Automata and Formal Languages - Exercise Sheet 2

Exercise 2.1

Consider the regular expression $r=(b+b a b)^{*}$.
(a) Convert r into an equivalent NFA- εA.
(b) Convert A into an equivalent NFA B. (It is not necessary to use algorithm NFAعtoNFA)
(c) Convert B into an equivalent DFA C.
(d) By inspecting B, merge two states to get an equivalent DFA D with less states if possible (depending on how you answered previous questions, this may not be possible). No algorithm needed.
(e) Convert D into an equivalent regular expression r^{\prime}.
(f) Prove formally that $L(r)=L\left(r^{\prime}\right)$.

Exercise 2.2

Prove that if L is a finite language, then the complement of L is a regular language.

Exercise 2.3

Let $\Sigma=\{a, b, c\}$. Show that the language described by the regular expression $\left(\left((b+c)^{*} a+c^{*}\right)+\left(b c^{*}\right)^{*}\right)^{*}$ is the set of all words over Σ.

Exercise 2.4

Let $n \geq 1$ be some natural number and let $\Sigma=\{a: 1 \leq a \leq n\}$. Consider the following language over Σ :

$$
L=\{a a a: a \in \Sigma\}
$$

- Show that there is a NFA with $2 n+2$ states which recognizes L.
- Show that any NFA recognizing L must have at least $2 n+2$ states.

Solution 2.1

There are different correct answers for the following exercises, the following is one possible set of answers.
(a)
Iter. Automaton obtained
(b)
Iter. Automaton obtained
(c)

(d) States $\{p\}$ and $\{q, r\}$ have the exact same behaviours, so we can merge them. Indeed, both states are final and $\delta(\{p\}, \sigma)=\delta(\{q, r\}), \sigma)$ for every $\sigma \in\{a, b\}$. We obtain:

(e)

(f) Let us first show that $b(b+a b b)^{i}=(b+b a b)^{i} b$ for every $i \in \mathbb{N}$. We proceed by induction on i. If $i=0$, then the claim trivially holds. Let $i>0$. Assume the claims holds at $i-1$. We have

$$
\begin{aligned}
b(b+a b b)^{i} & =b(b+a b b)^{i-1}(b+a b b) & & \\
& =(b+b a b)^{i-1} b(b+a b b) & & \text { (by induction hypothesis) } \\
& =(b+b a b)^{i-1}(b b+b a b b) & & \text { (by distributivity) } \\
& =(b+b a b)^{i-1}(b+b a b) b & & \text { (by distributivity) } \\
& =(b+b a b)^{i} b . & &
\end{aligned}
$$

This implies that

$$
\begin{equation*}
b(b+a b b)^{*}=(b+b a b)^{*} b . \tag{1}
\end{equation*}
$$

We may now prove the equivalence of the two regular expressions:

$$
\begin{aligned}
\varepsilon+b(b+a b b)^{*}(\varepsilon+a b) & =\varepsilon+(b+b a b)^{*} b(\varepsilon+a b) & & (\text { by }(1)) \\
& =\varepsilon+(b+b a b)^{*}(b+b a b) & & \text { (by distributivity) } \\
& =\varepsilon+(b+b a b)^{+} & & \\
& =(b+b a b)^{*} . & &
\end{aligned}
$$

Solution 2.2

Suppose L is a finite language. We shall first show that L is a regular language, by providing an NFA for L.
Let the alphabet of L be Σ and let $L=\left\{w_{1}, \ldots, w_{n}\right\}$. For each w_{i}, we will construct an NFA A_{i} that accepts only the word w_{i}. If $w_{i}=\epsilon$ then the following NFA satisfies the required property:

Suppose w_{i} is not the empty word. Let $w_{i}=a_{1}, a_{2}, \ldots, a_{m}$. Then the following NFA satisfies the required property:

Hence we have an NFA $A_{i}:=\left(Q^{i}, \Sigma, \delta^{i}, Q_{0}^{i}, F^{i}\right)$ for each word w_{i}. Now, we will construct an NFA A which recongnizes the "union" $L=\cup_{1 \leq i \leq n} w_{i}$. Let $Q:=\cup_{1 \leq i \leq n} Q^{i}, Q_{0}:=\cup_{1 \leq i \leq n} Q_{0}^{i}, F:=\cup_{1 \leq i \leq n} F^{i}$. Further, let $\delta: Q \times \Sigma \rightarrow 2^{Q}$ be the function given by $\delta(q, a)=\delta^{j}(q, a)$ for every $q \in Q^{j}$ and let $A:=\left(\bar{Q}, \Sigma, \delta, Q_{0}, F\right)$. Then, A is an NFA which recongizes the language L.

