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Automata and Formal Languages — Exercise Sheet 2

Exercise 2.1

Consider the regular expression r = (a + ab)™.

(a) Convert r into an equivalent NFA-¢ A.

(b) Convert A into an equivalent NFA B. (It is not necessary to use algorithm NFAetoNFA)
(
(d) By inspecting B, give an equivalent minimal DFA D. (No algorithm needed).

)
)
¢) Convert B into an equivalent DFA C.
)
e) Convert D into an equivalent regular expression r’.
)

(
(f) Prove formally that L(r) = L(r').

Exercise 2.2
Prove or disprove the following.

a) If Ly and Ly U Ly are regular, then Lo is regular.
b

(c
(d) If L* is regular, then L is regular.

(
(b) If Ly and Ly N Lo are regular, then Lo is regular.

If Ly and Lq Lo are regular, then Lo is regular.

)
)
)
)

Exercise 2.3

Recall that a nondeterministic automaton A accepts a word w if at least one of the runs of A on w is accepting.
This is sometimes called the existential accepting condition. Consider the variant in which A accepts w if all
runs of A on w are accepting (in particular, if A has no run on w then it accepts w). This is called the universal
accepting condition and such automata will be referred to as a co-NFA.

Intuitively, we can visualize a co-NFA as executing all runs in parallel. After reading a word w, the automaton
is simultaneously in all states reached by all runs labelled by w, and accepts if all those states are accepting.

(a) Suppose A; and A are two co-NFA which accept languages Ly and Lo respectively. Let ny and ns be
the number of states of A; and A, respectively. Show that there is a co-NFA B over nj + ns states which
accepts L1 N L.

(b) Give an algorithm that transforms a co-NFA into a DFA recognizing the same language. This shows that
automata with universal accepting condition recognize the regular languages.

Let ¥ = {a,b}. Given a word w = ajas...a, where each a; € ¥, let w’* = a,a,_1 ...a; denote the reverse of
w. For any n € N, consider the language L,, := {ww € £ | w € ¥"}.

(c) Give a co-NFA with O(n?) states that recognizes L,,.

d) Prove that every NFA (and hence also every DFA) recognizing L,, has at least 2™ states.
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9 Initial states that can reach a final state
through e-transitions are made final.
Remove e-transitions.
3 Remove states non reachable from ini-

tial state.



(d) States {p} and {¢,r} have the exact same behaviours, so we can merge them. Indeed, both states are
final and §({p},0) = 0({¢,r}), o) for every o € {a,b}. We obtain:

a
a
b
(e)
Iter.| Automaton obtained Rule applied

Add single initial and final states.
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6 e+a(a+ba)* (e +b)

(f) Let us first show that a(a + ba)! = (a + ab)’a for every i € N. We proceed by induction on i. If i = 0,
then the claim trivially holds. Let ¢ > 0. Assume the claims holds at ¢ — 1. We have

ala +ba)* = a(a + ba)"*(a + ba)
= (a+ab)ta(a + ba) (by induction hypothesis)
= (a + ab)""*(aa + aba) (by distributivity)
= (a+ab)"*(a+ ab)a (by distributivity)
= (a + ab)'a.
This implies that
a(a+ba)* = (a + ab)*a. (1)

We may now prove the equivalence of the two regular expressions:

e+ala+ba) (e+b)=ec+ (a+ab) ale+0b) (by (1))
=¢e+ (a+ ab)*(a + ab) (by distributivity)
=c+ (a+ab)™

= (a+ ab)*. O



Solution 2.2

All of these claims are false. Let ¥ = {a}. Note that since there are an uncountable number of languages over
>} which contain the words € and a, but only a countable number of DFAs, it follows that there must be a
non-regular language L’ such that €,a € L'.

