
Technische Universität München Winter term 2020/21
I7
Prof. J. Esparza / M. Lazić / C. Weil-Kennedy

Automata and Formal Languages — Exercise Sheet 2

Exercise 2.1

Determine the residuals of the following languages:

(a) (aa+ bb)∗ over Σ = {a, b},

(b) (abc)∗ over Σ = {a, b, c},

(c) {anbncn | n ≥ 0} over Σ = {a, b, c},

(d) {anb3n | n ≥ 0} over Σ = {a, b}.

Exercise 2.2

(a) Let Σ = {0, 1} be an alphabet.

Find a language L ⊆ Σ∗ that has infinitely many residuals and |Lw| > 0 for all w ∈ Σ∗.

(b) Let Σ = {a} be an alphabet.

Find a language L ⊆ Σ∗, such that Lw = Lw′
=⇒ w = w′ for all words w,w′ ∈ Σ∗.

What can you say about the residuals for such a language L? Is such a language regular?

Exercise 2.3

Let A and B be respectively the following DFAs:
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(a) Compute the language partitions of A and B.

(b) Construct the quotients of A and B with respect to their language partitions.



(c) Give regular expressions for L(A) and L(B).

Exercise 2.4

Let msbf : {0, 1}∗ → N be such that msbf(w) is the number represented by w in the “most significant bit first”
encoding1. For example,

msbf(1010) = 10, msbf(100) = 4, msbf(0011) = 3.

For every n ≥ 2, let us define the following language:

Mn = {w ∈ {0, 1}∗ : msbf(w) is a multiple of n}.

(a) Show that M3 has (exactly) three residuals, i.e. show that |{(M3)w : w ∈ {0, 1}∗}| = 3.

(b) Show that M4 has less than four residuals.

(c) Show that Mp has (exactly) p residuals for every prime number p. You may use the fact that, by Fermat’s
little theorem, 2p−1 ≡ 1 (mod p).

[Hint: For every 0 ≤ i < p, consider the word ui such that |ui| = p− 1 and msbf(ui) = i.]

1Recall this type of encoding from Exercise 1.4 from the previous exercise sheet. In contrast to the function MSBF, this one
(msbf) maps an encoding to its corresponding natural number.



Solution 2.1

• For (aa + bb)∗. We give the residuals as regular expressions: (aa + bb)∗ (residual with respect to ε);
a(aa+ bb)∗ (residual with respect to a); b(aa+ bb)∗ (residual with respect to b); ∅ (residual with respect
to ab). All other residuals are equal to one of these four.

• For (abc)∗. We give the residuals as regular expressions: (abc)∗ (residual of ε); bc(abc)∗ (residual of a);
c(abc)∗ (residual of ab); ∅ (residual of b). All other residuals are equal to one of these three.

• For L = {anbncn | n ≥ 0}: Every prefix of a word of the form anbncn has a different residual. For all
other words the residual is the empty set. There are infinitely many residuals:

– Lε = L,

– for every i ≥ 1, we have a residual with respect to ai, which is Lai

= {an−ibncn | n ≥ i},
– for every n ≥ i ≥ 1 we have a residual with respect to anbi, which is Lanbi = {bn−icn},
– for every n ≥ i ≥ 1 we have a residual with respect to anbnci, which is Lanbnci = {cn−i},
– Lb = ∅.

• Similarly for L = {anb3n | n ≥ 0}, every prefix of a word of the form anb3n has a different residual:

– Lε = L,

– for every i ≥ 1, we have a residual with respect to ai, which is Lai

= {an−ib3n | n ≥ i},
– for every 3n ≥ i ≥ 1 we have a residual with respect to anbi, which is Lanbi = {b3n−i},
– Lb = ∅.

Solution 2.2

(a) L = {ww | w ∈ Σ∗}. First we prove that L has infinitely many residuals by showing that for each pair of
words of the infinite set {0i1 | i ≥ 0} the corresponding residuals are not equal. Let u = 0i1, v = 0j1 ∈ Σ∗

two words with i < j. Then Lu 6= Lv since u ∈ Lu, but u 6∈ Lv. For the second half consider some
arbitrary word w. Then w ∈ Lw, which shows the statement.

