Automata and Formal Languages - Exercise Sheet 2

Exercise 2.1

Consider the regular expression $r=(a+a b)^{*}$.
(a) Convert r into an equivalent NFA- εA.
(b) Convert A into an equivalent NFA B. (It is not necessary to use algorithm NFAعtoNFA)
(c) Convert B into an equivalent DFA C.
(d) By inspecting B, give an equivalent minimal DFA D. (No algorithm needed).
(e) Convert D into an equivalent regular expression r^{\prime}.
(f) Prove formally that $L(r)=L\left(r^{\prime}\right)$.

Exercise 2.2

Prove or disprove the following.
(a) If L_{1} and $L_{1} \cup L_{2}$ are regular, then L_{2} is regular.
(b) If L_{1} and $L_{1} \cap L_{2}$ are regular, then L_{2} is regular.
(c) If L_{1} and $L_{1} L_{2}$ are regular, then L_{2} is regular.
(d) If L^{*} is regular, then L is regular.

Exercise 2.3

Recall that a nondeterministic automaton A accepts a word w if at least one of the runs of A on w is accepting. This is sometimes called the existential accepting condition. Consider the variant in which A accepts w if all runs of A on w are accepting (in particular, if A has no run on w then it accepts w). This is called the universal accepting condition and such automata will be referred to as a co-NFA.

Intuitively, we can visualize a co-NFA as executing all runs in parallel. After reading a word w, the automaton is simultaneously in all states reached by all runs labelled by w, and accepts if all those states are accepting.
(a) Suppose A_{1} and A_{2} are two co-NFA which accept languages L_{1} and L_{2} respectively. Let n_{1} and n_{2} be the number of states of A_{1} and A_{2} respectively. Show that there is a co-NFA B over $n_{1}+n_{2}$ states which accepts $L_{1} \cap L_{2}$.
(b) Give an algorithm that transforms a co-NFA into a DFA recognizing the same language. This shows that automata with universal accepting condition recognize the regular languages.

Let $\Sigma=\{a, b\}$. Given a word $w=a_{1} a_{2} \ldots a_{n}$ where each $a_{i} \in \Sigma$, let $w^{R}=a_{n} a_{n-1} \ldots a_{1}$ denote the reverse of w. For any $n \in \mathbb{N}$, consider the language $L_{n}:=\left\{w w^{R} \in \Sigma^{2 n} \mid w \in \Sigma^{n}\right\}$.
(c) Give a co-NFA with $O\left(n^{2}\right)$ states that recognizes L_{n}.
d) Prove that every NFA (and hence also every DFA) recognizing L_{n} has at least 2^{n} states.

Solution 2.1

(a)
Iter. Automaton obtained
(b)
Iter. Automaton obtained
(c)

(d) States $\{p\}$ and $\{q, r\}$ have the exact same behaviours, so we can merge them. Indeed, both states are final and $\delta(\{p\}, \sigma)=\delta(\{q, r\}), \sigma)$ for every $\sigma \in\{a, b\}$. We obtain:

(e)

(f) Let us first show that $a(a+b a)^{i}=(a+a b)^{i} a$ for every $i \in \mathbb{N}$. We proceed by induction on i. If $i=0$,

$$
\begin{aligned}
a(a+b a)^{i} & =a(a+b a)^{i-1}(a+b a) & & \\
& =(a+a b)^{i-1} a(a+b a) & & \text { (by induction hypothesis) } \\
& =(a+a b)^{i-1}(a a+a b a) & & \text { (by distributivity) } \\
& =(a+a b)^{i-1}(a+a b) a & & \text { (by distributivity) } \\
& =(a+a b)^{i} a . & &
\end{aligned}
$$

then the claim trivially holds. Let $i>0$. Assume the claims holds at $i-1$. We have

This implies that

$$
\begin{equation*}
a(a+b a)^{*}=(a+a b)^{*} a . \tag{1}
\end{equation*}
$$

We may now prove the equivalence of the two regular expressions:

$$
\begin{align*}
\varepsilon+a(a+b a)^{*}(\varepsilon+b) & =\varepsilon+(a+a b)^{*} a(\varepsilon+b) \tag{1}\\
& =\varepsilon+(a+a b)^{*}(a+a b) \\
& =\varepsilon+(a+a b)^{+} \\
& =(a+a b)^{*} .
\end{align*}
$$

(by distributivity)

Solution 2.2

All of these claims are false. Let $\Sigma=\{a\}$. Note that since there are an uncountable number of languages over Σ which contain the words ϵ and a, but only a countable number of DFAs, it follows that there must be a non-regular language L^{\prime} such that $\epsilon, a \in L^{\prime}$.
(a) Let $L_{1}=\Sigma^{*}$ and $L_{2}=L^{\prime}$. Since $L_{1} \cup L_{2}=\Sigma^{*}$, the claim is false.
(b) Let $L_{1}=\emptyset$ and $L_{2}=L^{\prime}$. Since $L_{1} \cap L_{2}=\emptyset$, the claim is false.
(c) Let $L_{1}=\Sigma^{*}$ and $L_{2}=L^{\prime}$. Since $\epsilon \in L^{\prime}$, it follows that $L_{1} L_{2}=\Sigma^{*}$ and so the claim is false.
(d) Let $L=L^{\prime}$. Since $a \in L^{\prime}$, it follows that $L^{*}=\Sigma^{*}$ and so the claim is false.

