
Sam
ple

Solu
tio

n

Chair for Foundations of Software Reliability and Theoretical Computer Science
School of Computation, Information and Technology
Technical University of Munich

Esolution
Place student sticker here

Note:
• During the attendance check a sticker containing a unique code will be put on this exam.
• This code contains a unique number that associates this exam with your registration

number.
• This number is printed both next to the code and to the signature field in the attendance

check list.

Automata and Formal Languages

Exam: IN2041 / Endterm Date: Wednesday 28th February, 2024
Examiner: Prof. Javier Esparza Time: 10:30 – 12:30

I

P 1 P 2 P 3 P 4 P 5 P 6 P 7

Working instructions
• This exam consists of 16 pages with a total of 7 problems including one bonus problem.

Please make sure now that you received a complete copy of the exam.

• The total amount of achievable credits in this exam is 80 credits.

• To pass the exam, 35 credits are sufficient.

• Detaching pages from the exam is prohibited.

• Allowed resources:

– one analog dictionary English ↔ native language

• Subproblems marked by * can be solved without results of previous subproblems.

• The points of the bonus problem count for your grade, but we disregard them when calculating the
grading scheme. In particular, to receive the best grade it suffices to achieve all non-bonus points.

• Answers are only accepted if the solution approach is documented. Give a reason for each
answer unless explicitly stated otherwise in the respective subproblem.

• Do not write with red or green colors nor use pencils.

• Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from to / Early submission at

– Page 1 / 16 –

Sam
ple

Solu
tio

n

0
1
2

0
1
2
3
4

0
1
2

0
1
2

Problem 1 Quiz (22 credits)

Please answer the following questions. For true/false questions, provide a justification of your answer for
“true” answers, and a counterexample for “false” answers. Otherwise no points will be awarded! We use
Σ := {a, b} as alphabet in this exercise.

a)* Let L ⊆ Σ∗. True or false: if L = LR , then L is regular.
Note: For a word w = a1...an, where a1, ..., an ∈ Σ, we write wR := an...a1 for the reverse of w, and define
LR := {wR : w ∈ L}.

True × False

Consider the language L = {w : |w|a = |w|b}, i.e. the words that contain the same number of a and b.
Then LR = L , but L is not regular.

b)* True or false: every NFA M accepting the language L := {a, ab}2024 has at least 4048 states.

× True False

As w := (ab)2024 ∈ L , M has an accepting run on w. Since L is finite, the run does not contain a cycle,
and so it visits every state at most once. Since the run traverses |w| + 1 = 4049 states, the automaton
has at least 4048 states.

c)* Construct a DFA with at most 5 states recognising the language of (a + bab)∗.

0 1 2

a

b a

b

d)* Let L ⊆ Σ∗ denote the language of words where no b is preceded by an odd-length sequence of a, i.e. L
is generated by the RE ((aa)∗b)∗a∗. For example, ε, aabbba, baab ∈ L , and aabab /∈ L .
Construct an NFA N with L (N) = L and at most 5 states, such that all states of N are accepting.

0 1

b

a

a

– Page 2 / 16 –

Sam
ple

Solu
tio

n

e)* Let AP = {p, q} be a set of atomic propositions. Give an LTL formula φ over AP such that L (φ) is the set
of all computations where every occurrence of {p}{p} is followed by some later occurrence of ∅ ∅.

G(((p ∧ ¬q) ∧ X (p ∧ ¬q)) → F((¬p ∧ ¬q) ∧ X (¬p ∧ ¬q)))

f)* Let L denote an ω-regular (!) language. True or false: if L = ΣL , then L = ∅ or L = Σω.

True × False

A counterexample is ((a + b)∗a)ω, i.e. the language of words containing infinitely many a.

g)* Let L1 ⊆ Σω denote the language of ω-words w such that the first letter of w appears infinitely often in w.
Give a Büchi automaton accepting L1 with at most 5 states.

0 1 2

3 4

a

b

a

b

b

a

b

a

a

b

h)* Consider the language L1 defined in exercise g). True or false: every Büchi automaton A for L1 has at
least two accepting states (and any number of non-accepting states).
Note: If your automaton in exercise g) already accepts L1 with only one accepting state, you are automatically
awarded the points for this exercise.

× True False

Let qf denote the unique accepting state of A . We have aω, bω ∈ L , so A must have an accepting run
for both of these words. The state qf must appear infinitely often in both of these runs, so there is
some i such that A can reach qf after reading a i , and starting from qf there is some accepting run
reading bω. So the word a ibω /∈ L1 is accepted, a contradiction.

