Automata and Formal Languages - Exercise Sheet 2

Exercise 2.1

Determine the residuals of the following languages:
(a) $(a a+b b)^{*}$ over $\Sigma=\{a, b\}$,
(b) $(a b c)^{*}$ over $\Sigma=\{a, b, c\}$,
(c) $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ over $\Sigma=\{a, b, c\}$,
(d) $\left\{a^{n} b^{3 n} \mid n \geq 0\right\}$ over $\Sigma=\{a, b\}$.

Exercise 2.2

(a) Let $\Sigma=\{0,1\}$ be an alphabet.

Find a language $L \subseteq \Sigma^{*}$ that has infinitely many residuals and $\left|L^{w}\right|>0$ for all $w \in \Sigma^{*}$.
(b) Let $\Sigma=\{a\}$ be an alphabet.

Find a language $L \subseteq \Sigma^{*}$, such that $L^{w}=L^{w^{\prime}} \Longrightarrow w=w^{\prime}$ for all words $w, w^{\prime} \in \Sigma^{*}$.
What can you say about the residuals for such a language L ? Is such a language regular?

Exercise 2.3

Let A and B be respectively the following DFAs:

(a) Compute the language partitions of A and B.
(b) Construct the quotients of A and B with respect to their language partitions.
(c) Give regular expressions for $L(A)$ and $L(B)$.

Exercise 2.4

Let msbf: $\{0,1\}^{*} \rightarrow \mathbb{N}$ be such that $\operatorname{msbf}(w)$ is the number represented by w in the "most significant bit first" encoding ${ }^{1}$. For example,

$$
\operatorname{msbf}(1010)=10, \operatorname{msbf}(100)=4, \operatorname{msbf}(0011)=3
$$

For every $n \geq 2$, let us define the following language:

$$
M_{n}=\left\{w \in\{0,1\}^{*}: \operatorname{msbf}(w) \text { is a multiple of } n\right\}
$$

(a) Show that M_{3} has (exactly) three residuals, i.e. show that $\left|\left\{\left(M_{3}\right)^{w}: w \in\{0,1\}^{*}\right\}\right|=3$.
(b) Show that M_{4} has less than four residuals.
(c) Show that M_{p} has (exactly) p residuals for every prime number p. You may use the fact that, by Fermat's little theorem, $2^{p-1} \equiv 1(\bmod p)$.
[Hint: For every $0 \leq i<p$, consider the word u_{i} such that $\left|u_{i}\right|=p-1$ and $\operatorname{msbf}\left(u_{i}\right)=i$.]

[^0]
Solution 2.1

- For $(a a+b b)^{*}$. We give the residuals as regular expressions: $(a a+b b)^{*}$ (residual with respect to $\left.\varepsilon\right)$; $a(a a+b b)^{*}$ (residual with respect to $\left.a\right) ; b(a a+b b)^{*}$ (residual with respect to b); \emptyset (residual with respect to $a b$). All other residuals are equal to one of these four.
- For $(a b c)^{*}$. We give the residuals as regular expressions: $(a b c)^{*}$ (residual of $\left.\varepsilon\right) ; b c(a b c)^{*}$ (residual of $\left.a\right)$; $c(a b c)^{*}$ (residual of $\left.a b\right) ; \emptyset$ (residual of b). All other residuals are equal to one of these three.
- For $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$: Every prefix of a word of the form $a^{n} b^{n} c^{n}$ has a different residual. For all other words the residual is the empty set. There are infinitely many residuals:
$-L^{\varepsilon}=L$,
- for every $i \geq 1$, we have a residual with respect to a^{i}, which is $L^{a^{i}}=\left\{a^{n-i} b^{n} c^{n} \mid n \geq i\right\}$,
- for every $n \geq i \geq 1$ we have a residual with respect to $a^{n} b^{i}$, which is $L^{a^{n} b^{i}}=\left\{b^{n-i} c^{n}\right\}$,
- for every $n \geq i \geq 1$ we have a residual with respect to $a^{n} b^{n} c^{i}$, which is $L^{a^{n} b^{n} c^{i}}=\left\{c^{n-i}\right\}$,
$-L^{b}=\emptyset$.
- Similarly for $L=\left\{a^{n} b^{3 n} \mid n \geq 0\right\}$, every prefix of a word of the form $a^{n} b^{3 n}$ has a different residual:
$-L^{\varepsilon}=L$,
- for every $i \geq 1$, we have a residual with respect to a^{i}, which is $L^{a^{i}}=\left\{a^{n-i} b^{3 n} \mid n \geq i\right\}$,
- for every $3 n \geq i \geq 1$ we have a residual with respect to $a^{n} b^{i}$, which is $L^{a^{n} b^{i}}=\left\{b^{3 n-i}\right\}$,
$-L^{b}=\emptyset$.

