
Chair for Foundations of Software Reliability and Theoretical Computer Science
School of Computation, Information and Technology
Technical University of Munich

Eexam
Place student sticker here

Note:
• During the attendance check a sticker containing a unique code will be put on this exam.
• This code contains a unique number that associates this exam with your registration

number.
• This number is printed both next to the code and to the signature field in the attendance

check list.

Automata and Formal Languages

Exam: IN2041 / Endterm Date: Wednesday 28th February, 2024
Examiner: Prof. Javier Esparza Time: 10:30 – 12:30

I

P 1 P 2 P 3 P 4 P 5 P 6 P 7

Working instructions
• This exam consists of 16 pages with a total of 7 problems including one bonus problem.

Please make sure now that you received a complete copy of the exam.

• The total amount of achievable credits in this exam is 80 credits.

• To pass the exam, 35 credits are sufficient.

• Detaching pages from the exam is prohibited.

• Allowed resources:

– one analog dictionary English ↔ native language

• Subproblems marked by * can be solved without results of previous subproblems.

• The points of the bonus problem count for your grade, but we disregard them when calculating the
grading scheme. In particular, to receive the best grade it suffices to achieve all non-bonus points.

• Answers are only accepted if the solution approach is documented. Give a reason for each
answer unless explicitly stated otherwise in the respective subproblem.

• Do not write with red or green colors nor use pencils.

• Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from to / Early submission at

– Page 1 / 16 –

0
1
2

0
1
2
3
4

0
1
2

0
1
2

Problem 1 Quiz (22 credits)

Please answer the following questions. For true/false questions, provide a justification of your answer for
“true” answers, and a counterexample for “false” answers. Otherwise no points will be awarded! We use
Σ := {a, b} as alphabet in this exercise.

a)* Let L ⊆ Σ∗. True or false: if L = LR , then L is regular.
Note: For a word w = a1...an, where a1, ..., an ∈ Σ, we write wR := an...a1 for the reverse of w, and define
LR := {wR : w ∈ L}.

True False

b)* True or false: every NFA M accepting the language L := {a, ab}2024 has at least 4048 states.

True False

c)* Construct a DFA with at most 5 states recognising the language of (a + bab)∗.

d)* Let L ⊆ Σ∗ denote the language of words where no b is preceded by an odd-length sequence of a, i.e. L
is generated by the RE ((aa)∗b)∗a∗. For example, ε, aabbba, baab ∈ L , and aabab /∈ L .
Construct an NFA N with L (N) = L and at most 5 states, such that all states of N are accepting.

– Page 2 / 16 –

e)* Let AP = {p, q} be a set of atomic propositions. Give an LTL formula φ over AP such that L (φ) is the set
of all computations where every occurrence of {p}{p} is followed by some later occurrence of ∅ ∅.

f)* Let L denote an ω-regular (!) language. True or false: if L = ΣL , then L = ∅ or L = Σω.

True False

g)* Let L1 ⊆ Σω denote the language of ω-words w such that the first letter of w appears infinitely often in w.
Give a Büchi automaton accepting L1 with at most 5 states.

h)* Consider the language L1 defined in exercise g). True or false: every Büchi automaton A for L1 has at
least two accepting states (and any number of non-accepting states).
Note: If your automaton in exercise g) already accepts L1 with only one accepting state, you are automatically
awarded the points for this exercise.

True False

0
1
2

0
1
2
3
4

0
1
2

0
1
2
3
4

– Page 3 / 16 –

0
1
2
3
4

Problem 2 Omega-Automata (8 credits)

a)* Consider the following semi-automaton with Σ = {a, b, c}:

qa qb

qc

a

b

b

a

c

c

c b

a

For each one of the languages L1, L2, and L3 below, decide whether there exists a Rabin condition with
only one Rabin pair such that the above semi-automaton recognizes the language. If it does, give such a
condition in the format ⟨F , G⟩. If it does not, justify why no such condition exists.
Reminder: A run satisfies the Rabin condition ⟨F , G⟩ if it visits the set F of states infinitely often and the set
of states G finitely often.

L1 = {w ∈ Σω | w contains infinitely many a and finitely many b}

Exists Does not exist

L2 = {w ∈ Σω | w contains finitely many b and finitely many c}

Exists Does not exist

L3 = {w ∈ Σω | w contains infinitely many a, infinitely many b and infinitely many c}

Exists Does not exist

– Page 4 / 16 –

b)* Consider the following non-deterministic semi-automaton with Σ = {a, b}:

p q

a, b
a

a

a

Which of the following languages can be recognized by this semi-automaton by using an appropriate
Büchi-condition? If such a condition exists, give it. If it does not, justify why no such condition exists.

