Automaten und formale Sprachen

Exam: IN2041 / Retake Date: Tuesday 4th April, 2023
Examiner: Prof. Javier Esparza Time: 17:00 – 19:00

Working instructions

- This exam consists of 18 pages with a total of 8 problems. Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 45 credits.
- Detaching pages from the exam is prohibited.
- **Answers are only accepted if the solution approach is documented.** Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.
Problem 1 NFAs and regular expressions (6 credits)

Let NFA-regtoNFA-ϵ be the algorithm given in the lectures, which given an NFA-reg M as input produces as output an NFA-ϵ which recognizes the same language as M.

a) Let A be the following NFA-reg over the alphabet $\Sigma = \{a, b\}$.

Apply the NFA-regtoNFA-ϵ algorithm on A to produce an NFA-ϵ B.

We obtain B by the following steps.
b) Consider the NFA-ε B from the previous subproblem. Apply any algorithm which converts an NFA-ε to an NFA recognizing the same language (for example, the NFA-ε to NFA algorithm given in the lectures), on the NFA-ε B, to produce an NFA C.

The following is one possible solution for C.

![Diagram of NFA C]
c) Give a minimal NFA recognizing $L(ab^* + ba^*)$. Note that you have to produce such an NFA and prove that any NFA which has strictly less states cannot recognize $L(ab^* + ba^*)$.

The following is a minimal NFA for $L(ab^* + ba^*)$.

We now prove that there is no 2-state NFA that can recognize $L = L(ab^* + ba^*)$. For the sake of contradiction, suppose D is a 2-state NFA which recognizes L. Let q be some initial state of D. q cannot be final as otherwise D accepts $\epsilon \notin L$. D must have a final state, as otherwise D accepts nothing. Let $q' \neq q$ be a final state of D. Note that q' also cannot be initial as otherwise D accepts ϵ. Hence, we have exactly one initial state q and one final state $q' \neq q$.

Since $a, b \in L$, it follows that $q \xrightarrow{a} q'$ and $q \xrightarrow{b} q'$ are transitions of D. Further since $ab \in L$, it follows that $q \xrightarrow{a} p \xrightarrow{b} q'$ for some $p \in \{q, q'\}$. If $p = q$, then aa is accepted by D because of the run $q \xrightarrow{a} q \xrightarrow{a} q'$. If $p = q'$, then bb is accepted by D because of the run $q \xrightarrow{b} q' \xrightarrow{b} q'$. In either case, we have a contradiction.

Remark: We note that a residual-based argument does not work here, as it works only for DFAs.
Problem 2 Occurrences of subwords (5 credits)

Let $\Sigma = \{a, b\}$.

a) Let L be the language of finite words over Σ defined as

$$L = \{w : w \text{ contains no occurrence of } aba\}$$

Give the minimal DFA for the language L. **Hint:** It might help to think in terms of pattern matching.

We consider the minimal DFA obtained by the pattern matching algorithm for the pattern $p = aba$, with the difference that the final state has self-loops for $\Sigma = \{a, b\}$.

![DFA Diagram]

Note that this is the minimal DFA for $\Sigma^* aba \Sigma^*$. Flipping the accepting and rejecting states gives the minimal DFA for L.

b) Let L' be the language of finite words over Σ defined as

$$L' = \{w : w \text{ contains at least two distinct (but possibly overlapping) occurrences of } aba\}$$

For example, the words $baba\overline{aba}a\overline{aba}$, $abaaba \overline{aba} \in L'$ but $ab, abaab \not\in L'$.

Give a regular expression for the language L'.

One possible solution is $\Sigma^* aba \Sigma^* aba \Sigma^* + \Sigma^* ababa \Sigma^*$.
c) Give the minimal DFA for the language \(L' \) defined in the previous subproblem. **Hint:** It might help to think in terms of pattern matching. The final answer should have 7 states.

Consider two copies of the minimal DFA for the pattern \(p = aba \), with the difference that the final state has self-loops for \(\Sigma = \{a, b\} \).

We remove the accepting state in the first copy and divert its incoming \(a \) transition to the second state of the second copy, to get our required answer.
Problem 3 Fixed-length languages (4 credits)

For a fixed-length language L over $\Sigma = \{a, b\}$ we denote by q_L the state of the master automaton representing L. We also denote by $M(L)$ the fragment of the master automaton that contains q_L and all its residuals, that is, it contains all the states between q_L and q_\emptyset, \textit{including} q_L and q_\emptyset (and no other states).