Solution 2.2

(a) $L=\left\{w w \mid w \in \Sigma^{*}\right\}$. First we prove that L has infinitely many residuals by showing that for each pair of words of the infinite set $\left\{0^{i} 1 \mid i \geq 0\right\}$ the corresponding residuals are not equal. Let $u=0^{i} 1, v=0^{j} 1 \in \Sigma^{*}$ two words with $i<j$. Then $L^{u} \neq L^{v}$ since $u \in L^{u}$, but $u \notin L^{v}$. For the second half consider some arbitrary word w. Then $w \in L^{w}$, which shows the statement.
(b) We observe that for all languages satisfying that property L^{w} has to be non-empty for all w and thus also infinite. Furthermore all these languages are not regular, since there are infinitely many residuals.
$L=\left\{a^{2^{n}} \mid n \geq 0\right\}$. Let a^{i} and a^{j} two distinct words. W.l.o.g. we assume $i<j$. Let now d_{i} and d_{j} denote the distance from i and j to resp. closest power of 2 . If $d_{i}<d_{j}$ holds, we are immediately done since $a^{d_{i}} \in L^{a^{i}}$ and $a^{d_{i}} \notin L^{a^{j}} . d_{i}>d_{j}$ is analogous. Thus assume $d_{i}=d_{j}$. Let us then define d_{i}^{\prime} and d_{j}^{\prime} denote the distance from i and j to resp. second closest power of 2 . These have to be unequal, since the gaps between the powers of 2 are strictly increasing and we can repeat the argument from before.

Solution 2.3

A) (a)

Iter.	Block to split	Splitter	New partition
0	-	-	$\{A, B, D, E, G, H\},\{C, F, I\}$
1	$\{A, B, D, E, G, H\}$	$(b,\{A, B, D, E, G, H\})$	$\{A, D, G\},\{B, E, H\},\{C, F, I\}$
2	none, partition is stable	-	-

The language partition is $P_{\ell}=\{\{A, D, G\},\{B, E, H\},\{C, F, I\}\}$.
(b) The minimal automaton is given below:

(c) $\Sigma \Sigma(a \Sigma \Sigma+b \Sigma)^{*}$.
B) (a)

Iter.	Block to split	Splitter	New partition
0	-	-	$\left\{q_{0}, q_{3}\right\},\left\{q_{1}, q_{2}, q_{4}\right\}$
1	$\left\{q_{1}, q_{2}, q_{4}\right\}$	$\left(b,\left\{q_{1}, q_{2}, q_{4}\right\}\right)$	$\left\{q_{0}, q_{3}\right\},\left\{q_{1}\right\},\left\{q_{2}, q_{4}\right\}$
2	$\left\{q_{2}, q_{4}\right\}$	$\left(a,\left\{q_{0}, q_{3}\right\}\right)$	$\left\{q_{0}, q_{3}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{4}\right\}$
3	none, partition is stable	-	-

The language partition is $P_{\ell}=\left\{\left\{q_{0}, q_{3}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{4}\right\}\right\}$.
(b)

(c) $(a a+b b)^{*}$ or $\left((a a)^{*}(b b)^{*}\right)^{*}$.