(b) We observe that for all languages satisfying that property Lw has to be non-empty for all w and thus also
infinite. Furthermore all these languages are not regular, since there are infinitely many residuals.

L = {a2n | n ≥ 0}. Let ai and aj two distinct words. W.l.o.g. we assume i < j. Let now di and dj denote
the distance from i and j to resp. closest power of 2. If di < dj holds, we are immediately done since

adi ∈ Lai

and adi /∈ Laj

. di > dj is analogous. Thus assume di = dj . Let us then define d′i and d′j denote
the distance from i and j to resp. second closest power of 2. These have to be unequal, since the gaps
between the powers of 2 are strictly increasing and we can repeat the argument from before.

Solution 2.3

A) (a)

Iter. Block to split Splitter New partition

0 — — {A,B,D,E,G,H}, {C,F, I}
1 {A,B,D,E,G,H} (b, {A,B,D,E,G,H}) {A,D,G}, {B,E,H}, {C,F, I}
2 none, partition is stable — —

The language partition is P` = {{A,D,G}, {B,E,H}, {C,F, I}}.
(b) The minimal automaton is given below:

[A]P`
[B]P`

[C]P`
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(c) ΣΣ(aΣΣ + bΣ)∗.

B) (a)

Iter. Block to split Splitter New partition

0 — — {q0, q3}, {q1, q2, q4}
1 {q1, q2, q4} (b, {q1, q2, q4}) {q0, q3}, {q1}, {q2, q4}
2 {q2, q4} (a, {q0, q3}) {q0, q3}, {q1}, {q2}, {q4}
3 none, partition is stable — —

The language partition is P` = {{q0, q3}, {q1}, {q2}, {q4}}.
(b)
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Solution 2.4

(a) The following DFA accepts M3. The states represent congruence classes w.r.t. the modulo 3 relation.
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As this DFA has three states, therefore M3 has at most three residuals. We claim that M3 has at least
three residuals. To prove this claim, it suffices to show that the ε-residual (Mε

3 ), 1-residual (M1
3 ) and

10-residual (M10
3 ) of M3 are distinct.

• Since ε · ε ∈M3 and 1 · ε 6∈M3, we know that ε ∈Mε
3 but ε 6∈M1

3 , and thus Mε
3 6= M1

3 .

• Since ε · ε ∈M3 and 10 · ε 6∈M3, we know that ε ∈Mε
3 but ε 6∈M10

3 , and thus Mε
3 6= M10

3 .

• Since 1 · 1 ∈M3 and 10 · 1 6∈M3, we know that 1 ∈M1
3 but 1 6∈M10

3 , and thus M1
3 6= M10

3 .

(b) The following DFA accepts M4. You can obtain in two steps: (i) construct a DFA with four states that
accepts M4, where each state represents a congruence class w.r.t. the modulo 4 relation, (ii) minimize it.
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As it has three states, M4 has at most three residuals.



(c) A DFA accepting Mp can be defined as Ap = (Qp, {0, 1}, δp, 0, {0}) where

Qp = {0, 1, . . . , p− 1},
δp(q, b) = (2q + b) mod p for every q ∈ Qp and b ∈ {0, 1}.

As this DFA has p states, then Mp has at most p residuals. It remains to show that Mp has at least p
residuals. For every 0 ≤ i < p, let ui be the word such that |ui| = p − 1 and msbf(ui) = i. Note that
ui exists since the smallest encoding of i has at most p − 1 bits, and it can be extended to length p − 1
by padding with zeros on the left. Let us show that the ui-residual and uj-residual of Mp are distinct for
every 0 ≤ i, j < p such that i 6= j. Let 0 ≤ k < p, and let ` = (p− i) mod p. We have:

msbf(uku`) = 2|u`| ·msbf(uk) + msbf(u`)

= 2p−1 · k + ((p− i) mod p)

≡ k + ((p− i) mod p) (by Fermat’s little theorem)

≡ k + p− i
≡ k − i.

Let 0 ≤ i, j < p be such that i 6= j. We have uiu` ∈ Mp since msbf(uiu`) ≡ i − i ≡ 0, but we have
uju` 6∈Mp since msbf(uju`) ≡ j− i 6≡ 0. Therefore, the ui-residual and uj-residual of Mp are distinct.


