
\square
Signature

Note:

- Cross your Registration number(with leading zero). It will be evaluated automatically. - Sign in the corresponding signature field.

Automaten und formale Sprachen

Exam: \quad IN2041 / Retake \quad Date: Tuesday 4 ${ }^{\text {th }}$ April, 2023
Examiner: Prof. Javier Esparza Time: 17:00-19:00

P1
P2
:---

Working instructions

- This exam consists of 18 pages with a total of 8 problems.

Please make sure now that you received a complete copy of the exam.

- The total amount of achievable credits in this exam is 45 credits.
- Detaching pages from the exam is prohibited.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.
\qquad
\qquad

Problem 1 NFAs and regular expressions (6 credits)

Let NFA-regtoNFA- ϵ be the algorithm given in the lectures, which given an NFA-reg M as input produces as output an NFA- ϵ which recognizes the same language as M.
a) Let A be the following NFA-reg over the alphabet $\Sigma=\{a, b\}$.

Apply the NFA-regtoNFA- ϵ algorithm on A to produce an NFA- ϵ B.
b) Consider the NFA- ϵ B from the previous subproblem. Apply any algorithm which converts an NFA- ϵ to an NFA recognizing the same language (for example, the NFA- ϵ toNFA algorithm given in the lectures), on the NFA- ϵB, to produce an NFA C.
c) Give a minimal NFA recognizing $\mathcal{L}\left(a b^{*}+b a^{*}\right)$. Note that you have to produce such an NFA and prove that any NFA which has strictly less states cannot recognize $\mathcal{L}\left(a b^{*}+b a^{*}\right)$.

Problem 2 Occurrences of subwords (5 credits)

Let $\Sigma=\{a, b\}$.
a) Let L be the language of finite words over Σ defined as

$$
L=\{w: w \text { contains no occurrence of aba }\}
$$

Give the minimal DFA for the language L. Hint: It might help to think in terms of pattern matching.
\square
b) Let L^{\prime} be the language of finite words over Σ defined as $L^{\prime}=\{w: w$ contains at least two distinct (but possibly overlapping) occurrences of aba $\}$

For example, the words $b \underbrace{a b a} \underbrace{a b a} a \underbrace{a b a}, \overbrace{a b}^{a b a} \in L^{\prime}$ but $a b, a b a a b \notin L^{\prime}$.
Give a regular expression for the language L^{\prime}.
c) Give the minimal DFA for the language L^{\prime} defined in the previous subproblem. Hint: It might help to think in terms of pattern matching. The final answer should have 7 states.

Problem 3 Fixed-length languages (4 credits)

For a fixed-length language L over $\Sigma=\{a, b\}$ we denote by q_{L} the state of the master automaton representing L. We also denote by $M(L)$ the fragment of the master automaton that contains q_{L} and all its residuals, that is, it contains all the states between q_{L} and q_{\emptyset}, including q_{L} and q_{\emptyset} (and no other states).

How many fixed-length languages L of length 3 exist such that $M(L)$ contains exactly 5 states? For instance, here is an example of a language L of length 3 such that $M(L)$ contains exactly 5 states.

Problem 4 First-order logic on words (6 credits)

Let $\Sigma=\{0,1\}$ and let $n \geq 1$ be some natural number. Given a string $w \in \Sigma^{*}$, let $\operatorname{msbf}(w)$ denote the number represented by w in binary in the most significant bit first encoding. For example, if $w=0011$, then $\operatorname{msbf}(w)=3$ and if $w=1011$, then $\operatorname{msbf}(w)=11$.

For the purposes of this exercise, whenever you are asked to construct a formula over $\mathrm{FO}(\Sigma)$, in addition to the syntax of $\mathrm{FO}(\Sigma)$, you are only allowed to use the following macros: first (x), last $(x), x=y, y=x+k, y<x+k$ and $y<k$ for some number k. If you use any other macros, you have to explicitly give the FO formulas that these macros stand for.
a) For $n \geq 1$, consider the language $L_{n}:=\left\{w: w \in \Sigma^{2 n}\right\}$. Give a formula ϕ_{n} over $\mathrm{FO}(\Sigma)$ which recognizes L_{n}. The formula ϕ_{n} must be of size polynomial in n, i.e., there must be a polynomial p such that the size of each ϕ_{n} is at most $p(n)$.
b) For $n \geq 1$, consider the language $L_{n}^{\prime}:=\left\{u u: u \in \Sigma^{n}\right\}$. Give a formula ϕ_{n}^{\prime} over $\mathrm{FO}(\Sigma)$ which recognizes L_{n}^{\prime}. The formula ϕ_{n}^{\prime} must be of size polynomial in n, i.e., there must be a polynomial p^{\prime} such that the size of each ϕ_{n}^{\prime} is at most $p^{\prime}(n)$.
c) For $n \geq 1$, consider the language $L_{n}^{\prime \prime}:=\left\{u v: u, v \in \Sigma^{n}\right.$, $\left.\operatorname{msbf}(u) \geq \operatorname{msbf}(v)\right\}$. Give a formula $\phi_{n}^{\prime \prime}$ over $\mathrm{FO}(\Sigma)$ which recognizes $L_{n}^{\prime \prime}$. The formula $\phi_{n}^{\prime \prime}$ must be of size polynomial in n, i.e., there must be a polynomial $p^{\prime \prime}$ such that the size of each $\phi_{n}^{\prime \prime}$ is at most $p^{\prime \prime}(n)$.