Solution 2.4

(a) The following DFA accepts M_{3}. The states represent congruence classes w.r.t. the modulo 3 relation.

As this DFA has three states, therefore M_{3} has at most three residuals. We claim that M_{3} has at least three residuals. To prove this claim, it suffices to show that the ε-residual $\left(M_{3}^{\varepsilon}\right), 1$-residual $\left(M_{3}^{1}\right)$ and 10-residual (M_{3}^{10}) of M_{3} are distinct.

- Since $\varepsilon \cdot \varepsilon \in M_{3}$ and $1 \cdot \varepsilon \notin M_{3}$, we know that $\varepsilon \in M_{3}^{\varepsilon}$ but $\varepsilon \notin M_{3}^{1}$, and thus $M_{3}^{\varepsilon} \neq M_{3}^{1}$.
- Since $\varepsilon \cdot \varepsilon \in M_{3}$ and $10 \cdot \varepsilon \notin M_{3}$, we know that $\varepsilon \in M_{3}^{\varepsilon}$ but $\varepsilon \notin M_{3}^{10}$, and thus $M_{3}^{\varepsilon} \neq M_{3}^{10}$.
- Since $1 \cdot 1 \in M_{3}$ and $10 \cdot 1 \notin M_{3}$, we know that $1 \in M_{3}^{1}$ but $1 \notin M_{3}^{10}$, and thus $M_{3}^{1} \neq M_{3}^{10}$.
(b) The following DFA accepts M_{4}. You can obtain in two steps: (i) construct a DFA with four states that accepts M_{4}, where each state represents a congruence class w.r.t. the modulo 4 relation, (ii) minimize it.

As it has three states, M_{4} has at most three residuals.
(c) A DFA accepting M_{p} can be defined as $A_{p}=\left(Q_{p},\{0,1\}, \delta_{p}, 0,\{0\}\right)$ where

$$
\begin{aligned}
Q_{p} & =\{0,1, \ldots, p-1\} \\
\delta_{p}(q, b) & =(2 q+b) \bmod p \text { for every } q \in Q_{p} \text { and } b \in\{0,1\} .
\end{aligned}
$$

As this DFA has p states, then M_{p} has at most p residuals. It remains to show that M_{p} has at least p residuals. For every $0 \leq i<p$, let u_{i} be the word such that $\left|u_{i}\right|=p-1$ and $\operatorname{msbf}\left(u_{i}\right)=i$. Note that u_{i} exists since the smallest encoding of i has at most $p-1$ bits, and it can be extended to length $p-1$ by padding with zeros on the left. Let us show that the u_{i}-residual and u_{j}-residual of M_{p} are distinct for every $0 \leq i, j<p$ such that $i \neq j$. Let $0 \leq k<p$, and let $\ell=(p-i) \bmod p$. We have:

$$
\begin{aligned}
\operatorname{msbf}\left(u_{k} u_{\ell}\right) & =2^{\left|u_{\ell}\right|} \cdot \operatorname{msbf}\left(u_{k}\right)+\operatorname{msbf}\left(u_{\ell}\right) \\
& =2^{p-1} \cdot k+((p-i) \bmod p) \\
& \equiv k+((p-i) \bmod p) \quad \text { (by Fermat's little theorem) } \\
& \equiv k+p-i \\
& \equiv k-i .
\end{aligned}
$$

Let $0 \leq i, j<p$ be such that $i \neq j$. We have $u_{i} u_{\ell} \in M_{p}$ since $\operatorname{msbf}\left(u_{i} u_{\ell}\right) \equiv i-i \equiv 0$, but we have $u_{j} u_{\ell} \notin M_{p}$ since $\operatorname{msbf}\left(u_{j} u_{\ell}\right) \equiv j-i \not \equiv 0$. Therefore, the u_{i}-residual and u_{j}-residual of M_{p} are distinct.

[^0]: ${ }^{1}$ Recall this type of encoding from Exercise 1.4 from the previous exercise sheet. In contrast to the function MSBF, this one (msbf) maps an encoding to its corresponding natural number.

