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Automata and Formal Languages — Exercise Sheet 3

Exercise 3.1

For each of the following languages, determine if the number of its residuals is finite or not. If they are finite,
state all of the residuals; Otherwise, give a proof that the number of residuals is infinite.

(a) {w | w does not have any two consecutive occurrences of a} over Σ = {a, b}

(b) {w | w 6= uu for any word u} over Σ = {a, b}

(c) {a2n | n ≥ 0} over Σ = {a, b}

(d) {an2 | n ≥ 0} over Σ = {a}

Exercise 3.2

For any natural number n ≥ 2, let Mn = {w ∈ {0, 1}∗ | w ∈ MSBF(k) and k is a multiple of n}. (For the
definition of the MSBF notation, see Tutorial sheet 1).

(a) Show that M3 and M5 have exactly 3 and 5 residuals respectively.

(b) Show that M4 has strictly less than 4 residuals.

(c) What is the number of residuals that Mp has when p is a prime number? Can you assign an intuitive
meaning behind each residual?

Exercise 3.3

Let Σ = {a, b}. Let Lk be the language {w#wR : w ∈ Σk}, where wR is the reverse of w, e.g. (abc)R = cba.

(a) Construct A2, the minimal DFA such that L(A2) = L2.

(b) What are the residuals of L2? Assign them to the states of the DFA you gave for (a).

(c) Give a construction for a DFA that accepts Lk.

(d) How many states does the minimal DFA for Lk contain, for k ≥ 2?

Exercise 3.4

F We introduce a new notion of automata called alternating automata. An alternating automaton is a tuple
(Q,Σ, δ, q0, F ) which is similar to the definition of a non-deterministic automaton, except now the finite set of
states Q is partitioned into existential and universal states. We say that an existential state q accepts a word
w (i.e., w ∈ L(q)) if w = ε and q ∈ F or w = aw′ and there exists a transition (q, a, q′) such that q′ accepts
w′. Similarly, we say that a universal state q accepts a word w if w = ε and q ∈ F or w = aw′ and for every
transition (q, a, q′) the state q′ accepts w′. The language recognized by an alternating automaton is the set of
words accepted by its initial state.

Give an algorithm that transforms an alternating automaton into a DFA recognizing the same language.



Solution 3.1

• For {w | w does not have any two consecutive occurrences of a}: Notice that this is the same as the
language given by the regular expression (ab+ b)∗. We give the residuals as regular expressions: (ab+ b)∗

(residual of ε); b(ab + b)∗ (residual of a); ∅ (residual of aa). All other residuals are equal to one of these
three.

• For L = {w | w 6= uu for any word u} over Σ = {a, b}: The number of residuals is infinite. To prove this,
notice that if m < n, then the words amb and anb have different residues over M , because ambamb /∈ L
but anbamb ∈ L.

• For {a2n | n ≥ 0}: We give the residuals as regular expressions: (aa)∗ (residual of ε); a(aa)∗ (residual of
a); ∅ (residual of b). All other residuals are equal to one of these three.

• For {an2 | n ≥ 0}: Each word has a distinct residual. Indeed, let ai and aj be two words with i < j. Let
di (resp. dj) be the smallest number such that i + di (resp. j + dj) is a perfect square. If di < dj then
ai+di ∈ L, but aj+di /∈ L. Similarly for the case of di > dj . Suppose di = dj . Then let ei (resp. ej) be
the second smallest number such that i+ ei (resp. j + ej) is a perfect square. We claim that ei 6= ej .

Indeed, by assumption i + di and j + di are both perfect squares which we shall denote respectively by
n2 and m2. Since i < j, n 6= m. Then, notice that (n+ 1)2 − n2 = 2n+ 1 and (m+ 1)2 −m2 = 2m+ 1.
Hence ei must be di + 2n+ 1 and ej must be di + 2m+ 1. It then follows that ei 6= ej and so we can use
the same argument as for the case of di 6= dj to conclude that ai and aj have different residuals.

Solution 3.2

• We have already seen in the first tutorial sheet that there is a DFA for M3 with 3 states. The same DFA
can be generalized to get a DFA with 5 states for M5. (See the solution for the last subproblem of this
problem for an explicit construction of such a DFA). This shows that M3 and M5 can have at most 3 and
5 residuals respectively.

