2 n} \mid n \geq 0\right\}$: We give the residuals as regular expressions: $(a a)^{*}$ (residual of ε); $a(a a)^{*}$ (residual of $a) ; \emptyset$ (residual of b). All other residuals are equal to one of these three.
- For $\left\{a^{n^{2}} \mid n \geq 0\right\}$: Each word has a distinct residual. Indeed, let a^{i} and a^{j} be two words with $i<j$. Let d_{i} (resp. d_{j}) be the smallest number such that $i+d_{i}$ (resp. $j+d_{j}$) is a perfect square. If $d_{i}<d_{j}$ then $a^{i+d_{i}} \in L$, but $a^{j+d_{i}} \notin L$. Similarly for the case of $d_{i}>d_{j}$. Suppose $d_{i}=d_{j}$. Then let e_{i} (resp. e_{j}) be the second smallest number such that $i+e_{i}$ (resp. $j+e_{j}$) is a perfect square. We claim that $e_{i} \neq e_{j}$.
Indeed, by assumption $i+d_{i}$ and $j+d_{i}$ are both perfect squares which we shall denote respectively by n^{2} and m^{2}. Since $i<j, n \neq m$. Then, notice that $(n+1)^{2}-n^{2}=2 n+1$ and $(m+1)^{2}-m^{2}=2 m+1$. Hence e_{i} must be $d_{i}+2 n+1$ and e_{j} must be $d_{i}+2 m+1$. It then follows that $e_{i} \neq e_{j}$ and so we can use the same argument as for the case of $d_{i} \neq d_{j}$ to conclude that a^{i} and a^{j} have different residuals.

Solution 3.2

- We have already seen in the first tutorial sheet that there is a DFA for M_{3} with 3 states. The same DFA can be generalized to get a DFA with 5 states for M_{5}. (See the solution for the last subproblem of this problem for an explicit construction of such a DFA). This shows that M_{3} and M_{5} can have at most 3 and 5 residuals respectively.
Notice that M_{3} has different residuals with respect to 0,1 and 10 . Indeed, $0 \varepsilon \in M_{3}$ while $1 \varepsilon, 10 \varepsilon \notin M_{3}$ and $11 \in M_{3}$ while $101 \notin M_{3}$. Similarly, we can show that M_{5} has different residuals with respect to 0,1 , 10, 11 and 100. This shows that M_{3} and M_{5} have exactly 3 and 5 residuals respectively.
- Here is a DFA for M_{4} with 3 states. This is the same DFA as given in the first tutorial sheet except both the final states are merged into a single state.

This shows that the number of residuals for M_{4} must be at most 3 .

- If p is a prime number, then the number of residuals of M_{p} must be p. Indeed, we can generalize the DFA given in the first tutorial sheet for M_{3} to get a DFA with p states for M_{p}. This DFA is given by $A_{p}=\left(Q_{p},\{0,1\}, \delta_{p}, 0,\{0\}\right)$ where

$$
\begin{aligned}
Q_{p} & =\{0,1, \ldots, p-1\} \\
\delta_{p}(q, b) & =(2 q+b) \bmod p \text { for every } q \in Q_{p} \text { and } b \in\{0,1\}
\end{aligned}
$$

Hence, M_{p} has at most p residuals. We now show that M_{p} has at least p residuals. For a word $w \in\{0,1\}^{*}$, let $\operatorname{msbf}(w)$ denote the number n such that $w \in \operatorname{MSBF}(n)$.
For every $0 \leq i<p$, let u_{i} be a word such that $\operatorname{msbf}(w)=i$ and $\left|u_{i}\right|=p-1$. Note that such an u_{i} exists since the smallest encoding of i has at most $p-1$ bits, and it can be extended to length $p-1$ by padding with zeros on the left. Let us show that the u_{i}-residual and u_{j}-residual of M_{p} are distinct for every $0 \leq i, j<p$ such that $i \neq j$. Let $0 \leq k<p$, and let $\ell=(p-i) \bmod p$. We have:

$$
\begin{aligned}
\operatorname{msbf}\left(u_{k} u_{\ell}\right) & =2^{\left|u_{\ell}\right|} \cdot \operatorname{msbf}\left(u_{k}\right)+\operatorname{msbf}\left(u_{\ell}\right) \\
& =2^{p-1} \cdot k+((p-i) \bmod p) \\
& \equiv k+((p-i) \bmod p) \\
& \equiv k+p-i \\
& \equiv k-i
\end{aligned}
$$

