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• During the attendance check a sticker containing a unique code will be put on this exam.
• This code contains a unique number that associates this exam with your registration

number.
• This number is printed both next to the code and to the signature field in the attendance

check list.

Automata and Formal Languages

Exam: IN2041 / Retake Date: Wednesday 3rd April, 2024
Examiner: Prof. Javier Esparza Time: 17:00 – 19:00
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Working instructions
• This exam consists of 12 pages with a total of 7 problems including two bonus questions.

Please make sure now that you received a complete copy of the exam.

• The total amount of achievable credits in this exam is 80 credits.

• To pass the exam, 35 credits are sufficient.

• Detaching pages from the exam is prohibited.

• Allowed resources:

– one analog dictionary English↔ native language

• Subproblems marked by * can be solved without results of previous subproblems.

• The points of the bonus problems count for your grade, but we disregard them when calculating the
grading scheme. In particular, to receive the best grade it suffices to achieve all non-bonus points.

• Answers are only accepted if the solution approach is documented. Give a reason for each
answer unless explicitly stated otherwise in the respective subproblem.

• Do not write with red or green colors nor use pencils.

• Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from to / Early submission at
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Problem 1 Quiz (19 credits)

Please answer the following questions. For true/false questions, provide a justification of your answer for
“true” answers, and a counterexample for “false” answers. Otherwise no points will be awarded! We use
Σ := {a, b} as alphabet in this exercise.

a)* Let A , B ⊆ Σ∗. True or false: if A ⊆ B and B is regular, then A is regular.

True × False

Let B := Σ∗ and A any non-regular language (e.g. A := {anbn : n ∈ N}).

b)* Let L ⊆ Σ∗ denote the language of words that do not contain bba. True or false: every NFA N for L has at
least 4 states.

True × False

0 1 2

a

b

a

b

b

c)* Give an ω-regular expression r for the language of this Büchi automaton over the alphabet {a, b}. Either
use the algorithm from the lecture or justify your answer.

0 1 2

a

b

a

a

b

b

Using the algorithm from the lecture, we have r1
0 = a∗b, r2

0 = (a + ba)∗(a + bb), r1
1 = aa∗b, r2

2 = b, so
r = r1

0 (r1
1 )ω + r2

0 (r2
2 )ω = a∗b(aa∗b)ω + (a + ba)∗(a + bb)bω.

Alternative solution: To be accepted, a word must visit either state 1 or state 2 infinitely often. For
the former, it must take the b-transition of state 0 infinitely often, and that is sufficient, so we have
(a∗ba)ω. For the latter, we must first reach state 2. So we can first visit state 0 an arbitrary number of
times with (a + ba)∗ (and afterwards never visit 0 again, before reaching 2). Now we reach 2 via a + bb.
We then read 2 infinitely often via bω. In total, we have (a∗ba)ω + (a + ba)∗(a + bb)bω.

d)* Let AP = {p, q} be a set of atomic propositions. Give an LTL formula φ over AP such that L (φ) is the set
of all computations where exactly one atomic proposition in AP occurs infinitely often.

GFp ↔ ¬GFq
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e)* We say that a letter is isolated, if it is neither preceded nor followed by an occurrence of the same letter.
For example, in the word aaabaababω the three highlighted letters are isolated.
Let L ⊆ Σω denote the language of ω-words where only a finite number of letters are isolated. Give a
Büchi-automaton for L with at most 5 states.

0 1 2

3

a, b

a, b
a

a
bb

a

b

f)* Let L ⊆ Σω denote an ω-regular (!) language and let L ′ ⊆ Σ∗ denote the finite prefixes of words in L , i.e.
L ′ := {u ∈ Σ∗ | ∃ v ∈ Σω : uv ∈ L}. True or false: L ′ is regular.

× True False

Let M denote a Büchi automaton for L , and let M′ denote the NFA that is identical to M, except that a
state q is final in M′ if there is an infinite accepting run starting at q in M. Then M′ accepts L ′.

g)* Bonus question: Let L ⊆ Σ∗. True or false: if L ∪ LR is regular, then so is L .

True × False

Consider the language L = {anbn : n > 0} ∪ {b}Σ∗{a}. Clearly, L is not regular, as L ∩ {a}∗{b}∗ =
{anbn : n > 0}. But we have that L ∪ LR is the language of nonempty words where the first and last
letter are distinct, which is regular.
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Problem 2 Minimal Power (8 credits)

Consider the following NFA N over the alphabet Σ := {a, b}.

