Automata and Formal Languages — Exercise Sheet 2

Exercise 2.1
Consider the regular expression $r = (a + ab)^*$.

(a) Convert r into an equivalent NFA-ε A.
(b) Convert A into an equivalent NFA B. (It is not necessary to use algorithm NFAε to NFA)
(c) Convert B into an equivalent DFA C.
(d) By inspecting B, give an equivalent minimal DFA D. (No algorithm needed).
(e) Convert D into an equivalent regular expression r'.
(f) Prove formally that $L(r) = L(r')$.

Exercise 2.2
Prove or disprove the following.

(a) If L_1 and $L_1 \cup L_2$ are regular, then L_2 is regular.
(b) If L_1 and $L_1 \cap L_2$ are regular, then L_2 is regular.
(c) If L_1 and $L_1 L_2$ are regular, then L_2 is regular.
(d) If L^* is regular, then L is regular.

Exercise 2.3
Recall that a nondeterministic automaton A accepts a word w if at least one of the runs of A on w is accepting. This is sometimes called the existential accepting condition. Consider the variant in which A accepts w if all runs of A on w are accepting (in particular, if A has no run on w then it accepts w). This is called the universal accepting condition and such automata will be referred to as a co-NFA.

Intuitively, we can visualize a co-NFA as executing all runs in parallel. After reading a word w, the automaton is simultaneously in all states reached by all runs labelled by w, and accepts if all those states are accepting.

(a) Suppose A_1 and A_2 are two co-NFA which accept languages L_1 and L_2 respectively. Let n_1 and n_2 be the number of states of A_1 and A_2 respectively. Show that there is a co-NFA B over $n_1 + n_2$ states which accepts $L_1 \cap L_2$.
(b) Give an algorithm that transforms a co-NFA into a DFA recognizing the same language. This shows that automata with universal accepting condition recognize the regular languages.

Let $\Sigma = \{a, b\}$. Given a word $w = a_1 a_2 \ldots a_n$ where each $a_i \in \Sigma$, let $w^R = a_n a_{n-1} \ldots a_1$ denote the reverse of w. For any $n \in \mathbb{N}$, consider the language $L_n := \{ww^R \in \Sigma^{2n} \mid w \in \Sigma^n\}$.

(c) Give a co-NFA with $O(n^2)$ states that recognizes L_n.
(d) Prove that every NFA (and hence also every DFA) recognizing L_n has at least 2^n states.
Solution 2.1

(a)

<table>
<thead>
<tr>
<th>Iter.</th>
<th>Automaton obtained</th>
<th>Rule applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Initial automaton from reg. expr.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iter.</td>
<td>Automaton obtained</td>
<td>Rule applied</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td> where $\sigma \in \Sigma \cup {\varepsilon}$</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Initial states that can reach a final state through ε-transitions are made final.</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Remove ε-transitions. Remove states non reachable from initial state.</td>
</tr>
</tbody>
</table>
(d) States \(\{p\} \) and \(\{q, r\} \) have the exact same behaviours, so we can merge them. Indeed, both states are final and \(\delta(\{p\}, \sigma) = \delta(\{q, r\}, \sigma) \) for every \(\sigma \in \{a, b\} \). We obtain:

![Diagram](image)

(e) Iter. | Automaton obtained | Rule applied |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Add single initial and final states.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let us first show that \(a(a+ba)^i \) = \((a+ab)^i a \) for every \(i \in \mathbb{N} \). We proceed by induction on \(i \). If \(i = 0 \), then the claim trivially holds. Let \(i > 0 \). Assume the claim holds at \(i - 1 \). We have

\[
a(a+ba)^i = a(a+ba)^{i-1}(a+ba) = (a+ab)^{i-1}(a+ba) = (a+ab)^{i-1}(aa+aba) = (a+ab)^{i-1}(a+ab)a = (a+ab)^i a.
\]

This implies that

\[
a(a+ba)^* = (a+ab)^* a.
\]

We may now prove the equivalence of the two regular expressions:

\[
\epsilon + a(a+ba)^*(\epsilon + b) = \epsilon + (a+ab)^*a(\epsilon + b) = \epsilon + (a+ab)^*(a + ab) = \epsilon + (a+ab)^+ = (a+ab)^*.
\]

\(\square\)
Solution 2.2
All of these claims are false. Let \(\Sigma = \{a\} \). Note that since there are an uncountable number of languages over \(\Sigma \) which contain the words \(\epsilon \) and \(a \), but only a countable number of DFAs, it follows that there must be a non-regular language \(L' \) such that \(\epsilon, a \in L' \).

(a) Let \(L_1 = \Sigma^* \) and \(L_2 = L' \). Since \(L_1 \cup L_2 = \Sigma^* \), the claim is false.

(b) Let \(L_1 = \emptyset \) and \(L_2 = L' \). Since \(L_1 \cap L_2 = \emptyset \), the claim is false.

(c) Let \(L_1 = \Sigma^* \) and \(L_2 = L' \). Since \(\epsilon \in L' \), it follows that \(L_1L_2 = \Sigma^* \) and so the claim is false.

(d) Let \(L = L' \). Since \(a \in L' \), it follows that \(L^* = \Sigma^* \) and so the claim is false.