How many fixed-length languages L of length 3 exist such that $M(L)$ contains exactly 5 states? \textbf{For instance, here is an example of a language L of length 3 such that $M(L)$ contains exactly 5 states.}

\begin{center}
\begin{tikzpicture}
 \node (A) at (0,0) [circle, draw] {$\{aab, abb\}$};
 \node (B) at (1,0) [circle, draw] {$\{ab, bb\}$};
 \node (C) at (2,0) [circle, draw] {$\{b\}$};
 \node (D) at (3,0) [circle, draw] {\emptyset};

 \path
 (A) edge [above] node {a} (B)
 (B) edge [above] node {a} (C)
 (C) edge [above] node {a, b} (D)
 (D) edge [below] node {b} (C)
 (B) edge [below] node {b} (D);
\end{tikzpicture}
\end{center}

If there are 5 states in $M(L)$, 2 of them must be in level 0 (those are q_\emptyset and q_ϵ) and in every other layer there is exactly 1 state. A transition from the state in level i can either go to the state in level $i - 1$ or to q_\emptyset, with the restriction that at least one transition must go to the state in level $i - 1$. Hence, the edge between consecutive levels can be labeled either with a or with b or with a, b. Since we have 3 levels and 3 options for each level, there are in total $3^3 = 27$ different languages.
Problem 4 First-order logic on words (6 credits)

Let $\Sigma = \{0, 1\}$ and let $n \geq 1$ be some natural number. Given a string $w \in \Sigma^*$, let $\text{msbf}(w)$ denote the number represented by w in binary in the most significant bit first encoding. For example, if $w = 0011$, then $\text{msbf}(w) = 3$ and if $w = 1011$, then $\text{msbf}(w) = 11$.

For the purposes of this exercise, whenever you are asked to construct a formula over $\text{FO}(\Sigma)$, in addition to the syntax of $\text{FO}(\Sigma)$, you are only allowed to use the following macros: $\text{first}(x)$, $\text{last}(x)$, $x = y$, $y = x + k$, $y < x + k$ and $y < k$ for some number k. If you use any other macros, you have to explicitly give the FO formulas that these macros stand for.

a) For $n \geq 1$, consider the language $L_n := \{w : w \in \Sigma^{2n}\}$. Give a formula ϕ_n over $\text{FO}(\Sigma)$ which recognizes L_n. The formula ϕ_n must be of size polynomial in n, i.e., there must be a polynomial p such that the size of each ϕ_n is at most $p(n)$.

One possible solution is

$$\phi_n := \exists x, y. \text{first}(x) \land \text{last}(y) \land y = 2n - 1 + x$$

Intuitively, this formula states that there are two positions x and y such that x is the first position, y is the last position and the distance between them is $2n$.

b) For $n \geq 1$, consider the language $L'_n := \{uu : u \in \Sigma^n\}$. Give a formula ϕ'_n over $\text{FO}(\Sigma)$ which recognizes L'_n. The formula ϕ'_n must be of size polynomial in n, i.e., there must be a polynomial p' such that the size of each ϕ'_n is at most $p'(n)$.

One possible solution is

$$\phi'_n := \phi_n \land \forall x. x < n + 1 \implies \exists y. (y = x + n \land (Q_0(x) \iff Q_0(y)) \land (Q_1(x) \iff Q_1(y)))$$

Intuitively, this formula states that the word has length exactly $2n$ and further for every position $x < n+1$, the letter at position x is the same as the letter at position $y = x + n$.

A Sample Solution
For $n \geq 1$, consider the language $L''_n := \{uv : u, v \in \Sigma^n, \text{msbf}(u) \geq \text{msbf}(v)\}$. Give a formula ϕ''_n over $\text{FO}(\Sigma)$ which recognizes L''_n. The formula ϕ''_n must be of size polynomial in n, i.e., there must be a polynomial p'' such that the size of each ϕ''_n is at most $p''(n)$.

One possible solution is

$$
\phi''_n := \phi_n \land (\phi'_n \lor (\exists x, y. \ x < n + 1 \land y = x + n \land Q_1(x) \land Q_0(y) \land
(\forall x'. x' < x \implies \exists y'. (y' = x' + n \land (Q_0(x') \iff Q_0(y')) \land (Q_1(x') \iff Q_1(y')))))
$$

Intuitively, this formula states that the word has length exactly $2n$ and

- Either ϕ'_n holds, in which case the word is of the form uu with $u \in \Sigma^n$
- Or there is a position $x < n + 1$ such that the letter at x is 1 and the letter at $y = x + n$ is 0 and for every $x' < x$, the letter at x' and the letter at $y' = x' + n$ are the same.
Problem 5 Operations on languages (6 credits)

Let $\Sigma = \{a, b\}$. Let $L \subseteq \Sigma^*$ be any language consisting of finite words over Σ. We define the ω-language $L_{\omega} \subseteq \Sigma^\omega$ as

$$L_{\omega} = \{wa^\omega : w \in L\}$$

Note that L_{ω} is a language of infinite words over Σ. Intuitively, each word in L_{ω} is obtained by first taking some finite word $w \in L$ and then adding the infinite suffix a^ω to it.

a) Prove or disprove: If $L \subseteq \Sigma^*$ is regular, then L_{ω} is ω-regular.