0 1 2

3 4

a

a

a

a

b a

b

a

a, b
b

a)* Convert N into an equivalent DFA M using the power set construction from the lecture. A template for M
is given below. Complete it by annotating each transition with the corresponding letter(s), and by marking the
final states.

q r s t

u v w

a

b

a, b

a

b

a

b

a

b

a

b

a

b

node set
q {0}
r ∅
s {1, 2, 4}
t {1, 2, 3, 4}
u {1, 2, 3}
v {1, 4}
w {0, 1, 4}

b) Partition the set of states of M into equivalence classes.
Note: It suffices to provide the partition.

{q}, {r}, {s, t , u}, {v, w}
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Problem 3 Residuals (18 credits)

Let L , L1, L2 be regular languages with n residuals. Prove or disprove:

a)* L has exactly n residuals.

× True False

Let M denote the minimal DFA for L (with n states). By making every final state non-final and vice
versa, we obtain a DFA with n states for L with n states, so L has at most n residuals. If it had
m < n residuals, then we can apply the same argument to find that L = L has at most m residuals, a
contradiction, since m < n.

b)* L1 ∪ L2 has at most n2 residuals.

× True False

Let M1, M2 denote minimal DFAs for L1 and L2, respectively (each with n states). Using the pairing
construction, we get a DFA for L1 ∪ L2 with n2 states, so it has at most n2 residuals.

c)* L1L2 has at least n residuals.

True × False

Let Σ := {a, b} and L1 := L2 := Σ∗ \ {aa}. Then we have n = 4. To see this, we note that from (a)
we have that L1 has precisely as many residuals as L1 = {aa}, and there we have {aa}, {a}, {ε}, ∅.
However, L1L2 = Σ∗, since for any w ̸= aa we have w ∈ L1 and ε ∈ L2, and for w = aa we have
a ∈ L1 = L2. Of course, Σ∗ has only 1 residual.
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d)* Bonus question: L1L2 has at most 2n residuals.

True × False

Let Σ := {a, b} and k ∈ N. We set L1 := Σ2k−1Σ∗ and L2 := {xux : u ∈ Σk−2, x ∈ Σ}. Then L2 has the
residual languages L2, ∅,Σk−2{a}, ...,Σ0{a},Σk−2{b}, ...,Σ0{b}, so 2k distinct ones. Moreover, L1 has
the residuals Σ2k−1Σ∗, ...,Σ0Σ∗, so also 2k in total.
We now claim that L1L2 has at least 2k−1 residuals. It suffices to show that Σ∗L2 has 2k−1 residuals, as
(L1L2)a2k−i

= Σ∗L2. Let u, v ∈ Σk−1 be arbitrary, with u ̸= v. Since u ̸= v, there is some i ∈ {1, ..., k − 1}
with ui ̸= vi . Let w := a i−1ui . Then uw ∈ Σ∗L2, but vw /∈ Σ∗L2, as ui ̸= vi .
Since |Σk−1| = 2k−1, the claim follows. Finally, we choose a suitable k , e.g. k := 6. We get n = 2k = 12
and 2k−1 = 32 > 2n = 24.
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Problem 4 Fixed-length Languages (10 credits)

Let Σ := {a1, ..., am} denote an alphabet. Consider the following algorithm:

diff (q1, q2)
Input: states q1, q2 of the master automaton recognising languages of the same length
Output: state recognising L (q1) \ L (q2)

1 if G(q1, q2) is not empty then return G(q1, q2)

2 if 1 then return q∅

3 else if 2 then return qε

4 else
5 forall i = 1, ..., m do 3
6 G(q1, q2)← make(r1, ..., rm)
7 return G(q1, q2)

a)* Complete the algorithm by giving contents of the boxes 1, 2 and 3, such that it fulfils its specification.

1: q1 = q∅ ∨ q2 = qε 2: q1 = qε ∧ q2 = q∅ 3: ri ← diff (qai
1 , qai

2 )

b)* Which of the following states pi are possible outputs of the above algorithm? Justify your answer.

p1

qε q∅

a b

a, b
a, b

a

b

a
b

p2

qε q∅

a b

a, b
a, b

a, b
a

b

p3

qε q∅

a b

a, b
a, b

a

b

a
b

p1 × p2 p3

p1 does not accept a fixed-length language. p2 does, and it is output e.g. on input p2, q∅. The DFA
rooted at p3 is not minimal (the two successors of p3 are equivalent), so it is not a possible output.

c)* We now modify the above algorithm by deleting line 1. Let n denote the total size of the automata rooted
at q1 and q2. Which of the following are true of the modified algorithm?

The algorithm is incorrect: it may produce a wrong result.

The algorithm is correct, but it may produce a different result than the unmodified algorithm.

× This modification does not change the output of the algorithm.

The running time is always polynomial in n.