0
1
2

0
1
2
3
4

0
1
2

0
1
2
3
4

– Page 3 / 16 –

Sam
ple

Solu
tio

n

0
1
2
3
4

Problem 2 Omega-Automata (8 credits)

a)* Consider the following semi-automaton with Σ = {a, b, c}:

qa qb

qc

a

b

b

a

c

c

c b

a

For each one of the languages L1, L2, and L3 below, decide whether there exists a Rabin condition with
only one Rabin pair such that the above semi-automaton recognizes the language. If it does, give such a
condition in the format ⟨F , G⟩. If it does not, justify why no such condition exists.
Reminder: A run satisfies the Rabin condition ⟨F , G⟩ if it visits the set F of states infinitely often and the set
of states G finitely often.

L1 = {w ∈ Σω | w contains infinitely many a and finitely many b}

× Exists Does not exist

L2 = {w ∈ Σω | w contains finitely many b and finitely many c}

× Exists Does not exist

L3 = {w ∈ Σω | w contains infinitely many a, infinitely many b and infinitely many c}

Exists × Does not exist

L1 and L2 are possible. L1 is the result when choosing the Rabin pair ({pa}, {pb}), L2 is the result when
choosing any Rabin pair (F , {pb , pc}) with pa ∈ F .
L3 is impossible: Namely we claim that any single Rabin pair would already accept too many words,
and hence any union of Rabin conditions would also accept too much. If the Rabin pair (F , G) fulfills
G ̸= ∅ (and is non-contradictory, i.e. F ̸⊆ G), then it accepts wrong words. Hence G = ∅. The only
reasonable choice is F = Q, but this only guarantees that some letter is seen infinitely often, hence
wrong words are accepted.

– Page 4 / 16 –

Sam
ple

Solu
tio

n

b)* Consider the following non-deterministic semi-automaton with Σ = {a, b}:

p q

a, b
a

a

a

Which of the following languages can be recognized by this semi-automaton by using an appropriate
Büchi-condition? If such a condition exists, give it. If it does not, justify why no such condition exists.

L1 = {w ∈ Σω | w contains infinitely many a}

Exists × Does not exist

L2 = {w ∈ Σω | w contains finitely many b}

Exists × Does not exist

L3 = {w ∈ Σω | w contains aa infinitely often}

× Exists Does not exist

Only L3. If p ∈ F , then the automaton accepts Σω, hence only F = {q} is interesting. In order for a
run to be infinite, it can only move to state q if it reads a and knows that another a is coming. I.e. at
the start of an infix aa. The corresponding run moving to q whenever we read a and when another
a is coming next is also feasible. Hence q can be visited infinitely often if and only if w contains aa
infinitely often.

0
1
2
3
4

– Page 5 / 16 –

Sam
ple

Solu
tio

n

0
1
2
3

0
1
2
3

0
1
2

0
1
2

Problem 3 FO/MSO on words (10 credits)

In the following questions we consider MSO(Σ), monadic second order logic on words, over the alphabet
Σ = {a, b}. The first position in a word w has index 1. You are allowed to use the macros first and
x = y + 1, x = y + 2, ... from the lecture. You are not allowed to use any other macros.

a)* Give a formula EveryThirdPosition(X) which is true if and only if X contains exactly every third position,
starting from the first position. For example, if the word has length 5, then X = {1, 4} is the only model.

EveryThirdPosition(X) = ∀x(x ∈ X) ↔ (first(x) ∨ ∃y(y ∈ X ∧ x = y + 3)).

b)* Using the formula EveryThirdPosition(X) as a macro, give a formula RepeatingABB, which is true for w if
and only if w is a finite prefix of (abb)ω, i.e. if and only if w ∈ (abb)∗(ε | a | ab).

RepeatingABB = ∀X : EveryThirdPosition(X) → (∀x : (x ∈ X) ↔ Qa(x)).

Define for every k ∈ N>0 the macros

PositionsGreaterK (X) := ∀x
(

(x ∈ X) ↔
(
∃z1∃z2...∃zk

k−1∧
i=1

(zi < zi+1) ∧ zk < x
))

φk (x) := ∃X (PositionsGreaterK (X) ∧ x ∈ X)

c)* True or false: For every k ∈ N>0 there exists a formula in FO(Σ) (first-order logic on words) equivalent to
the formula φk .
If yes, give a family of such formulas. If not, justify your answer.

× Yes No

An equivalent formula is ∃z1∃z2...∃zk
(∧k−1

i=1 (zi < zi+1) ∧ zk < x
)
.