Solution 2.3
(a) Let \(A_1 = (Q_1, \Sigma, \delta_1, I_1, F_1) \) and \(A_2 = (Q_2, \Sigma, \delta_2, I_2, F_2) \) be the given two co-NFAs. Let \(B \) be the co-NFA given by \(B = (Q_1 \cup Q_2, \Sigma, \delta, I_1 \cup I_2, I_2, F_1 \cup F_2) \). Notice that if \(|Q_1| = n_1 \) and \(|Q_2| = n_2 \), then the number of states of \(B \) is \(n_1 + n_2 \). Further, note that \(\rho \) is a run of \(B \) on a word \(w \) if and only if \(\rho \) is either a run of \(A_1 \) on \(w \) or \(\rho \) is a run of \(A_2 \) on \(w \). It follows that all runs of \(B \) on a word \(w \) are accepting if and only if all runs of \(A_1 \) and \(A_2 \) on \(w \) are accepting. Hence, \(B \) accepts \(L_1 \cap L_2 \).

(b) Let \(A = (Q, \Sigma, \delta, Q_0, F) \) be a co-NFA. We do the same powerset construction that we do for NFAs to get a DFA \(B = (Q, \Sigma, \Delta, q_0, F) \) except we now set \(F = \{Q' \in Q : Q' \subseteq F \} \). All the other elements are defined in exactly the same way as is done for the powerset construction.

(c) For any \(n \in \mathbb{N} \) and any \(1 \leq i \leq n \), let

\[
L^i_n := \{w : w \in \Sigma^{2n}, \text{ the } i^{th} \text{ letter of } w \text{ and the } (2n - i + 1)^{th} \text{ letter of } w \text{ are the same} \}
\]

Notice that \(L_n = \bigcap_{i \leq n} L^i_n \). By a), it follows that if we give a co-NFA of size \(O(n) \) for each \(L^i_n \), then we have a co-NFA of size \(O(n^2) \) for \(L_n \).

We now construct a co-NFA of size \(O(n) \) for each \(L^i_n \), as given by the following illustration.

![Co-NFA Diagram]

First, the automaton has a sequence of states \(q_0, q_1, \ldots, q_{i-1} \) with transitions \(q_j \xrightarrow{a} q_{j+1} \) for every \(0 \leq j \leq i - 2 \). Intuitively, these states are simply used to count the number of letters read so far. Hence, upon reaching \(q_j \) for any \(j \leq i - 1 \), we know that we have read \(j \) letters. From here, the automaton has two transitions \(q_{i-1} \xrightarrow{a} q^a_i \) and \(q_{i-1} \xrightarrow{b} q^b_i \). Intuitively, these two transitions help us remember the \(i^{th} \) letter of the word.

Then, we have a collection of states \(q^a_{i+1}, q^a_{i+2}, \ldots, q^a_{2n-i} \) and \(q^b_{i+1}, q^b_{i+2}, \ldots, q^b_{2n-i} \) along with the transitions, \(q_j^a \xrightarrow{a} q^a_{j+1} \) and \(q_j^b \xrightarrow{a} q^b_{j+1} \) for every \(i \leq j \leq 2n - i - 1 \). Intuitively, these states are simply used to count the number of letters starting from the \(i^{th} \) letter, while simultaneously remembering the \(i^{th} \) letter. Hence, upon reaching \(q^a_j \) (resp. \(q^b_j \)) for any \(j \leq 2n - i \), we know that we have read \(j \) letters and that the \(i^{th} \) letter that we read was an \(a \) (resp. \(b \)). From here, we have two transitions \(q^a_{2n-i} \xrightarrow{a} q^a_{2n-i+1} \) and \(q^b_{2n-i} \xrightarrow{b} q^a_{2n-i+1} \). Intuitively, these two transitions force that the \((2n-i+1)^{th}\) letter that we read is the same as the \(i^{th} \) letter that we read before.

Finally, we have a sequence of states \(q^a_{2n-i+1}, q^a_{2n-i+2}, \ldots, q_{2n} \) with transitions \(q_j \xrightarrow{a} q_{j+1} \) for every \(2n - i + 1 \leq j \leq 2n \). Once again, these states are simply used to count the number of letters read and we can show that if we reach \(q_j \) for any \(j \leq 2n \), then we have read \(j \) letters. We then set the only final state to be \(q_{2n} \).
(d) Suppose A is some NFA which recognizes L_n. For every $ww^R \in \Sigma^{2n}$, A has at least one accepting run on ww^R. Let q_w be the state reached by this run after reading the prefix w (If there are multiple such runs, pick any one of them). We claim that if $w \not= w'$, then $q_w \not= q_{w'}$. Notice that this claim implies that there are at least 2^n states in A and so it simply suffices to prove this claim.

Suppose $q_w = q_{w'}$ for some pair $w \not= w'$. Hence, after reading w' the automaton A can reach q_w. By definition of q_w, we know that there is a run on the word w^R starting from q_w and ending in a final state. This implies that the automaton accepts $w'w^R$, because first the automaton can reach q_w by reading w' and then from q_w it can reach a final state by reading w^R. But $w'w^R \notin L_n$, contradicting the fact that A recognizes L_n.