Notice that M3 has different residuals with respect to 0, 1 and 10. Indeed, 0ε ∈ M3 while 1ε, 10ε /∈ M3

and 11 ∈M3 while 101 /∈M3. Similarly, we can show that M5 has different residuals with respect to 0, 1,
10, 11 and 100. This shows that M3 and M5 have exactly 3 and 5 residuals respectively.

• Here is a DFA for M4 with 3 states. This is the same DFA as given in the first tutorial sheet except both
the final states are merged into a single state.
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This shows that the number of residuals for M4 must be at most 3.

• If p is a prime number, then the number of residuals of Mp must be p. Indeed, we can generalize the
DFA given in the first tutorial sheet for M3 to get a DFA with p states for Mp. This DFA is given by
Ap = (Qp, {0, 1}, δp, 0, {0}) where

Qp = {0, 1, . . . , p− 1},
δp(q, b) = (2q + b) mod p for every q ∈ Qp and b ∈ {0, 1}.

Hence, Mp has at most p residuals. We now show that Mp has at least p residuals. For a word w ∈ {0, 1}∗,
let msbf(w) denote the number n such that w ∈ MSBF(n).

For every 0 ≤ i < p, let ui be a word such that msbf(w) = i and |ui| = p − 1. Note that such an ui
exists since the smallest encoding of i has at most p − 1 bits, and it can be extended to length p − 1 by
padding with zeros on the left. Let us show that the ui-residual and uj-residual of Mp are distinct for
every 0 ≤ i, j < p such that i 6= j. Let 0 ≤ k < p, and let ` = (p− i) mod p. We have:

msbf(uku`) = 2|u`| ·msbf(uk) + msbf(u`)

= 2p−1 · k + ((p− i) mod p)

≡ k + ((p− i) mod p) (by Fermat’s little theorem)

≡ k + p− i
≡ k − i



Let 0 ≤ i, j < p be such that i 6= j. We have uiu` ∈ Mp since msbf(uiu`) ≡ i − i ≡ 0, but we have
uju` 6∈Mp since msbf(uju`) ≡ j − i 6≡ 0. Therefore, the ui-residual and uj-residual of Mp are distinct.

Solution 3.3

(a) The trap state is omitted for the sake of readability:
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(b) We have L2 = {aa#aa, ab#ba, ba#ab, bb#bb}. We compute the residuals Lw for all words w by increasing
length of w.

• |w| = 0: Lε = {aa#aa, ab#ba, ba#ab, bb#bb}.
• |w| = 1: La = {a#aa, b#ba} and Lb = {a#ab, b#bb}.
• |w| = 2: Laa = {#aa}, Lab = {#ba}, Lba = {#ab} and Lbb = {#bb}.
• |w| = 3: Laa# = {aa}, Lab# = {ba}, Lba# = {ab} and Lbb# = {bb}.
• |w| = 4: Laa#a = {a} = Lab#b, and Lba#a = {b} = Lbb#b.

• |w| ≥ 5: Lw =

{
{ε} if w ∈ Lk,

∅ otherwise.

(c) Notice that Lk+1 is simply aLka+ bLkb for any k ≥ 2. Using this observation, we generalize the construc-
tion given in (a) for k = 2, by induction on k. The base case of k = 2 has been done already. Suppose we
have already constructed Ak = (Qk, {a, b,#}, δk, qk0 , qkf ) with the property that it has exactly one initial
state and one final state and one trap state trapk (Note that A2 satisfies this property). We now construct
Ak+1 = (Qk+1, {a, b,#}, δk+1, q

k+1
0 , qk+1

f ) as follows:

The set of statesQk+1 is taken to be {qk+1
0 , qk+1

f , trapk+1}∪((Qk\{trapk})×{1, 2}), where qk+1
0 , qk+1

f , trapk+1

are three fresh states. Intuitively we add a fresh initial state, a fresh final state, a fresh trap state and
take two copies of the states of Ak while removing trapk.