L1 = {w ∈ Σω | w contains infinitely many a}

Exists Does not exist

L2 = {w ∈ Σω | w contains finitely many b}

Exists Does not exist

L3 = {w ∈ Σω | w contains aa infinitely often}

Exists Does not exist

0
1
2
3
4

– Page 5 / 16 –

0
1
2
3

0
1
2
3

0
1
2

0
1
2

Problem 3 FO/MSO on words (10 credits)

In the following questions we consider MSO(Σ), monadic second order logic on words, over the alphabet
Σ = {a, b}. The first position in a word w has index 1. You are allowed to use the macros first and
x = y + 1, x = y + 2, ... from the lecture. You are not allowed to use any other macros.

a)* Give a formula EveryThirdPosition(X) which is true if and only if X contains exactly every third position,
starting from the first position. For example, if the word has length 5, then X = {1, 4} is the only model.

b)* Using the formula EveryThirdPosition(X) as a macro, give a formula RepeatingABB, which is true for w if
and only if w is a finite prefix of (abb)ω, i.e. if and only if w ∈ (abb)∗(ε | a | ab).

Define for every k ∈ N>0 the macros

PositionsGreaterK (X) := ∀x
(

(x ∈ X) ↔
(
∃z1∃z2...∃zk

k−1∧
i=1

(zi < zi+1) ∧ zk < x
))

φk (x) := ∃X (PositionsGreaterK (X) ∧ x ∈ X)

c)* True or false: For every k ∈ N>0 there exists a formula in FO(Σ) (first-order logic on words) equivalent to
the formula φk .
If yes, give a family of such formulas. If not, justify your answer.

Yes No

d)* Given k ∈ N>0, define ψk := ∀x(φk (x) → Qb (x)). True or false: there is a formula of MSO(Σ) such that for
every word w ∈ Σ∗, w satisfies the formula iff w satisfies ψk for at least one k ∈ N>0?
If yes, give an example of such a formula. If not, justify your answer.

Yes No

– Page 6 / 16 –

Problem 4 LTL (10 credits)

a)* Consider the set of atomic propositions AP = {p, q} and the LTL formula φ := p U(q U G(q ∧ p)). Give an
ω-regular expression s over the alphabet {∅, {p}, {q}, {p, q}} such that the languages of s and φ are equal.
You do not need to justify your answer.

b)* Which of the following formulas are equivalent to the formula φ from the previous question?

(p ∧ q) U G(q ∧ p)

p U(Gq ∧ FGp)

p U(FG(q ∧ p))

Give a counter-example for the ones that are not equivalent. You do not need to provide an explanation for
the ones that are equivalent.

c)* Are the formulas ψ1 := p U (Fq) and ψ2 := true U (Fq) equivalent?
If yes, prove that they are equivalent. If no, provide a suitable computation as counterexample.

Equivalent Not equivalent

0
1
2
3

0
1
2
3
4

0
1
2
3

– Page 7 / 16 –

0
1
2
3
4
5
6

0
1
2

Problem 5 NFA Universality (8 credits)

a)* Consider the following NFA N:

1

0

3 4 5

2

aa

a
bb

a

b

a

b

aa, b

b

a, b

a

b

a

Decide whether N is universal, i.e. whether L (N) = {a, b}∗, using the algorithm UnivNFA from the lecture with
the subsumption check. (If you execute the algorithm without the subsumption check, you can still receive up
to 3 points.)
Whenever choosing which item to remove from the workset W , choose the item that has been in the workset
the longest. Consider always letter a before b.
While executing the algorithm, fill out the table below. Enter each item removed from the workset in the first
column. Use the other two columns to enter the items (if any) that are added to the workset in this iteration.
(If you wish, you can also note items that you considered adding to the workset, but did not add, e.g. because
they failed the subsumption test. Mark these items with ×.)

Universal Not universal

removed from W added to W (a) added to W (b)

b) If N is universal, give a transition such that N is no longer universal when that transition is deleted. If N is
not universal, give a word w ∈ {a, b}∗ \ L (N).

– Page 8 / 16 –

Problem 6 The infinite master automaton (12 credits)

We consider the master automaton M for fixed-length languages, as defined in the lecture: M := (Q ,Σ, δ, F),
where Q is the set of all fixed-length languages, Σ := {a, b}, δ(L , x) := Lx for L ∈ Q , x ∈ Σ and F := {{ε}}.
(Recall that M has infinitely many states.)

a)* Prove that there is no infinite, simple, directed path in M, i.e. an infinite sequence of pairwise distinct
L1, L2, ... ∈ Q such that for each i there is an x ∈ Σ with Li+1 = δ(Li , x).

b)* Prove or disprove: the nonempty languages of M are connected when viewed as undirected graph.
More precisely, show that for every pair of nonempty, fixed-length languages R, S ∈ Q \ {∅} there is a finite
sequence L1, ..., Lk ∈ Q \ {∅} with L1 = R, Lk = S and for each i ∈ {1, ..., k − 1} there is an x ∈ Σ such that
either Li+1 = δ(Li , x) or Li = δ(Li+1, x).
Note: Such a sequence L1, ..., Lk is a path connecting R and S.

True False

0
1
2
3
4

0
1
2
3
4

– Page 9 / 16 –

0
1
2
3
4

c)* We now consider a variant of M, which we refer to as M′. In M′ we set Q := 2Σ
∗

(that is, to the set of all
languages over Σ, fixed-length or not and regular or not), define δ as for M, and define F as the set of all
languages containing ε.
Is the statement of part a) still true in M′? More precisely, prove or disprove: there is an infinite, simple,
directed path in M′.