(Not necessary for points): To see this, observe that in ∃X : PositionsGreaterK (X) there is exactly one
choice for X in the quantifier, namely the set X of all positions > k . Then the statement becomes “x is
in the set X of all positions > k ”, i.e. x > k .

d)* Given k ∈ N>0, define ψk := ∀x(φk (x) → Qb (x)). True or false: there is a formula of MSO(Σ) such that for
every word w ∈ Σ∗, w satisfies the formula iff w satisfies ψk for at least one k ∈ N>0?
If yes, give an example of such a formula. If not, justify your answer.

× Yes No

Yes, an example formula is ∀xFalse ∨ ∃y∀x(y < x → Qb (x)). The second part is the important one, the
first part is only to ensure the empty word is accepted.
Another solution is to observe that the disjunction is in fact a tautology, hence True is also a solution.

– Page 6 / 16 –

Sam
ple

Solu
tio

n

Problem 4 LTL (10 credits)

a)* Consider the set of atomic propositions AP = {p, q} and the LTL formula φ := p U(q U G(q ∧ p)). Give an
ω-regular expression s over the alphabet {∅, {p}, {q}, {p, q}} such that the languages of s and φ are equal.
You do not need to justify your answer.

s = ({p} + {p, q})∗({q} + {p, q})∗{p, q}ω

b)* Which of the following formulas are equivalent to the formula φ from the previous question?

(p ∧ q) U G(q ∧ p)

× p U(Gq ∧ FGp)

p U(FG(q ∧ p))

Give a counter-example for the ones that are not equivalent. You do not need to provide an explanation for
the ones that are equivalent.

Only the second is equivalent. The first forbids {p}{p, q}ω, the last allows {p}∅{p, q}ω.
(Not necessary for the points): To see the equivalence, use the ω-regular expression of subproblem a).
This implies that the second formula is equivalent, since Gq ∧ FGp also holds exactly for traces of the
form ({q} + {p, q})∗{p, q}ω.

c)* Are the formulas ψ1 := p U (Fq) and ψ2 := true U (Fq) equivalent?
If yes, prove that they are equivalent. If no, provide a suitable computation as counterexample.

× Equivalent Not equivalent

Proof: Clearly ψ1 implies ψ2, hence it suffices to prove the other direction.
Let σ = σ0σ1... be a computation satisfying ψ2 = True U Fq. By definition of until and Fq there exists
k ∈ N such that σk = σkσk+1... fulfils q ∈ σk . This implies that σ = σ0 fulfils Fq. By choosing n = 0 for
the until, σ fulfils p U Fq.

0
1
2
3

0
1
2
3
4

0
1
2
3

– Page 7 / 16 –

Sam
ple

Solu
tio

n

0
1
2
3
4
5
6

0
1
2

Problem 5 NFA Universality (8 credits)

a)* Consider the following NFA N:

1

0

3 4 5

2

aa

a
bb

a

b

a

b

aa, b

b

a, b

a

b

a

Decide whether N is universal, i.e. whether L (N) = {a, b}∗, using the algorithm UnivNFA from the lecture with
the subsumption check. (If you execute the algorithm without the subsumption check, you can still receive up
to 3 points.)
Whenever choosing which item to remove from the workset W , choose the item that has been in the workset
the longest. Consider always letter a before b.
While executing the algorithm, fill out the table below. Enter each item removed from the workset in the first
column. Use the other two columns to enter the items (if any) that are added to the workset in this iteration.
(If you wish, you can also note items that you considered adding to the workset, but did not add, e.g. because
they failed the subsumption test. Mark these items with ×.)

Universal × Not universal

With subsumption:

removed from W added to W (a) added to W (b)
{0} {1, 2, 3} {5}
{1, 2, 3} {0, 1, 4} × {1, 3}
{5} {2, 4, 5} × {2, 3}
{1, 3} {1, 4} {1, 3} ×
{2, 3}

Without subsumption:

removed from W added to W (a) added to W (b)
{0} {1, 2, 3} {5}
{1, 2, 3} {0, 1, 4} {1, 3}
{5} {2, 4, 5} {2, 3}
{0, 1, 4} {1, 2, 3, 4} {0, 1, 3, 5}
{1, 3} {1, 4} {1, 3} ×
{2, 4, 5} {0, 2, 4, 5} {0, 2, 3}
{2, 3}

b) If N is universal, give a transition such that N is no longer universal when that transition is deleted. If N is
not universal, give a word w ∈ {a, b}∗ \ L (N).

bb /∈ L (N)

– Page 8 / 16 –

Sam
ple

Solu
tio

n

Problem 6 The infinite master automaton (12 credits)

We consider the master automaton M for fixed-length languages, as defined in the lecture: M := (Q ,Σ, δ, F),
where Q is the set of all fixed-length languages, Σ := {a, b}, δ(L , x) := Lx for L ∈ Q , x ∈ Σ and F := {{ε}}.
(Recall that M has infinitely many states.)

a)* Prove that there is no infinite, simple, directed path in M, i.e. an infinite sequence of pairwise distinct
L1, L2, ... ∈ Q such that for each i there is an x ∈ Σ with Li+1 = δ(Li , x).

