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• Cross your Registration number(with leading zero). It will be evaluated automatically.
• Sign in the corresponding signature field.

Automaten und formale Sprachen

Exam: IN2041 / Retake Date: Tuesday 4th April, 2023
Examiner: Prof. Javier Esparza Time: 17:00 – 19:00

I

P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8

Working instructions
• This exam consists of 18 pages with a total of 8 problems.

Please make sure now that you received a complete copy of the exam.

• The total amount of achievable credits in this exam is 45 credits.

• Detaching pages from the exam is prohibited.

• Answers are only accepted if the solution approach is documented. Give a reason for each
answer unless explicitly stated otherwise in the respective subproblem.

• Do not write with red or green colors nor use pencils.

• Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from to / Early submission at
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Problem 1 NFAs and regular expressions (6 credits)

Let NFA-regtoNFA-ε be the algorithm given in the lectures, which given an NFA-reg M as input produces as
output an NFA-ε which recognizes the same language as M.

a) Let A be the following NFA-reg over the alphabet Σ = {a, b}.

ab∗ + ba∗

Apply the NFA-regtoNFA-ε algorithm on A to produce an NFA-ε B.

cit-afl-5-20230404-E0001-02 – Page 2 / 18 – Page empty



"

"

"

b) Consider the NFA-ε B from the previous subproblem. Apply any algorithm which converts an NFA-ε to an
NFA recognizing the same language (for example, the NFA-εtoNFA algorithm given in the lectures), on the
NFA-ε B, to produce an NFA C.
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c) Give a minimal NFA recognizing L(ab∗ + ba∗). Note that you have to produce such an NFA and prove that
any NFA which has strictly less states cannot recognize L(ab∗ + ba∗).
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Problem 2 Occurrences of subwords (5 credits)

Let Σ = {a, b}.

a) Let L be the language of finite words over Σ defined as

L = {w : w contains no occurrence of aba}

Give the minimal DFA for the language L . Hint: It might help to think in terms of pattern matching.

b) Let L ′ be the language of finite words over Σ defined as

L ′ = {w : w contains at least two distinct (but possibly overlapping) occurrences of aba}

For example, the words b aba︸︷︷︸ a aba︸︷︷︸ a aba︸︷︷︸,
︷︸︸︷
ab aba︸︷︷︸ ∈ L ′ but ab, abaab /∈ L ′.

Give a regular expression for the language L ′.
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c) Give the minimal DFA for the language L ′ defined in the previous subproblem. Hint: It might help to think
in terms of pattern matching. The final answer should have 7 states.
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Problem 3 Fixed-length languages (4 credits)

For a fixed-length language L over Σ = {a, b} we denote by qL the state of the master automaton represent-
ing L . We also denote by M(L ) the fragment of the master automaton that contains qL and all its residuals,
that is, it contains all the states between qL and q∅, including qL and q∅ (and no other states).

How many fixed-length languages L of length 3 exist such that M(L ) contains exactly 5 states? For instance,
here is an example of a language L of length 3 such that M(L ) contains exactly 5 states.

{aab, abb} {ab, bb} {b} ε

∅

a

a

b

b

a, b

b

a
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Problem 4 First-order logic on words (6 credits)

Let Σ = {0, 1} and let n ≥ 1 be some natural number. Given a string w ∈ Σ∗, let msbf(w) denote the
number represented by w in binary in the most significant bit first encoding. For example, if w = 0011, then
msbf(w) = 3 and if w = 1011, then msbf(w) = 11.

