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Automata and Formal Languages — Exercise Sheet 1

You can find additional exercises in the Automata Tutor tool, for which the course name and password are
available on the Moodle website for “Lecture and Exercises for Automata and Formal Languages (IN2041)”.
If you are enrolled for the course “Exercise - Automata and Formal Languages (IN2041)” in TUM online, you
automatically have access to the Moodle website.

Exercise 1.1

Give a regular expression and a NFA for the language of all words over Σ = {a, b} . . .

1. . . . beginning and ending with a.

2. . . . such that the third letter from the right is a b.

3. . . . that can be obtained from babbab by deleting letters.

4. . . . with no occurrences of the subword bba.

5. . . . with at most one occurrence of the subword bba.

Exercise 1.2

Let A,B and C be three languages.

1. Prove that if A ⊆ BC then A∗ ⊆ (B∗ + C∗)∗. Is the converse true?

2. Prove that the languages of ((a+ ba)∗ + b∗)∗ and (a+ b)∗ are the same.

Exercise 1.3

Consider the language L ⊆ {a, b}∗ given by the regular expression a∗b(ba)∗a.

1. Give an NFA that accepts L.

2. Give a DFA that accepts L.

Exercise 1.4

Let Σ = {a, b} and let Σ∗ = (a+ b)∗. Suppose w = a1a2 . . . an where each ai ∈ Σ. Then the upward closure of
a word w is defined as the set

↑ w = {u1a1u2a2 . . . unanun+1 : u1, u2, . . . , un+1 ∈ Σ∗}

The upward closure of a language L is defined as the set ↑ L = ∪w∈L ↑ w.

1. Give an algorithm that takes as input a regular expression r and outputs a regular expression ↑ r such
that L(↑ r) =↑ (L(r)).

2. Give an algorithm that takes as input an NFA A and outputs an NFA B with exactly the same number
of states as A such that L(B) =↑ L(A).



Solution 1.1

We write Σ for (a+ b) and Σ∗ for (a+ b)∗.

1. a+ (aΣ∗a)
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2. Σ∗bΣΣ

a, b

b a, b a, b

3. (b+ ϵ)(a+ ϵ)(b+ ϵ)(b+ ϵ)(a+ ϵ)(b+ ϵ)

One possible NFA for the language is the following. Note that every state of this NFA is initial and
accepting. There are 7 states, labelled by 0, 1, 2, 3, 4, 5 and 6. From 0, upon reading a b, we can go to
any state strictly bigger than 0; From 1, upon reading an a, we can go to any state strictly bigger than 1,
and so on.
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4. (a+ ba)∗b∗
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5. ((a+ ba)∗b∗) + ((a+ ba)∗b∗(bba)(a+ ba)∗b∗)
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Solution 1.2

1. Suppose A ⊆ BC. First, we show that A∗ ⊆ (BC)∗. Indeed, if w ∈ A∗, then w can be decomposed as
w1w2 . . . wn for some number n such that each wi ∈ A. Since A ⊆ BC, it follows that each wi ∈ BC and
so w ∈ (BC)∗.

Now, we show that (BC)∗ ⊆ (B∗+C∗)∗. If w ∈ (BC)∗ then w can be decomposed as w1w2 . . . wn for some
number n such that each wi ∈ BC. Since each wi ∈ BC, it follows that each wi can be further decomposed
as uivi where ui ∈ B and vi ∈ C. Hence w = u1v1u2v2 . . . unvn and since each ui, vi ∈ B +C ⊆ B∗ +C∗,
it follows that w ∈ (B∗ + C∗)∗.

2. Let U = (a+ b), V = (a+ ba)∗ and W = b∗. We then have that U ⊆ VW and so by the previous subpart,
we have that U∗ ⊆ (V ∗ +W ∗)∗. Since V ∗ = V and W ∗ = W , it follows that (a+ b)∗ ⊆ ((a+ ba)∗ + b∗)∗.
Further, since (a + b)∗ is the set of all words over {a, b}, we have that ((a + ba)∗ + b∗)∗ ⊆ (a + b)∗. The
desired claim then follows.

Solution 1.3

1. NFA accepting L
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2. DFA accepting L
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Solution 1.4

1. We define ↑ r by induction on the regular expression r:

• If r = ∅, then we set ↑ r = ∅
• If r = ϵ, then we set ↑ r = Σ∗

• If r = x for some x ∈ {a, b}, then we set ↑ r = Σ∗xΣ∗

• If r = r1 + r2 for some r1 and r2, then we set ↑ r = (↑ r1) + (↑ r2)

• If r = r1r2 for some r1 and r2, then we set ↑ r = (↑ r1)(↑ r2)

• If r = (r1)
∗ for some r1, then we set ↑ r = Σ∗. Note that if r = (r1)

∗ for some r1, then ϵ ∈ L(r) and
so ↑ L(r) must contain every word.

2. Let A be an NFA recognizing a language L. We construct the NFA B from A as follows: Corresponding to
every state q of A and every letter x ∈ {a, b}, we add a self-loop transition (q, x, q). These new transitions
will be referred to as special transitions. We now claim that L(B) = ↑ L.

Suppose w ∈ ↑ L. Hence, w = u1a1u2a2 . . . unanun+1 for some words u1, . . . , un+1 and letters a1, . . . , an
such that w′ := a1a2 . . . an ∈ L. Hence, there is an accepting run ρ := q0

a1−→ q1
a2−→ q2 . . . qn−1

an−−→ qn of



A on the word w′. Now, notice that q0
u1−→ q0

a1−→ q1
u2−→ q1

a2−→ q1 . . . qn−1
an−−→ qn

un+1−−−→ qn is an accepting

run of B on the word w. (Here qi
ui+1−−−→ qi denotes that starting from the state qi, there is a run on the

word ui+1 which ends at qi). This implies that w ∈ L(B).

Suppose ρ is an accepting run of B on the word w. We now prove that w ∈ ↑ L by induction on the
number of special transitions of ρ. If ρ has no special transitions, then ρ is also a run of A on w and
so w ∈ L ⊆ ↑ L. For the induction step, suppose ρ has k + 1 special transitions for some k ≥ 0. Let

w = w1w2 . . . wn with each wi ∈ Σ and let ρ = q0
w0−−→ q1

w1−−→ q2 . . . qn−1
wn−−→ qn. Let qi

wi+1−−−→ qi+1 be
the first special transition along ρ. Since this is a special transition, it must be the case that qi = qi+1.
Let w′ be the word obtained from w by deleting the letter wi+1 at the (i + 1)th position and let ρ′ be

the accepting run of B on w′ obtained from ρ by deleting the transition qi
wi+1−−−→ qi. Since ρ′ has only

k special transitions, by induction hypothesis, w′ ∈ ↑ L. Since w can be obtained from w′ by adding a
letter, it follows that w ∈ ↑ L as well, thereby finishing the proof.