Assume that such a path exists. If there is an i with Li = ∅, then we would also get Li+1 = ∅, contradicting
the requirement that L1, L2, ... are pairwise distinct.
We can thus define ni := max{|w| : w ∈ Li} as the maximum length of words in Li . (Of course, all
words in Li have the same length, so it does not really matter that we take the maximum.) We now
find ni+1 < ni for all i, as Li+1 = Lx

i for some x ∈ Σ. But this is a contradiction as well, since there cannot
be an infinitely descending sequence of natural numbers.

b)* Prove or disprove: the nonempty languages of M are connected when viewed as undirected graph.
More precisely, show that for every pair of nonempty, fixed-length languages R, S ∈ Q \ {∅} there is a finite
sequence L1, ..., Lk ∈ Q \ {∅} with L1 = R, Lk = S and for each i ∈ {1, ..., k − 1} there is an x ∈ Σ such that
either Li+1 = δ(Li , x) or Li = δ(Li+1, x).
Note: Such a sequence L1, ..., Lk is a path connecting R and S.

× True False

Let n, m such that R ⊆ Σn and S ⊆ Σm. We assume n ≤ m wlog. We proceed by strong induction on
m − n.
In the base case, m − n = 0. Let L := {a}R ∪ {b}S. We have L ⊆ Σn+1, so L is a fixed-length language.
Additionally, La = R and Lb = S, so R, L , S is a path.
For the induction step, let L := {a}R. So L ⊆ Σn+1 and by induction hypothesis there is some path
L1, ..., Lk connecting S and L . As R = La , we have that L1, ..., Lk , R connects S and R. (Note L1 = S,
Lk = L .)

0
1
2
3
4

0
1
2
3
4

– Page 9 / 16 –

Sam
ple

Solu
tio

n

0
1
2
3
4

c)* We now consider a variant of M, which we refer to as M′. In M′ we set Q := 2Σ
∗

(that is, to the set of all
languages over Σ, fixed-length or not and regular or not), define δ as for M, and define F as the set of all
languages containing ε.
Is the statement of part a) still true in M′? More precisely, prove or disprove: there is an infinite, simple,
directed path in M′.

× True False

Let L ⊆ {a}∗ be a non-regular language. (We know that non-regular unary languages exist, as there
is an uncountable number of unary languages, but only a countable number of regular languages.)
We set Li := La i

and claim that L1, L2, ... is an infinite, simple, directed path in M′. Clearly, Li+1 = La
i for

all i, so it remains to show that L1, L2, ... are pairwise distinct. First, we observe that S = {Li : i ∈ N}
are precisely the residual languages of L over the alphabet {a}. As L is not regular, |S| = ∞. But if
i < j with Li = Lj were to exist, we would have S = {L1, ..., Lj−1}, a contradiction.

– Page 10 / 16 –

Sam
ple

Solu
tio

n

Problem 7 Bonus question: Fully connected (10 credits)

Let R ⊆ N × N be a relation on natural numbers. We say that a number n is fully connected w.r.t. R if
(n, m) ∈ R for every m ∈ N. We let FCR denote the set of all fully connected numbers w.r.t. R.

a)* Give an algorithm satisfying the following specification:

• Input: a well-formed deterministic transducer recognizing a relation R ⊆ N × N in lsbf encoding.

Note: Recall that a transducer recognizes R if for every pair (n, m) ∈ R it accepts every encoding of
(n, m), and for every pair (n, m) /∈ R it accepts no encoding of (n, m).

• Output: a DFA recognizing the set FCR .

Hint : n ∈ FCR iff ∀m ∈ N : (n, m) ∈ R iff ¬∃m ∈ N : (n, m) /∈ R.

We have

n ∈ FCR

iff ∀m ∈ N : (n, m) ∈ R

iff ¬∃m ∈ N : (n, m) /∈ R

iff ¬∃m ∈ N : (n, m) ∈ Complement(R)

iff ¬(n ∈ Projection1(Complement(R)))

iff n ∈ Complement(Projection1(Complement(R)))

It follows FCR = Complement(Projection1(Complement(R))). Therefore, the algorithm is:

• Compute a transducer for Complement(R); since the input is a deterministic transducer, it
suffices to apply the algorithm for DFAs, that is, swap the accepting and non-accepting states.

