Automata and Formal Languages — Exercise Sheet 2

Exercise 2.1

Consider the regular expression $r = (b + bab)^*$.

- (a) Convert r into an equivalent NFA- ε A.
- (b) Convert A into an equivalent NFA B. (It is not necessary to use algorithm $NFA \varepsilon to NFA$)
- (c) Convert B into an equivalent DFA C.
- (d) By inspecting B, merge two states to get an equivalent DFA D with less states *if possible* (depending on how you answered previous questions, this may not be possible). No algorithm needed.
- (e) Convert D into an equivalent regular expression r'.
- (f) Prove formally that L(r) = L(r').

Exercise 2.2

Prove that if L is a finite language, then the complement of L is a regular language.

Exercise 2.3

Let $\Sigma = \{a, b, c\}$. Show that the language described by the regular expression $(((b+c)^*a + c^*) + (bc^*)^*)^*$ is the set of all words over Σ .

Exercise 2.4

Let $n \ge 1$ be some natural number and let $\Sigma = \{a : 1 \le a \le n\}$. Consider the following language over Σ :

$$L = \{aaa : a \in \Sigma\}$$

- Show that there is a NFA with 2n + 2 states which recognizes L.
- Show that any NFA recognizing L must have at least 2n + 2 states.

Solution 2.1

There are different correct answers for the following exercises, the following is one possible set of answers.

(a)

(b)

(d) States $\{p\}$ and $\{q, r\}$ have the exact same behaviours, so we can merge them. Indeed, both states are final and $\delta(\{p\}, \sigma) = \delta(\{q, r\}), \sigma)$ for every $\sigma \in \{a, b\}$. We obtain:

(e)

(f) Let us first show that $b(b + abb)^i = (b + bab)^i b$ for every $i \in \mathbb{N}$. We proceed by induction on i. If i = 0, then the claim trivially holds. Let i > 0. Assume the claims holds at i - 1. We have

$$b(b + abb)^{i} = b(b + abb)^{i-1}(b + abb)$$

$$= (b + bab)^{i-1}b(b + abb)$$
 (by induction hypothesis)

$$= (b + bab)^{i-1}(bb + babb)$$
 (by distributivity)

$$= (b + bab)^{i-1}(b + bab)b$$
 (by distributivity)

$$= (b + bab)^{i}b.$$

This implies that

$$b(b+abb)^* = (b+bab)^*b.$$
 (1)

We may now prove the equivalence of the two regular expressions:

$$\varepsilon + b(b + abb)^*(\varepsilon + ab) = \varepsilon + (b + bab)^*b(\varepsilon + ab)$$
 (by (1))
$$= \varepsilon + (b + bab)^*(b + bab)$$
 (by distributivity)
$$= \varepsilon + (b + bab)^+$$

$$= (b + bab)^*.$$

Solution 2.2

Suppose L is a finite language. We shall first show that L is a regular language, by providing an NFA for L.

Let the alphabet of L be Σ and let $L = \{w_1, \ldots, w_n\}$. For each w_i , we will construct an NFA A_i that accepts only the word w_i . If $w_i = \epsilon$ then the following NFA satisfies the required property:

Suppose w_i is not the empty word. Let $w_i = a_1, a_2, \ldots, a_m$. Then the following NFA satisfies the required property:

Hence we have an NFA $A_i := (Q^i, \Sigma, \delta^i, Q_0^i, F^i)$ for each word w_i . Now, we will construct an NFA A which recongnizes the "union" $L = \bigcup_{1 \le i \le n} w_i$. Let $Q := \bigcup_{1 \le i \le n} Q^i$, $Q_0 := \bigcup_{1 \le i \le n} Q_0^i$, $F := \bigcup_{1 \le i \le n} F^i$. Further, let $\delta : Q \times \Sigma \to 2^Q$ be the function given by $\delta(q, a) = \delta^j(q, a)$ for every $q \in Q^j$ and let $A := (Q, \Sigma, \delta, Q_0, F)$. Then, A is an NFA which recongizes the language L.

Hence, we have shown that if L is a finite language, then it is regular. Hence, there must be a DFA $B = (Q, \Sigma, \delta, Q_0, F)$ such that B recognizes the language L. Consider the DFA $\overline{B} = (Q, \Sigma, \delta, Q_0, Q \setminus F)$ obtained from B by "swapping" the final and non-final states of B. By construction, \overline{B} accepts a word if and only if it is rejected by B and hence \overline{B} recognizes the complement of the language L.

Solution 2.3

Let $r := (((b+c)^*a+c^*)+(bc^*)^*)^*$. Let $w = a_1, a_2, \ldots, a_n$ be any word over Σ . We have to show that $w \in L(r)$.

Let $r' := ((b+c)^*a + c^*) + (bc^*)^*$. We will first show that each $a_i \in L(r')$. Indeed, if $a_i = a$, then $a \in L((b+c)^*a) \subseteq L(r')$. If $a_i = b$, then $b \in L((bc^*)^*) \subseteq L(r')$. Finally, if $a_i = c$ then $c \in L(c^*) \subseteq L(r')$. Hence, for each i, the letter $a_i \in L(r')$.

Notice that $L(r) = (L(r'))^*$. Since each $a_i \in L(r')$, it follows that $w \in L(r)$. Hence, we have shown that any word over Σ is included in L(r), which is what we wanted to prove.

Solution 2.4

• The following is an NFA with 2n + 2 states which recognizes L.

• We shall now show that any NFA recognizing L must have at least 2n + 2 states.

Let A be any NFA recognizing L.

For every $a \in \Sigma$, let $q_0^a, q_1^a, q_2^a, q_3^a$ be an accepting run of the word *aaa* over the NFA *A*. We claim that if $a \neq b$, then $q_i^a \neq q_j^b$ for any $i, j \in \{1, 2\}$. Indeed if $q_1^a = q_1^b$ (resp. $q_2^a = q_2^b$) then the word *abb* (resp. *aab*) has an accepting run given by $q_0^a, q_1^a, q_2^b, q_3^b$ (resp. $q_0^a, q_1^a, q_2^a, q_3^b$). On the other hand, if $q_1^a = q_2^b$ (resp. $q_2^a = q_1^b$) then the word *ab* (resp. *aabb*) has an accepting run given by q_0^a, q_1^a, q_3^b (resp. $q_0^a, q_1^a, q_2^a, q_2^b, q_3^b$). It then follows that the NFA *A* must have at least 2n states.

We now claim that for any $a \in \Sigma$ and any $i \in \{1, 2\}$, the state q_i^a cannot be an initial or a final state. Indeed, if q_1^a (resp. q_2^a) is a final state, then the word a (resp. aa) is accepted by A. On the other hand, if q_1^a (resp. q_2^a) is an initial state, then the word aa (resp. a) is accepted by A. Hence, there is at least one initial state and one final state of A which is not in the set $\{q_i^a : i \in \{1,2\}, a \in \Sigma\}$.

Notice that no initial state of A can be a final state, as otherwise A would accept ϵ . It follows that there are at least two states which are not in the set $\{q_i^a : i \in \{1,2\}, a \in \Sigma\}$. Hence, A has at least 2n+2 states.