× The running time may be exponential in n.
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Problem 5 MSO (6 credits)

These exercises ask you to give DFAs recognizing the languages of different formulas of monadic second-
order logic. You do not need to use the algorithm of the course to construct them. Pay attention to using
the correct alphabets. For example, a formula φ ∈ MSO(Σ) with one free variable x and Σ := {a, b} will use
the alphabet {a, b} × {0, 1}. The word abb with x = 2 then corresponds to [ a

0 ][ b
1 ][ b

0 ]. Note that the lower part
must contain exactly one 1, since x is a first-order variable.

a)* Let Σ1 = {a, b} and let φ1 = Qa(x) ∧ Qb (y) be a formula of MSO(Σ1). Give a DFA recognizing L (φ1).

a
0
0

 ,

b
0
0

 a
0
0

 ,

b
0
0



a
0
0

 ,

b
0
0

 a
0
0

 ,

b
0
0



a
1
0


b

0
1

 b
0
1


a

1
0



b)* Let Σ2 = {a} and let φ2 = ∃x x < y be a formula of MSO(Σ2). Give a DFA recognizing L (φ2).

[
a
0

] [
a
0

]
[
a
0

] [
a
1

]

c)* Let Σ3 = {a} and let φ3 = ∃x x ∈ X be a formula of MSO(Σ3). Give a DFA recognizing L (φ3).

[
a
0

] [
a
0

]
,
[
a
1

]
[
a
1

]
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Problem 6 LTL (9 credits)

In these exercises, we consider LTL formulas over the set AP = {p, q} of atomic propositions. Let Σ := 2AP =
{∅, {p}, {q}, {p, q}}.

a)* Give an ω-regular expression for the language of the formula GF(p ∧ Xq) over the alphabet Σ:

(
Σ∗({p} + {p, q})({q} + {p, q})

)ω

b)* Give a deterministic co-Büchi automaton recognizing the language of the formula FG(p ∧ Xq) over Σ.

Equivalently, we construct a deterministic Büchi automaton for ¬FG(p ∧ Xq) ⇔ GF(¬p ∨ X¬q) ⇔
GF(¬p ∨ ¬q).

{p, q}
∅, {p}, {q}

{p, q}

∅, {p}, {q}

c)* Give a Büchi automaton (deterministic or not) for the language of FG(p U q) over Σ.

Σ

Σ

{q}, {p, q}
{p}

{p}

{q}, {p, q}
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Problem 7 Relations (10 credits)

Let R ⊆ N × N be a relation on natural numbers. We say that a number n ∈ N has a two-loop w.r.t. R if
there exists m ̸= n such that (n, m) ∈ R and (m, n) ∈ R. (Important: n ̸= m !) We let TLR denote the set of all
numbers that have a two-loop w.r.t. R.

a) Give an algorithm satisfying the following specification:

• Input: a well-formed deterministic transducer recognizing a relation R ⊆ N× N in lsbf encoding.

Note: Recall that a transducer recognizes R if for every pair (n, m) ∈ R it accepts every encoding of
(n, m), and for every pair (n, m) /∈ R it accepts no encoding of (n, m).

• Output: NFA N recognizing the set TLR .

We have

n ∈ TLR

iff ∃m ∈ N : (n, m) ∈ R ∧ (m, n) ∈ R ∧ ¬(n = m)

iff ∃m ∈ N : (n, m) ∈ R ∧ (m, n) ∈ R ∧ (n, m) ∈ Id

iff ∃m ∈ N : (n, m) ∈ R ∩ R−1 ∩ Id

iff n ∈ Projection1(R ∩ R−1 ∩ Id)

b) Apply the algorithm of part (a) to the transducer below, giving enough information about the intermediate
steps. Interpret the result by describing TLR not as a language, but as a set of numbers. (Solutions like “the
set of numbers encoded by this language” get no points.)

0 1

[
0
0

]
,
[
1
0

] [
0
0

][
0
1

]

[
1
1

]

Hint: In the model solution, no intermediate automaton has more than 3 states.

Let us first draw the automata for R−1 and Id:

0 1

[
0
0

]
,
[
0
1

] [
0
0

][
1
0

]

[
1
1

] = ̸=

[
0
0

]
,
[
1
1

]
,
[
0
1

]
,
[
1
0

][
0
0

]
,
[
1
1

]

[
1
0

]
,
[
0
1

]
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We now apply the pairing construction to all three automata; so each generated state will be a triple
(q, p, r), with q, p ∈ {0, 1} and r ∈ {=, ̸=}.

0, 0, =

1, 0, ̸=

0, 1, ̸=

[
0
0

] [
0
1

]

[
1
0

]

[
0
0

]

[
0
0

]

Finally, we do a projection onto the first component (which includes taking the padding closure).

0, 0, =

1, 0, ̸=

0, 1, ̸=

0
0

1

0

0

So we obtain TLR = {0} ∪ {2n : n ∈ N}.
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Additional space for solutions–clearly mark the (sub)problem your answers are related to and strike
out invalid solutions.
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