$$
\equiv k+((p-i) \bmod p) \quad \text { (by Fermat's little theorem) }
$$

Let $0 \leq i, j<p$ be such that $i \neq j$. We have $u_{i} u_{\ell} \in M_{p}$ since $\operatorname{msbf}\left(u_{i} u_{\ell}\right) \equiv i-i \equiv 0$, but we have $u_{j} u_{\ell} \notin M_{p}$ since $\operatorname{msbf}\left(u_{j} u_{\ell}\right) \equiv j-i \not \equiv 0$. Therefore, the u_{i}-residual and u_{j}-residual of M_{p} are distinct.

Solution 3.3

(a) The trap state is omitted for the sake of readability:

(b) We have $L_{2}=\{a a \# a a, a b \# b a, b a \# a b, b b \# b b\}$. We compute the residuals L^{w} for all words w by increasing length of w.

- $|w|=0: L^{\varepsilon}=\{a a \# a a, a b \# b a, b a \# a b, b b \# b b\}$.
- $|w|=1: L^{a}=\{a \# a a, b \# b a\}$ and $L^{b}=\{a \# a b, b \# b b\}$.
- $|w|=2: L^{a a}=\{\# a a\}, L^{a b}=\{\# b a\}, L^{b a}=\{\# a b\}$ and $L^{b b}=\{\# b b\}$.
- $|w|=3: L^{a a \#}=\{a a\}, L^{a b \#}=\{b a\}, L^{b a \#}=\{a b\}$ and $L^{b b \#}=\{b b\}$.
- $|w|=4: L^{a a \# a}=\{a\}=L^{a b \# b}$, and $L^{b a \# a}=\{b\}=L^{b b \# b}$.
- $|w| \geq 5: L^{w}= \begin{cases}\{\varepsilon\} & \text { if } w \in L_{k}, \\ \emptyset & \text { otherwise. }\end{cases}$
(c) Notice that L_{k+1} is simply $a L_{k} a+b L_{k} b$ for any $k \geq 2$. Using this observation, we generalize the construction given in (a) for $k=2$, by induction on k. The base case of $k=2$ has been done already. Suppose we have already constructed $A_{k}=\left(Q_{k},\{a, b, \#\}, \delta_{k}, q_{0}^{k}, q_{f}^{k}\right)$ with the property that it has exactly one initial state and one final state and one trap state trap_{k} (Note that A_{2} satisfies this property). We now construct $A_{k+1}=\left(Q_{k+1},\{a, b, \#\}, \delta_{k+1}, q_{0}^{k+1}, q_{f}^{k+1}\right)$ as follows:
The set of states Q_{k+1} is taken to be $\left\{q_{0}^{k+1}, q_{f}^{k+1}, \operatorname{trap}_{k+1}\right\} \cup\left(\left(Q_{k} \backslash\left\{\operatorname{trap}_{k}\right\}\right) \times\{1,2\}\right)$, where $q_{0}^{k+1}, q_{f}^{k+1}, \operatorname{trap}_{k+1}$ are three fresh states. Intuitively we add a fresh initial state, a fresh final state, a fresh trap state and take two copies of the states of A_{k} while removing trap ${ }_{k}$.
The transition function δ_{k+1} is defined as follows:
- $\delta_{k+1}\left(q_{0}^{k+1}, a\right)=\left(q_{0}^{k}, 1\right)$ and $\delta_{k+1}\left(q_{0}^{k+1}, b\right)=\left(q_{0}^{k}, 2\right)$. Intuitively, upon reading an a (resp. $\left.b\right)$ from the initial state of A_{k+1}, we move to the initial state of the first (resp. second) copy of A_{k}.
- $\delta_{k+1}\left(q_{f}^{k}, a\right)=q_{f}^{k+1}$ and $\delta_{k+1}\left(q_{f}^{k}, b\right)=q_{f}^{k+1}$. Intuitively, upon reading an a (resp. b) from the final state of the first (resp. second) copy of A_{k+1}, we move to the final state of of A_{k+1}.
- $\delta_{k+1}((q, i), a)=p$ where $p=\left(\delta_{k}(q, a), i\right)$ if $\delta_{k}(q, a) \neq \operatorname{trap}_{k}$ and otherwise $p=\operatorname{trap}_{k+1}$. Intuitively, within a copy of A_{k}, we follow the transitions of A_{k} and stay within that copy itself if the state that we are supposed to go to is not the trap state of A_{k}. Otherwise, instead of going to the trap state of A_{k}, we go to the trap state of A_{k+1}.