(a)
(b)
(c)
(d)

Let L1 = X* and Ly, = L. Since L1 U Ly = X*, the claim is false.
Let L1 =0 and Ly, = L'. Since L; N Ly = (3, the claim is false.
Let Li = X* and Lo, = L'. Since € € L', it follows that L{L, = X* and so the claim is false.

Let L = L’'. Since a € L', it follows that L* = ¥* and so the claim is false.

Solution 2.3

(a)

Let A1 = (Q1,%,61,11, F1) and Ay = (Q2,X, b2, I, Fy) be the given two co-NFAs. Let B be the co-NFA
given by B = (Q1 U Q2,%,81 U da, I U Iy, Fy U Fy). Notice that if |Q1| = ny and |Q2| = ng, then the
number of states of B is ny + no. Further, note that p is a run of B on a word w if and only if p is either
a run of Ay on w or p is a run of As on w. It follows that all runs of B on a word w are accepting if and
only if all runs of A; and As on w are accepting. Hence, B accepts L N Lo.

Let A= (Q,%,0,Q0, F) be a co-NFA. We do the same powerset construction that we do for NFAs to get
aDFA B = (Q,X, A, qo, F) except we now set F = {Q' € Q: Q' C F}. All the other elements are defined
in exactly the same way as is done for the powerset construction.

For any n € Nand any 1 <17 < mn, let
Ll = {w:w € ¥*, the i'" letter of w and the (2n — i 4 1)" letter of w are the same }
Notice that L, = [\ L%. By a), it follows that if we give a co-NFA of size O(n) for each L}, then we

1<i<n

have a co-NFA of size O(n?) for L,,.

We now construct a co-NFA of size O(n) for each Lf, as given by the following illustration.

. . i b
First, the automaton has a sequence of states qo,qi,...,¢;—1 with transitions g; 22 gj+1 for every
0 < 7 <i— 2. Intuitively, these states are simply used to count the number of letters read so far. Hence,
upon reaching ¢; for any j < i — 1, we know that we have read j letters. From here, the automaton has
two transitions ¢;_1 —» g} and ¢;—1 LN ¢b. Intuitively, these two transitions help us remember the i** letter
of the word.

Then, we have a collection of states g%, 1, % 5 . .., q3,_; and ¢? 1, %5, ..., q5,_; along with the transitions,

qj @b, 54+, and qé? LN qg?ﬂ for every ¢ < j < 2n — ¢ — 1. Intuitively, these states are simply used to
count the number of letters starting from the i*" letter, while simultaneously remembering the i*" letter.
Hence, upon reaching ¢ (resp. qé?) for any j < 2n — i, we know that we have read j letters and that the
it" letter that we read was an a (resp. a b). From here, we have two transitions ¢4, ; % gon—ir1 and

@, LN @2n—i+1. Intuitively, these two transitions force that the (2n — i 4 1)*" letter that we read is the
same as the i*" letter that we read before.

. . . b
Finally, we have a sequence of states gan—it1,q2n—it+2--..,q2n With transitions g; RILN gj+1 for every
2n —i+1 < j < 2n. Once again, these states are simply used to count the number of letters read and we
can show that if we reach g; for any j < 2n, then we have read j letters. We then set the only final state
to be gap.



(d) Suppose A is some NFA which recognizes L,,. For every ww!* € ¥2", A has at least one accepting run on
ww®. Let g, be the state reached by this run after reading the prefix w (If there are multiple such runs,
pick any one of them). We claim that if w # w’, then g, # ¢,. Notice that this claim implies that there
are at least 2™ states in A and so it simply suffices to prove this claim.

Suppose ¢, = Gy for some pair w # w’. Hence, after reading w’ the automaton A can reach q,. By
definition of q,,, we know that there is a run on the word w’ starting from ¢,, and ending in a final state.
This implies that the automaton accepts w'w®, because first the automaton can reach g, by reading w’
and then from g,, it can reach a final state by reading w®. But w'w® ¢ L,,, contradicting the fact that A
recognizes L.