Problem 5 Operations on languages (6 credits)

Let $\Sigma=\{a, b\}$. Let $L \subseteq \Sigma^{*}$ be any language consisting of finite words over Σ. We define the ω-language $L a^{\omega} \subseteq \Sigma^{\omega}$ as

$$
L a^{\omega}=\left\{w a^{\omega}: w \in L\right\}
$$

Note that $L a^{\omega}$ is a language of infinite words over Σ. Intuitively, each word in $L a^{\omega}$ is obtained by first taking some finite word $w \in L$ and then adding the infinite suffix a^{ω} to it.
a) Prove or disprove: If $L \subseteq \Sigma^{*}$ is regular, then $L a^{\omega}$ is ω-regular.
b) Prove or disprove: If $L a^{\omega}$ is ω-regular for some $L \subseteq \Sigma^{*}$, then L is regular.
c) Prove or disprove: If $(L \cdot\{b\}) a^{\omega}$ is ω-regular for some $L \subseteq \Sigma^{*}$, then L is regular.
\square 2

Problem 6 Acceptance conditions (10 credits)

Throughout this exercise, we will only be considering languages of infinite words over $\Sigma=\{a, b, c\}$.
a) Consider the ω-regular language L_{1} defined as

$$
L_{1}=\left\{w \in \Sigma^{\omega}: a b \text { and ac appear infinitely often in } w\right\}
$$

Give a non-deterministic Büchi automaton $\left(A_{1}, \mathcal{F}_{1}\right)$ which accepts L_{1} such that A_{1} has at most 5 states.
b) Give a non-deterministic generalized Büchi automaton $\left(A_{1}^{\prime}, \mathcal{F}_{1}^{\prime}\right)$ which accepts L_{1} such that A_{1}^{\prime} has at most 3 states.
c) Consider the ω-regular language L_{2} defined as

$$
L_{2}=\left\{w \in \Sigma^{\omega}: \text { ab appears infinitely often in } w \text { and ac appears finitely often in } w\right\}
$$

Give a deterministic Rabin automaton $\left(A_{2}, \mathcal{F}_{2}\right)$ which accepts L_{2} such that A_{2} has at most 4 states.
\square
d) This is a bonus subproblem.

Give a non-deterministic Muller automaton $\left(A_{2}^{\prime}, \mathcal{F}_{2}^{\prime}\right)$ which accepts L_{2} such that A_{2}^{\prime} has at most 3 states.
\square

Problem 7 DAGs and Büchi automata (4 credits)

Consider the following Büchi automaton over $\Sigma=\{a, b\}$.

a) Draw $\operatorname{dag}\left((a a b)^{\omega}\right)$ and give an odd ranking for it.
b) Find an ω-word w such that $\operatorname{dag}(w)$ does not have an odd ranking. Draw dag(w) and prove that it does not have an odd ranking by analyzing the dag.

Problem 8 Linear Temporal Logic (4 credits)

a) Let $A P=\{p, q, r\}$ and let $\Sigma=2^{A P}$. Consider the formulas

$$
\phi:=(p \mathbf{U} q) \mathbf{U} r \quad \text { and } \quad \xi:=p \mathbf{U}(q \mathbf{U} r)
$$

Give four computations $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$, all of them over $A P$, such that

- $\sigma_{1} \models \phi$ and $\sigma_{1} \models \xi$
- $\sigma_{2} \neq \phi$ and $\sigma_{2} \not \vDash \xi$
- $\sigma_{3} \not \vDash \phi$ and $\sigma_{3} \vDash \xi$
- $\sigma_{4} \not \vDash \phi$ and $\sigma_{4} \not \vDash \xi$
b) This is a bonus subproblem.

Let $A P=\{p, q\}$ and let $\Sigma=2^{A P}$. Give an ω-regular expression over Σ for the set of all computations which satisfy the formula

$$
\varphi:=(p \mathbf{U} q) \mathbf{U} p
$$

c) This is a bonus subproblem.

Consider the formula φ defined in the previous subproblem. Use the ω-regular expression you defined in the previous subproblem to derive a formula φ^{\prime} such that φ^{\prime} and φ are equivalent and φ^{\prime} is of strictly smaller size than φ.
\square

Additional space for solutions－clearly mark the（sub）problem your answers are related to and strike out invalid solutions．
\square