Hence, we have shown that if L is a finite language, then it is regular. Hence, there must be a DFA $B=$ $\left(Q, \Sigma, \delta, Q_{0}, F\right)$ such that B recognizes the language L. Consider the DFA $\bar{B}=\left(Q, \Sigma, \delta, Q_{0}, Q \backslash F\right)$ obtained from B by "swapping" the final and non-final states of B. By construction, \bar{B} accepts a word if and only if it is rejected by B and hence \bar{B} recognizes the complement of the language L.

Solution 2.3

Let $r:=\left(\left((b+c)^{*} a+c^{*}\right)+\left(b c^{*}\right)^{*}\right)^{*}$. Let $w=a_{1}, a_{2}, \ldots, a_{n}$ be any word over Σ. We have to show that $w \in L(r)$.
Let $r^{\prime}:=\left((b+c)^{*} a+c^{*}\right)+\left(b c^{*}\right)^{*}$. We will first show that each $a_{i} \in L\left(r^{\prime}\right)$. Indeed, if $a_{i}=a$, then $a \in$ $L\left((b+c)^{*} a\right) \subseteq L\left(r^{\prime}\right)$. If $a_{i}=b$, then $b \in L\left(\left(b c^{*}\right)^{*}\right) \subseteq L\left(r^{\prime}\right)$. Finally, if $a_{i}=c$ then $c \in L\left(c^{*}\right) \subseteq L\left(r^{\prime}\right)$. Hence, for each i, the letter $a_{i} \in L\left(r^{\prime}\right)$.

Notice that $L(r)=\left(L\left(r^{\prime}\right)\right)^{*}$. Since each $a_{i} \in L\left(r^{\prime}\right)$, it follows that $w \in L(r)$. Hence, we have shown that any word over Σ is included in $L(r)$, which is what we wanted to prove.

Solution 2.4

- The following is an NFA with $2 n+2$ states which recognizes L.

- We shall now show that any NFA recognizing L must have at least $2 n+2$ states.

Let A be any NFA recognizing L.
For every $a \in \Sigma$, let $q_{0}^{a}, q_{1}^{a}, q_{2}^{a}, q_{3}^{a}$ be an accepting run of the word aaa over the NFA A. We claim that if $a \neq b$, then $q_{i}^{a} \neq q_{j}^{b}$ for any $i, j \in\{1,2\}$. Indeed if $q_{1}^{a}=q_{1}^{b}$ (resp. $q_{2}^{a}=q_{2}^{b}$) then the word $a b b$ (resp. $a a b$) has an accepting run given by $q_{0}^{a}, q_{1}^{a}, q_{2}^{b}, q_{3}^{b}$ (resp. $q_{0}^{a}, q_{1}^{a}, q_{2}^{a}, q_{3}^{b}$). On the other hand, if $q_{1}^{a}=q_{2}^{b}$ (resp. $q_{2}^{a}=q_{1}^{b}$) then the word $a b$ (resp. $a a b b$) has an accepting run given by $q_{0}^{a}, q_{1}^{a}, q_{3}^{b}\left(\right.$ resp. $\left.q_{0}^{a}, q_{1}^{a}, q_{2}^{a}, q_{2}^{b}, q_{3}^{b}\right)$. It then follows that the NFA A must have at least $2 n$ states.
We now claim that for any $a \in \Sigma$ and any $i \in\{1,2\}$, the state q_{i}^{a} cannot be an initial or a final state. Indeed, if q_{1}^{a} (resp. q_{2}^{a}) is a final state, then the word a (resp. $a a$) is accepted by A. On the other hand, if q_{1}^{a} (resp. q_{2}^{a}) is an initial state, then the word $a a$ (resp. a) is accepted by A. Hence, there is at least one initial state and one final state of A which is not in the set $\left\{q_{i}^{a}: i \in\{1,2\}, a \in \Sigma\right\}$.
Notice that no initial state of A can be a final state, as otherwise A would accept ϵ. It follows that there are at least two states which are not in the set $\left\{q_{i}^{a}: i \in\{1,2\}, a \in \Sigma\right\}$. Hence, A has at least $2 n+2$ states.

