84 84 St Chair of Theoretical Computer Science and Software Reliability Informatik Technical University of Munich

Signature

Note:

- · Cross your Registration number(with leading zero). It will be evaluated automatically.
- Sign in the corresponding signature field.

Automaten und formale Sprachen

Exam:	IN2041 / Retake	Date:	Tuesday 4 th April, 2023
Examiner:	Prof. Javier Esparza	Time:	17:00 - 19:00

	P 1	P 2	P 3	P 4	P 5	P 6	Ρ7	P 8
۱ [

Working instructions

- This exam consists of 18 pages with a total of 8 problems. Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 45 credits.
- Detaching pages from the exam is prohibited.
- · Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- · Physically turn off all electronic devices, put them into your bag and close the bag.

Exam empty

Left room from _____ to ____ / Early submission at _____

Problem 1 NFAs and regular expressions (6 credits)

Let NFA-regtoNFA- ϵ be the algorithm given in the lectures, which given an NFA-reg *M* as input produces as output an NFA- ϵ which recognizes the same language as *M*.

a) Let *A* be the following NFA-reg over the alphabet $\Sigma = \{a, b\}$.

Apply the NFA-regtoNFA- ϵ algorithm on A to produce an NFA- ϵ B.

*. *.

0

b) Consider the NFA- ϵ B from the previous subproblem. Apply any algorithm which converts an NFA- ϵ to an NFA recognizing the same language (for example, the NFA- ϵ toNFA algorithm given in the lectures), on the NFA- ϵ B, to produce an NFA C.

0 1 2

0	
1	
2	

c) Give a minimal NFA recognizing $\mathcal{L}(ab^* + ba^*)$. Note that you have to produce such an NFA and prove that any NFA which has strictly less states cannot recognize $\mathcal{L}(ab^* + ba^*)$.

Problem 2 Occurrences of subwords (5 credits)

Let $\Sigma = \{a, b\}$.

a) Let L be the language of finite words over $\boldsymbol{\Sigma}$ defined as

 $L = \{w : w \text{ contains } \mathbf{no} \text{ occurrence of } aba\}$

Give the minimal DFA for the language L. Hint: It might help to think in terms of pattern matching.

0

b) Let L^\prime be the language of finite words over Σ defined as

 $L' = \{w : w \text{ contains at least two distinct (but possibly overlapping) occurrences of aba}\}$

For example, the words $b aba a aba a aba a aba a aba a b aba \in L'$ but $ab, abaab \notin L'$.

Give a regular expression for the language L'.

0	
1	
2	
3	

c) Give the minimal DFA for the language L' defined in the previous subproblem. **Hint:** It might help to think in terms of pattern matching. The final answer should have 7 states.

1

2

3

4

Problem 3 Fixed-length languages (4 credits)

*

For a fixed-length language *L* over $\Sigma = \{a, b\}$ we denote by q_L the state of the master automaton representing *L*. We also denote by M(L) the fragment of the master automaton that contains q_L and all its residuals, that is, it contains all the states between q_L and q_{\emptyset} , **including** q_L and q_{\emptyset} (and no other states).

How many fixed-length languages L of length 3 exist such that M(L) contains exactly 5 states? For instance, here is an example of a language L of length 3 such that M(L) contains exactly 5 states.

Problem 4 First-order logic on words (6 credits)

Let $\Sigma = \{0, 1\}$ and let $n \ge 1$ be some natural number. Given a string $w \in \Sigma^*$, let msbf(w) denote the number represented by w in binary in the most significant bit first encoding. For example, if w = 0011, then msbf(w) = 3 and if w = 1011, then msbf(w) = 11.

For the purposes of this exercise, whenever you are asked to construct a formula over FO(Σ), in addition to the syntax of FO(Σ), you are only allowed to use the following macros: first(x), last(x), x = y, y = x + k, y < x + k and y < k for some number k. If you use any other macros, you have to explicitly give the FO formulas that these macros stand for.

a) For $n \ge 1$, consider the language $L_n := \{w : w \in \Sigma^{2n}\}$. Give a formula ϕ_n over FO(Σ) which recognizes L_n . The formula ϕ_n must be of size polynomial in n, i.e., there must be a polynomial p such that the size of each ϕ_n is at most p(n).

b) For $n \ge 1$, consider the language $L'_n := \{uu : u \in \Sigma^n\}$. Give a formula ϕ'_n over FO(Σ) which recognizes L'_n . The formula ϕ'_n must be of size polynomial in n, i.e., there must be a polynomial p' such that the size of each ϕ'_n is at most p'(n).