The transition function δk+1 is defined as follows:

• δk+1(qk+1
0 , a) = (qk0 , 1) and δk+1(qk+1

0 , b) = (qk0 , 2). Intuitively, upon reading an a (resp. b) from the
initial state of Ak+1, we move to the initial state of the first (resp. second) copy of Ak.

• δk+1(qkf , a) = qk+1
f and δk+1(qkf , b) = qk+1

f . Intuitively, upon reading an a (resp. b) from the final
state of the first (resp. second) copy of Ak+1, we move to the final state of of Ak+1.

• δk+1((q, i), a) = p where p = (δk(q, a), i) if δk(q, a) 6= trapk and otherwise p = trapk+1. Intuitively,
within a copy of Ak, we follow the transitions of Ak and stay within that copy itself if the state that
we are supposed to go to is not the trap state of Ak. Otherwise, instead of going to the trap state of
Ak, we go to the trap state of Ak+1.

We can now prove by induction on the length of the word that Ak+1 is a DFA for Lk+1.



(d) Note that if f(k) is the number of states that Ak has, (where Ak is the DFA defined in the previous
subproblem), then f(2) = 15 and f(k+1) = 2(f(k)−1)+3 = 2f(k)+1. Solving this, we get f(k) = 2k+2−1.
We claim that Ak is a minimal DFA, by induction on k. The base case of k = 2 is already done. For the
induction step, suppse p, q are two distinct states of Ak+1. We will show that LAk+1

(p) 6= LAk+1
(q).

Notice that the initial state qk+1
0 recognizes only strings of length 2k+3 and the final state qk+1

f recognizes
only ε, whereas the other states of Ak+1 do not recognize any of these strings. This implies that the
languages of the initial and the final states are different from the rest. Similarly, the language of the trap
state is also different from the rest.

Hence, we can assume that p = (p′, i) and q = (q′, j) for some p′, q′ ∈ Qk and some i, j ∈ {1, 2}. If i 6= j,
then p and q belong to different copies of Ak. Let i = 1 and j = 2. Notice that LAk+1

(p) = LAk
(p′)a and

LAk+1
(q) = LAk

(q′)b. Hence LAk+1
(p) 6= LAk+1

(q).

The only case left is when i = j. In this case notice that LAk+1
(p) = LAk

(p′)c and LAk+1
(q) = LAk

(q′)c
where c is either a or b, depending on whether i is 1 or 2. By induction hypothesis, Ak is the minimal
DFA for Lk and so LAk

(p′) and LAk
(q′) are different. Hence LAk+1

(p) 6= LAk+1
(q), thereby concluding

the proof.

Solution 3.4

Let A = (Q,Σ, δ, q0, F ) be the given alternating finite-state automaton (AFA) and let Q = Q∃ ∪ Q∀ be a
partition of Q into existential and universal states.

Notice that when Q∀ is empty, this AFA is just an NFA and so we can use the powerset construction to get
a corresponding DFA. Further, notice that when Q∃ is empty, we can still perform the powerset construction
except we now set the set of final states to be {T : T ⊆ F}, instead of the usual {T : T ∩ F 6= ∅} as in the case
of NFA.

Now we consider the general case. From the given AFA A, we will construct an NFA recognizing the same
language. This suffices, because we know how to translate an NFA into a DFA. To construct an equivalent
NFA, we once again do a powerset construction A′ = (2Q,Σ, δ′, {q0}, F ′), except now the transition function

δ′ : 2Q×Σ→ 22
Q

is slightly more complex: We let T ∈ δ′(S, a) iff T ⊆ ∪s∈Sδ(s, a) and T satisfies the following
two constraints:

• For every existential state p of S, there is exactly one state q of δ(p, a) such that q ∈ T

• For every universal state p of S, for every state q of δ(p, a), we have q ∈ T

Intuitively, for the universal states, the transition relation is defined in a manner which is similar to the usual
powerset construction, because we want to take into account all possible transitions from that state. But for
the existential states, we allow exactly one successor in the transition relation, because we only want to check
if there is a transition from this state which can lead to a final state.

We finally set F ′ to be F ′ := {T : T ⊆ F}. We can now argue by induction on the length of a word w to show
that for any subset S of Q, the word w is accepted by all the states of S in the automaton A iff the word w is
accepted by the state S in the automaton A′. This then finishes the proof.