Solution 2.3

(a) Let $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, I_{1}, F_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, I_{2}, F_{2}\right)$ be the given two co-NFAs. Let B be the co-NFA given by $B=\left(Q_{1} \cup Q_{2}, \Sigma, \delta_{1} \cup \delta_{2}, I_{1} \cup I_{2}, F_{1} \cup F_{2}\right)$. Notice that if $\left|Q_{1}\right|=n_{1}$ and $\left|Q_{2}\right|=n_{2}$, then the number of states of B is $n_{1}+n_{2}$. Further, note that ρ is a run of B on a word w if and only if ρ is either a run of A_{1} on w or ρ is a run of A_{2} on w. It follows that all runs of B on a word w are accepting if and only if all runs of A_{1} and A_{2} on w are accepting. Hence, B accepts $L_{1} \cap L_{2}$.
(b) Let $A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ be a co-NFA. We do the same powerset construction that we do for NFAs to get a DFA $B=\left(\mathcal{Q}, \Sigma, \Delta, q_{0}, \mathcal{F}\right)$ except we now set $\mathcal{F}=\left\{Q^{\prime} \in \mathcal{Q}: Q^{\prime} \subseteq F\right\}$. All the other elements are defined in exactly the same way as is done for the powerset construction.
(c) For any $n \in \mathbb{N}$ and any $1 \leq i \leq n$, let

$$
L_{n}^{i}:=\left\{w: w \in \Sigma^{2 n}, \text { the } i^{t h} \text { letter of } w \text { and the }(2 n-i+1)^{t h} \text { letter of } w \text { are the same }\right\}
$$

Notice that $L_{n}=\bigcap_{1 \leq i \leq n} L_{n}^{i}$. By a), it follows that if we give a co-NFA of size $O(n)$ for each L_{n}^{i}, then we have a co-NFA of size $O\left(n^{2}\right)$ for L_{n}.
We now construct a co-NFA of size $O(n)$ for each L_{n}^{i}, as given by the following illustration.

First, the automaton has a sequence of states $q_{0}, q_{1}, \ldots, q_{i-1}$ with transitions $q_{j} \xrightarrow{a, b} q_{j+1}$ for every $0 \leq j \leq i-2$. Intuitively, these states are simply used to count the number of letters read so far. Hence, upon reaching q_{j} for any $j \leq i-1$, we know that we have read j letters. From here, the automaton has two transitions $q_{i-1} \xrightarrow{a} q_{i}^{a}$ and $q_{i-1} \xrightarrow{b} q_{i}^{b}$. Intuitively, these two transitions help us remember the $i^{\text {th }}$ letter of the word.
Then, we have a collection of states $q_{i+1}^{a}, q_{i+2}^{a} \ldots, q_{2 n-i}^{a}$ and $q_{i+1}^{b}, q_{i+2}^{b}, \ldots, q_{2 n-i}^{b}$ along with the transitions, $q_{j}^{a} \xrightarrow{a, b} q_{j+1}^{a}$ and $q_{j}^{b} \xrightarrow{a, b} q_{j+1}^{b}$ for every $i \leq j \leq 2 n-i-1$. Intuitively, these states are simply used to count the number of letters starting from the $i^{\text {th }}$ letter, while simultaneously remembering the $i^{\text {th }}$ letter. Hence, upon reaching $q_{j}^{a}\left(\right.$ resp. q_{j}^{b}) for any $j \leq 2 n-i$, we know that we have read j letters and that the $i^{t h}$ letter that we read was an a (resp. a b). From here, we have two transitions $q_{2 n-i}^{a} \xrightarrow{a} q_{2 n-i+1}$ and $q_{2 n-i}^{b} \xrightarrow{b} q_{2 n-i+1}$. Intuitively, these two transitions force that the $(2 n-i+1)^{t h}$ letter that we read is the same as the $i^{t h}$ letter that we read before.
Finally, we have a sequence of states $q_{2 n-i+1}, q_{2 n-i+2} \ldots, q_{2 n}$ with transitions $q_{j} \xrightarrow{a, b} q_{j+1}$ for every $2 n-i+1 \leq j \leq 2 n$. Once again, these states are simply used to count the number of letters read and we can show that if we reach q_{j} for any $j \leq 2 n$, then we have read j letters. We then set the only final state to be $q_{2 n}$.
(d) Suppose A is some NFA which recognizes L_{n}. For every $w w^{R} \in \Sigma^{2 n}$, A has at least one accepting run on $w w^{R}$. Let q_{w} be the state reached by this run after reading the prefix w (If there are multiple such runs, pick any one of them). We claim that if $w \neq w^{\prime}$, then $q_{w} \neq q_{w^{\prime}}$. Notice that this claim implies that there are at least 2^{n} states in A and so it simply suffices to prove this claim.
Suppose $q_{w}=q_{w^{\prime}}$ for some pair $w \neq w^{\prime}$. Hence, after reading w^{\prime} the automaton A can reach q_{w}. By definition of q_{w}, we know that there is a run on the word w^{R} starting from q_{w} and ending in a final state. This implies that the automaton accepts $w^{\prime} w^{R}$, because first the automaton can reach q_{w} by reading w^{\prime} and then from q_{w} it can reach a final state by reading w^{R}. But $w^{\prime} w^{R} \notin L_{n}$, contradicting the fact that A recognizes L_{n}.