True False

– Page 10 / 16 –

Problem 7 Bonus question: Fully connected (10 credits)

Let R ⊆ N × N be a relation on natural numbers. We say that a number n is fully connected w.r.t. R if
(n, m) ∈ R for every m ∈ N. We let FCR denote the set of all fully connected numbers w.r.t. R.

a)* Give an algorithm satisfying the following specification:

• Input: a well-formed deterministic transducer recognizing a relation R ⊆ N × N in lsbf encoding.

Note: Recall that a transducer recognizes R if for every pair (n, m) ∈ R it accepts every encoding of
(n, m), and for every pair (n, m) /∈ R it accepts no encoding of (n, m).

• Output: a DFA recognizing the set FCR .

Hint : n ∈ FCR iff ∀m ∈ N : (n, m) ∈ R iff ¬∃m ∈ N : (n, m) /∈ R.

0
1
2
3
4
5
6

– Page 11 / 16 –

0
1
2
3
4

b) Apply the algorithm of part a) to the transducer below, giving enough information about the intermediate
steps. Interpret the result by describing FCR not as a language, but as a set of numbers. (Solutions like “the
set of numbers encoded by this language” get no points.)

A

B

C

[
0
0

]

[
0
0

]
,
[
0
1

]

[
0
1

]
[
0
0

]
,
[
1
0

]
,
[
1
1

]

[
1
1

]

[
0
1

]
,
[
1
0

][
1
0

]
,
[
1
1

]

– Page 12 / 16 –

Additional space for solutions–clearly mark the (sub)problem your answers are related to and strike
out invalid solutions.

– Page 13 / 16 –

– Page 14 / 16 –

– Page 15 / 16 –

– Page 16 / 16 –

	p1a1c0: Off
	p1a1c1: Off
	p1a1c2: Off
	p1b1c0: Off
	p1b1c1: Off
	p1b1c2: Off
	p1b1c3: Off
	p1b1c4: Off
	p1c1c0: Off
	p1c1c1: Off
	p1c1c2: Off
	p1d1c0: Off
	p1d1c1: Off
	p1d1c2: Off
	1.1.1:
	1.2.1:
	1.3.1:
	1.4.1:
	1.5.1:
	1.6.1:
	1.7.1:
	1.8.1:
	p1e1c0: Off
	p1e1c1: Off
	p1e1c2: Off
	p1f1c0: Off
	p1f1c1: Off
	p1f1c2: Off
	p1f1c3: Off
	p1f1c4: Off
	p1g1c0: Off
	p1g1c1: Off
	p1g1c2: Off
	p1h1c0: Off
	p1h1c1: Off
	p1h1c2: Off
	p1h1c3: Off
	p1h1c4: Off
	p2a1c0: Off
	p2a1c1: Off
	p2a1c2: Off
	p2a1c3: Off
	p2a1c4: Off
	2.1.1:
	2.2.1:
	p2b1c0: Off
	p2b1c1: Off
	p2b1c2: Off
	p2b1c3: Off
	p2b1c4: Off
	p3a1c0: Off
	p3a1c1: Off
	p3a1c2: Off
	p3a1c3: Off
	p3b1c0: Off
	p3b1c1: Off
	p3b1c2: Off
	p3b1c3: Off
	p3c1c0: Off
	p3c1c1: Off
	p3c1c2: Off
	p3d1c0: Off
	p3d1c1: Off
	p3d1c2: Off
	3.1.1:
	3.2.1:
	3.3.1:
	3.4.1:
	4.1.1:
	4.2.1:
	4.3.1:
	p4a1c0: Off
	p4a1c1: Off
	p4a1c2: Off
	p4a1c3: Off
	p4b1c0: Off
	p4b1c1: Off
	p4b1c2: Off
	p4b1c3: Off
	p4b1c4: Off
	p4c1c0: Off
	p4c1c1: Off
	p4c1c2: Off
	p4c1c3: Off
	p5a1c0: Off
	p5a1c1: Off
	p5a1c2: Off
	p5a1c3: Off
	p5a1c4: Off
	p5a1c5: Off
	p5a1c6: Off
	p5b1c0: Off
	p5b1c1: Off
	p5b1c2: Off
	5.2.1:
	6.1.1:
	6.2.1:
	p6a1c0: Off
	p6a1c1: Off
	p6a1c2: Off
	p6a1c3: Off
	p6a1c4: Off
	p6b1c0: Off
	p6b1c1: Off
	p6b1c2: Off
	p6b1c3: Off
	p6b1c4: Off
	p6c1c0: Off
	p6c1c1: Off
	p6c1c2: Off
	p6c1c3: Off
	p6c1c4: Off
	6.3.1:
	7.1.1:
	p7a1c0: Off
	p7a1c1: Off
	p7a1c2: Off
	p7a1c3: Off
	p7a1c4: Off
	p7a1c5: Off
	p7a1c6: Off
	p7b1c0: Off
	p7b1c1: Off
	p7b1c2: Off
	p7b1c3: Off
	p7b1c4: Off
	7.2.1:
	7.2.2:
	7.2.3:
	7.2.4:
	7.2.5:

