Automata and Formal Languages - Exercise Sheet 1

You can find additional exercises in the Automata Tutor tool, for which the course name and password are available on the Moodle website for "Lecture and Exercises for Automata and Formal Languages (IN2041)". If you are enrolled for the course "Exercise - Automata and Formal Languages (IN2041)" in TUM online, you automatically have access to the Moodle website.

Exercise 1.1

Give a regular expression and a NFA for the language of all words over $\Sigma=\{a, b\} \ldots$

1. ... beginning and ending with a.
2. ...such that the third letter from the right is a b.

3that can be obtained from babbab by deleting letters.
4. ... with no occurrences of the subword bba.
5. ... with at most one occurrence of the subword bba.

Exercise 1.2

Let A, B and C be three languages.

1. Prove that if $A \subseteq B C$ then $A^{*} \subseteq\left(B^{*}+C^{*}\right)^{*}$. Is the converse true?
2. Prove that the languages of $\left((a+b a)^{*}+b^{*}\right)^{*}$ and $(a+b)^{*}$ are the same.

Exercise 1.3

Consider the language $L \subseteq\{a, b\}^{*}$ given by the regular expression $a^{*} b(b a)^{*} a$.

1. Give an NFA that accepts L.
2. Give a DFA that accepts L.

Exercise 1.4

Let $\Sigma=\{a, b\}$ and let $\Sigma^{*}=(a+b)^{*}$. Suppose $w=a_{1} a_{2} \ldots a_{n}$ where each $a_{i} \in \Sigma$. Then the upward closure of a word w is defined as the set

$$
\uparrow w=\left\{u_{1} a_{1} u_{2} a_{2} \ldots u_{n} a_{n} u_{n+1}: u_{1}, u_{2}, \ldots, u_{n+1} \in \Sigma^{*}\right\}
$$

The upward closure of a language L is defined as the set $\uparrow L=\cup_{w \in L} \uparrow w$.

1. Give an algorithm that takes as input a regular expression r and outputs a regular expression $\uparrow r$ such that $\mathcal{L}(\uparrow r)=\uparrow(\mathcal{L}(r))$.
2. Give an algorithm that takes as input an NFA A and outputs an NFA B with exactly the same number of states as A such that $\mathcal{L}(B)=\uparrow \mathcal{L}(A)$.

Solution 1.1

We write Σ for $(a+b)$ and Σ^{*} for $(a+b)^{*}$.

1. $a+\left(a \Sigma^{*} a\right)$

2. $\Sigma^{*} b \Sigma \Sigma$

3. $(b+\epsilon)(a+\epsilon)(b+\epsilon)(b+\epsilon)(a+\epsilon)(b+\epsilon)$

One possible NFA for the language is the following. Note that every state of this NFA is initial and accepting. There are 7 states, labelled by $0,1,2,3,4,5$ and 6 . From 0 , upon reading a b, we can go to any state strictly bigger than 0 ; From 1 , upon reading an a, we can go to any state strictly bigger than 1 , and so on.

4. $(a+b a)^{*} b^{*}$

5. $\left((a+b a)^{*} b^{*}\right)+\left((a+b a)^{*} b^{*}(b b a)(a+b a)^{*} b^{*}\right)$

Solution 1.2

1. Suppose $A \subseteq B C$. First, we show that $A^{*} \subseteq(B C)^{*}$. Indeed, if $w \in A^{*}$, then w can be decomposed as $w_{1} w_{2} \ldots w_{n}$ for some number n such that each $w_{i} \in A$. Since $A \subseteq B C$, it follows that each $w_{i} \in B C$ and so $w \in(B C)^{*}$.
Now, we show that $(B C)^{*} \subseteq\left(B^{*}+C^{*}\right)^{*}$. If $w \in(B C)^{*}$ then w can be decomposed as $w_{1} w_{2} \ldots w_{n}$ for some number n such that each $w_{i} \in B C$. Since each $w_{i} \in B C$, it follows that each w_{i} can be further decomposed as $u_{i} v_{i}$ where $u_{i} \in B$ and $v_{i} \in C$. Hence $w=u_{1} v_{1} u_{2} v_{2} \ldots u_{n} v_{n}$ and since each $u_{i}, v_{i} \in B+C \subseteq B^{*}+C^{*}$, it follows that $w \in\left(B^{*}+C^{*}\right)^{*}$.
2. Let $U=(a+b), V=(a+b a)^{*}$ and $W=b^{*}$. We then have that $U \subseteq V W$ and so by the previous subpart, we have that $U^{*} \subseteq\left(V^{*}+W^{*}\right)^{*}$. Since $V^{*}=V$ and $W^{*}=W$, it follows that $(a+b)^{*} \subseteq\left((a+b a)^{*}+b^{*}\right)^{*}$. Further, since $(a+b)^{*}$ is the set of all words over $\{a, b\}$, we have that $\left((a+b a)^{*}+b^{*}\right)^{*} \subseteq(a+b)^{*}$. The desired claim then follows.