For the purposes of this exercise, whenever you are asked to construct a formula over FO(Σ), in addition to the
syntax of FO(Σ), you are only allowed to use the following macros: first(x), last(x), x = y, y = x + k , y < x + k
and y < k for some number k . If you use any other macros, you have to explicitly give the FO formulas that
these macros stand for.

a) For n ≥ 1, consider the language Ln := {w : w ∈ Σ2n}. Give a formula φn over FO(Σ) which recognizes Ln.
The formula φn must be of size polynomial in n, i.e., there must be a polynomial p such that the size of each
φn is at most p(n).

b) For n ≥ 1, consider the language L ′n := {uu : u ∈ Σn}. Give a formula φ′n over FO(Σ) which recognizes L ′n.
The formula φ′n must be of size polynomial in n, i.e., there must be a polynomial p′ such that the size of each
φ′n is at most p′(n).
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c) For n ≥ 1, consider the language L ′′n := {uv : u, v ∈ Σn, msbf(u) ≥ msbf(v)}. Give a formula φ′′n over FO(Σ)
which recognizes L ′′n . The formula φ′′n must be of size polynomial in n, i.e., there must be a polynomial p′′

such that the size of each φ′′n is at most p′′(n).
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Problem 5 Operations on languages (6 credits)

Let Σ = {a, b}. Let L ⊆ Σ∗ be any language consisting of finite words over Σ. We define the ω-language
Laω ⊆ Σω as

Laω = {waω : w ∈ L}

Note that Laω is a language of infinite words over Σ. Intuitively, each word in Laω is obtained by first taking
some finite word w ∈ L and then adding the infinite suffix aω to it.

a) Prove or disprove: If L ⊆ Σ∗ is regular, then Laω is ω-regular.

b) Prove or disprove: If Laω is ω-regular for some L ⊆ Σ∗, then L is regular.
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c) Prove or disprove: If (L · {b})aω is ω-regular for some L ⊆ Σ∗, then L is regular. 0
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Problem 6 Acceptance conditions (10 credits)

Throughout this exercise, we will only be considering languages of infinite words over Σ = {a, b, c}.

a) Consider the ω-regular language L1 defined as

L1 = {w ∈ Σω : ab and ac appear infinitely often in w}

Give a non-deterministic Büchi automaton (A1,F1) which accepts L1 such that A1 has at most 5 states.

b) Give a non-deterministic generalized Büchi automaton (A ′1,F ′1) which accepts L1 such that A ′1 has at most
3 states.
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c) Consider the ω-regular language L2 defined as

L2 = {w ∈ Σω : ab appears infinitely often in w and ac appears finitely often in w}

Give a deterministic Rabin automaton (A2,F2) which accepts L2 such that A2 has at most 4 states.

d) This is a bonus subproblem.

Give a non-deterministic Muller automaton (A ′2,F ′2) which accepts L2 such that A ′2 has at most 3 states.
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Problem 7 DAGs and Büchi automata (4 credits)

Consider the following Büchi automaton over Σ = {a, b}.

p q

r

a

b

a b

a

b

a) Draw dag((aab)ω) and give an odd ranking for it.

cit-afl-5-20230404-E0001-14 – Page 14 / 18 – Page empty



"

"

"

b) Find an ω-word w such that dag(w) does not have an odd ranking. Draw dag(w) and prove that it does
not have an odd ranking by analyzing the dag.
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Problem 8 Linear Temporal Logic (4 credits)

a) Let AP = {p, q, r} and let Σ = 2AP . Consider the formulas

φ := (p U q) U r and ξ := p U (q U r)

Give four computations σ1,σ2,σ3,σ4, all of them over AP, such that

• σ1 |= φ and σ1 |= ξ

• σ2 |= φ and σ2 6|= ξ

• σ3 6|= φ and σ3 |= ξ

• σ4 6|= φ and σ4 6|= ξ

b) This is a bonus subproblem.

Let AP = {p, q} and let Σ = 2AP . Give an ω-regular expression over Σ for the set of all computations which
satisfy the formula

ϕ := (p U q) U p
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c) This is a bonus subproblem.

Consider the formula ϕ defined in the previous subproblem. Use the ω-regular expression you defined in the
previous subproblem to derive a formula ϕ′ such that ϕ′ and ϕ are equivalent and ϕ′ is of strictly smaller size
than ϕ.
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Additional space for solutions–clearly mark the (sub)problem your answers are related to and strike
out invalid solutions.
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