П	0	
	1	
Н	2	

c) For $n \ge 1$, consider the language $L''_n := \{uv : u, v \in \Sigma^n, \text{msbf}(u) \ge \text{msbf}(v)\}$. Give a formula ϕ''_n over FO(Σ) which recognizes L''_n . The formula ϕ''_n must be of size polynomial in n, i.e., there must be a polynomial p'' such that the size of each ϕ''_n is at most p''(n).

Problem 5 Operations on languages (6 credits)

Let $\Sigma = \{a, b\}$. Let $L \subseteq \Sigma^*$ be any language consisting of finite words over Σ . We define the ω -language $La^{\omega} \subseteq \Sigma^{\omega}$ as

$$La^{\omega} = \{wa^{\omega} : w \in L\}$$

Note that La^{ω} is a language of *infinite words* over Σ . Intuitively, each word in La^{ω} is obtained by first taking some finite word $w \in L$ and then adding the infinite suffix a^{ω} to it.

a) Prove or disprove: If $L \subseteq \Sigma^*$ is regular, then La^{ω} is ω -regular.

0	
1	

0	
1	
2	

b) Prove or disprove: If La^{ω} is ω -regular for some $L \subseteq \Sigma^*$, then L is regular.

*. *.

84°	
-st	c) Prove or disprove: If $(L \cdot \{b\})a^{\omega}$ is ω -regular for some $L \subseteq \Sigma^*$, then L is regular.

0
 1
2
3

1

2

Problem 6 Acceptance conditions (10 credits)

Throughout this exercise, we will only be considering languages of infinite words over $\Sigma = \{a, b, c\}$.

a) Consider the ω -regular language L_1 defined as

 $L_1 = \{w \in \Sigma^{\omega} : ab \text{ and } ac \text{ appear infinitely often in } w\}$

Give a non-deterministic Büchi automaton (A_1, \mathcal{F}_1) which accepts L_1 such that A_1 has **at most 5 states**.

0	
1	
2	

b) Give a non-deterministic generalized Büchi automaton (A'_1, \mathcal{F}'_1) which accepts L_1 such that A'_1 has **at most 3 states**.

* * * c) Consider the ω -regular language L_2 defined as

 $L_2 = \{w \in \Sigma^{\omega} : ab \text{ appears infinitely often in } w \text{ and } ac \text{ appears finitely often in } w\}$

Give a deterministic Rabin automaton (A_2, \mathcal{F}_2) which accepts L_2 such that A_2 has at most 4 states.

d) This is a bonus subproblem.

Give a non-deterministic Muller automaton (A'_2, \mathcal{F}'_2) which accepts L_2 such that A'_2 has **at most 3 states**.

0
1
2
3

Problem 7 DAGs and Büchi automata (4 credits)

Consider the following Büchi automaton over $\Sigma = \{a, b\}$.

a) Draw $dag((aab)^{\omega})$ and give an odd ranking for it.

b) Find an ω -word w such that dag(w) **does not** have an odd ranking. Draw dag(w) and prove that it does not have an odd ranking by analyzing the dag.

	0
_	1
	_
	2

Γ

1 2

Problem 8 Linear Temporal Logic (4 credits)

a) Let $AP = \{p, q, r\}$ and let $\Sigma = 2^{AP}$. Consider the formulas

 $\phi := (p \mathbf{U} q) \mathbf{U} r$ and $\xi := p \mathbf{U} (q \mathbf{U} r)$

Give four computations $\sigma_1, \sigma_2, \sigma_3, \sigma_4$, all of them over *AP*, such that

- $\sigma_1 \models \phi$ and $\sigma_1 \models \xi$
- $\sigma_2 \models \phi$ and $\sigma_2 \not\models \xi$
- $\sigma_3 \not\models \phi$ and $\sigma_3 \models \xi$
- $\sigma_4 \not\models \phi$ and $\sigma_4 \not\models \xi$

b) This is a bonus subproblem.

Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. Give an ω -regular expression over Σ for the set of all computations which satisfy the formula

 $\varphi \coloneqq (p \mathbf{U} q) \mathbf{U} p$

* *

c) This is a bonus subproblem.

Consider the formula φ defined in the previous subproblem. Use the ω -regular expression you defined in the previous subproblem to derive a formula φ' such that φ' and φ are equivalent and φ' is of strictly smaller size than φ .

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