• Compute a transducer for Projection1(Complement(R)) using the algorithm from the course
(remove the second component of each letter and apply the pad closure).

• Complement the resulting NFA by first determinizing the NFA and then swapping the accepting
and non-accepting states.

0
1
2
3
4
5
6

– Page 11 / 16 –

Sam
ple

Solu
tio

n

0
1
2
3
4

b) Apply the algorithm of part a) to the transducer below, giving enough information about the intermediate
steps. Interpret the result by describing FCR not as a language, but as a set of numbers. (Solutions like “the
set of numbers encoded by this language” get no points.)

A

B

C

[
0
0

]

[
0
0

]
,
[
0
1

]

[
0
1

]
[
0
0

]
,
[
1
0

]
,
[
1
1

]

[
1
1

]

[
0
1

]
,
[
1
0

][
1
0

]
,
[
1
1

]

The first step just makes A and C accepting and B non-accepting. After the second step we obtain

A

B

C

0

0

0

0, 1

1

0, 11

B becomes an accepting state because of the padding closure.
Determinizing and then swapping accepting and non-accepting states yields

A

B, C

C

A , B, C

B A , C

0

0

1

0

1

1

1 1

0 0, 1

0

We get FCR = ∅.

– Page 12 / 16 –

Sam
ple

Solu
tio

n

Additional space for solutions–clearly mark the (sub)problem your answers are related to and strike
out invalid solutions.

– Page 13 / 16 –

Sam
ple

Solu
tio

n

– Page 14 / 16 –

Sam
ple

Solu
tio

n

– Page 15 / 16 –

Sam
ple

Solu
tio

n

– Page 16 / 16 –

	p1a1c0: Off
	p1a1c1: Off
	p1a1c2: Off
	p1b1c0: Off
	p1b1c1: Off
	p1b1c2: Off
	p1b1c3: Off
	p1b1c4: Off
	p1c1c0: Off
	p1c1c1: Off
	p1c1c2: Off
	p1d1c0: Off
	p1d1c1: Off
	p1d1c2: Off
	p1e1c0: Off
	p1e1c1: Off
	p1e1c2: Off
	p1f1c0: Off
	p1f1c1: Off
	p1f1c2: Off
	p1f1c3: Off
	p1f1c4: Off
	p1g1c0: Off
	p1g1c1: Off
	p1g1c2: Off
	p1h1c0: Off
	p1h1c1: Off
	p1h1c2: Off
	p1h1c3: Off
	p1h1c4: Off
	p2a1c0: Off
	p2a1c1: Off
	p2a1c2: Off
	p2a1c3: Off
	p2a1c4: Off
	p2b1c0: Off
	p2b1c1: Off
	p2b1c2: Off
	p2b1c3: Off
	p2b1c4: Off
	p3a1c0: Off
	p3a1c1: Off
	p3a1c2: Off
	p3a1c3: Off
	p3b1c0: Off
	p3b1c1: Off
	p3b1c2: Off
	p3b1c3: Off
	p3c1c0: Off
	p3c1c1: Off
	p3c1c2: Off
	p3d1c0: Off
	p3d1c1: Off
	p3d1c2: Off
	p4a1c0: Off
	p4a1c1: Off
	p4a1c2: Off
	p4a1c3: Off
	p4b1c0: Off
	p4b1c1: Off
	p4b1c2: Off
	p4b1c3: Off
	p4b1c4: Off
	p4c1c0: Off
	p4c1c1: Off
	p4c1c2: Off
	p4c1c3: Off
	p5a1c0: Off
	p5a1c1: Off
	p5a1c2: Off
	p5a1c3: Off
	p5a1c4: Off
	p5a1c5: Off
	p5a1c6: Off
	p5b1c0: Off
	p5b1c1: Off
	p5b1c2: Off
	p6a1c0: Off
	p6a1c1: Off
	p6a1c2: Off
	p6a1c3: Off
	p6a1c4: Off
	p6b1c0: Off
	p6b1c1: Off
	p6b1c2: Off
	p6b1c3: Off
	p6b1c4: Off
	p6c1c0: Off
	p6c1c1: Off
	p6c1c2: Off
	p6c1c3: Off
	p6c1c4: Off
	p7a1c0: Off
	p7a1c1: Off
	p7a1c2: Off
	p7a1c3: Off
	p7a1c4: Off
	p7a1c5: Off
	p7a1c6: Off
	p7b1c0: Off
	p7b1c1: Off
	p7b1c2: Off
	p7b1c3: Off
	p7b1c4: Off