We can now prove by induction on the length of the word that A_{k+1} is a DFA for L_{k+1}.
(d) Note that if $f(k)$ is the number of states that A_{k} has, (where A_{k} is the DFA defined in the previous subproblem), then $f(2)=15$ and $f(k+1)=2(f(k)-1)+3=2 f(k)+1$. Solving this, we get $f(k)=2^{k+2}-1$. We claim that A_{k} is a minimal DFA, by induction on k. The base case of $k=2$ is already done. For the induction step, suppse p, q are two distinct states of A_{k+1}. We will show that $L_{A_{k+1}}(p) \neq L_{A_{k+1}}(q)$.
Notice that the initial state q_{0}^{k+1} recognizes only strings of length $2 k+3$ and the final state q_{f}^{k+1} recognizes only ϵ, whereas the other states of A_{k+1} do not recognize any of these strings. This implies that the languages of the initial and the final states are different from the rest. Similarly, the language of the trap state is also different from the rest.
Hence, we can assume that $p=\left(p^{\prime}, i\right)$ and $q=\left(q^{\prime}, j\right)$ for some $p^{\prime}, q^{\prime} \in Q_{k}$ and some $i, j \in\{1,2\}$. If $i \neq j$, then p and q belong to different copies of A_{k}. Let $i=1$ and $j=2$. Notice that $L_{A_{k+1}}(p)=L_{A_{k}}\left(p^{\prime}\right) a$ and $L_{A_{k+1}}(q)=L_{A_{k}}\left(q^{\prime}\right) b$. Hence $L_{A_{k+1}}(p) \neq L_{A_{k+1}}(q)$.
The only case left is when $i=j$. In this case notice that $L_{A_{k+1}}(p)=L_{A_{k}}\left(p^{\prime}\right) c$ and $L_{A_{k+1}}(q)=L_{A_{k}}\left(q^{\prime}\right) c$ where c is either a or b, depending on whether i is 1 or 2 . By induction hypothesis, A_{k} is the minimal DFA for L_{k} and so $L_{A_{k}}\left(p^{\prime}\right)$ and $L_{A_{k}}\left(q^{\prime}\right)$ are different. Hence $L_{A_{k+1}}(p) \neq L_{A_{k+1}}(q)$, thereby concluding the proof.

Solution 3.4

Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be the given alternating finite-state automaton (AFA) and let $Q=Q_{\exists} \cup Q_{\forall}$ be a partition of Q into existential and universal states.

Notice that when Q_{\forall} is empty, this AFA is just an NFA and so we can use the powerset construction to get a corresponding DFA. Further, notice that when Q_{\exists} is empty, we can still perform the powerset construction except we now set the set of final states to be $\{T: T \subseteq F\}$, instead of the usual $\{T: T \cap F \neq \emptyset\}$ as in the case of NFA.

Now we consider the general case. From the given AFA A, we will construct an NFA recognizing the same language. This suffices, because we know how to translate an NFA into a DFA. To construct an equivalent NFA, we once again do a powerset construction $A^{\prime}=\left(2^{Q}, \Sigma, \delta^{\prime},\left\{q_{0}\right\}, F^{\prime}\right)$, except now the transition function $\delta^{\prime}: 2^{Q} \times \Sigma \rightarrow 2^{2^{Q}}$ is slightly more complex: We let $T \in \delta^{\prime}(S, a)$ iff $T \subseteq \cup_{s \in S} \delta(s, a)$ and T satisfies the following two constraints:

- For every existential state p of S, there is exactly one state q of $\delta(p, a)$ such that $q \in T$
- For every universal state p of S, for every state q of $\delta(p, a)$, we have $q \in T$

Intuitively, for the universal states, the transition relation is defined in a manner which is similar to the usual powerset construction, because we want to take into account all possible transitions from that state. But for the existential states, we allow exactly one successor in the transition relation, because we only want to check if there is a transition from this state which can lead to a final state.

We finally set F^{\prime} to be $F^{\prime}:=\{T: T \subseteq F\}$. We can now argue by induction on the length of a word w to show that for any subset S of Q, the word w is accepted by all the states of S in the automaton A iff the word w is accepted by the state S in the automaton A^{\prime}. This then finishes the proof.