Solution 1.3

1. NFA accepting L

2. DFA accepting L

Solution 1.4

1. We define $\uparrow r$ by induction on the regular expression r :

- If $r=\emptyset$, then we set $\uparrow r=\emptyset$
- If $r=\epsilon$, then we set $\uparrow r=\Sigma^{*}$
- If $r=x$ for some $x \in\{a, b\}$, then we set $\uparrow r=\Sigma^{*} x \Sigma^{*}$
- If $r=r_{1}+r_{2}$ for some r_{1} and r_{2}, then we set $\uparrow r=\left(\uparrow r_{1}\right)+\left(\uparrow r_{2}\right)$
- If $r=r_{1} r_{2}$ for some r_{1} and r_{2}, then we set $\uparrow r=\left(\uparrow r_{1}\right)\left(\uparrow r_{2}\right)$
- If $r=\left(r_{1}\right)^{*}$ for some r_{1}, then we set $\uparrow r=\Sigma^{*}$. Note that if $r=\left(r_{1}\right)^{*}$ for some r_{1}, then $\epsilon \in \mathcal{L}(r)$ and so $\uparrow \mathcal{L}(r)$ must contain every word.

2. Let A be an NFA recognizing a language L. We construct the NFA B from A as follows: Corresponding to every state q of A and every letter $x \in\{a, b\}$, we add a self-loop transition (q, x, q). These new transitions will be referred to as special transitions. We now claim that $\mathcal{L}(B)=\uparrow L$.
Suppose $w \in \uparrow L$. Hence, $w=u_{1} a_{1} u_{2} a_{2} \ldots u_{n} a_{n} u_{n+1}$ for some words u_{1}, \ldots, u_{n+1} and letters a_{1}, \ldots, a_{n} such that $w^{\prime}:=a_{1} a_{2} \ldots a_{n} \in L$. Hence, there is an accepting run $\rho:=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} q_{2} \ldots q_{n-1} \xrightarrow{a_{n}} q_{n}$ of
A on the word w^{\prime}. Now, notice that $q_{0} \xrightarrow{u_{1}} q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{u_{2}} q_{1} \xrightarrow{a_{2}} q_{1} \ldots q_{n-1} \xrightarrow{a_{n}} q_{n} \xrightarrow{u_{n+1}} q_{n}$ is an accepting run of B on the word w. (Here $q_{i} \xrightarrow{u_{i+1}} q_{i}$ denotes that starting from the state q_{i}, there is a run on the word u_{i+1} which ends at $\left.q_{i}\right)$. This implies that $w \in \mathcal{L}(B)$.
Suppose ρ is an accepting run of B on the word w. We now prove that $w \in \uparrow L$ by induction on the number of special transitions of ρ. If ρ has no special transitions, then ρ is also a run of A on w and so $w \in L \subseteq \uparrow L$. For the induction step, suppose ρ has $k+1$ special transitions for some $k \geq 0$. Let $w=w_{1} w_{2} \ldots w_{n}$ with each $w_{i} \in \Sigma$ and let $\rho=q_{0} \xrightarrow{w_{0}} q_{1} \xrightarrow{w_{1}} q_{2} \ldots q_{n-1} \xrightarrow{w_{n}} q_{n}$. Let $q_{i} \xrightarrow{w_{i+1}} q_{i+1}$ be the first special transition along ρ. Since this is a special transition, it must be the case that $q_{i}=q_{i+1}$. Let w^{\prime} be the word obtained from w by deleting the letter w_{i+1} at the $(i+1)^{t h}$ position and let ρ^{\prime} be the accepting run of B on w^{\prime} obtained from ρ by deleting the transition $q_{i} \xrightarrow{w_{i+1}} q_{i}$. Since ρ^{\prime} has only k special transitions, by induction hypothesis, $w^{\prime} \in \uparrow L$. Since w can be obtained from w^{\prime} by adding a letter, it follows that $w \in \uparrow L$ as well, thereby finishing the proof.