The claim is true. Suppose L is a regular language. Let r be a regular expression for L. Then, the ω-regular expression $r \cdot \{a\}^\omega$ recognizes L_{ω}.

b) Prove or disprove: If L_{ω} is ω-regular for some $L \subseteq \Sigma^*$, then L is regular.

The claim is false. Let L be any non-regular language over $\{a\}$, for example $\{a^{2n} : n \geq 1\}$. Then $L_{\omega} = a^\omega$ which is ω-regular.
The claim is true. Suppose \(L' := (L \cdot \{ b \})a^\omega \) is \(\omega \)-regular. Let \(A = (Q, \Sigma, \delta, Q_0, F) \) be an NBA which recognizes \(L' \). Let \(Q' \) be the set of states of \(A \) which accept \(ba^\omega \). Let \(B \) be the NFA given by \(B = (Q, \Sigma, \delta, Q_0, Q') \). We claim that \(B \) recognizes \(L \).

Suppose \(w \in L \). Then there is an accepting run for \(wba^\omega \) over \(A \). Let \(q \) be the state that is reached along this run after reading \(w \). By definition, \(q \in Q' \) and so it follows that \(w \) is also accepted over \(B \).

Suppose \(w \) is accepted by \(B \). Then there is an accepting run of \(w \) over \(B \) which ends in some state in \(Q' \). By definition, this means that there is an accepting run for \(wba^\omega \) over \(A \) and so \(wba^\omega \in L' = (L \cdot \{ b \})a^\omega \). Hence, \(wba^\omega = w'ba^\omega \) for some \(w' \in L \). If \(w \) is a strict prefix of \(w' \), then let \(w' = ww'' \) for some \(w'' \neq \epsilon \). We then have \(ba^\omega = w''ba^\omega \), which leads to a contradiction. A similar argument can be made for the case of \(w' \) being a strict prefix of \(w \). It follows then that \(w = w' \) and so \(w \in L \).
Problem 6 Acceptance conditions (10 credits)
Throughout this exercise, we will only be considering languages of infinite words over $\Sigma = \{a, b, c\}$.

a) Consider the ω-regular language L_1 defined as

$$L_1 = \{ w \in \Sigma^\omega : ab \text{ and } ac \text{ appear infinitely often in } w \}$$

Give a non-deterministic Büchi automaton (A_1, F_1) which accepts L_1 such that A_1 has at most 5 states.

The following is one possible solution.

![Diagram of non-deterministic Büchi automaton](image)

b) Give a non-deterministic generalized Büchi automaton (A'_1, F'_1) which accepts L_1 such that A'_1 has at most 3 states.

The following is one possible solution whose generalized Büchi condition is $\{\{2\}, \{3\}\}$.

![Diagram of non-deterministic generalized Büchi automaton](image)
c) Consider the ω-regular language L_2 defined as

$$L_2 = \{ w \in \Sigma^\omega : ab \text{ appears infinitely often in } w \text{ and } ac \text{ appears finitely often in } w \}$$

Give a **deterministic** Rabin automaton (A_2, F_2) which accepts L_2 such that A_2 has at most 4 states.

The following is one possible solution whose Rabin condition is $$\{\langle \{3\}, \{4\} \rangle\}$$, i.e., 3 must be visited infinitely often and 4 must be visited finitely often.

![Deterministic Rabin automaton](image)

d) **This is a bonus subproblem.**

Give a non-deterministic Muller automaton (A'_2, F'_2) which accepts L_2 such that A'_2 has at most 3 states.

The following is one possible solution whose Muller condition is $$\{\{1, 2\}\}$$.

![Non-deterministic Muller automaton](image)
Consider the following Büchi automaton over \(\Sigma = \{a, b\} \).

![Büchi Automaton Diagram]

a) Draw \(\text{dag}(\text{aab}^\omega) \) and give an odd ranking for it.

The \(\text{dag}(\text{aab}^\omega) \) is presented below.

![Dag Diagram]

One possible way to define an odd ranking is:

\[
 f(s, i) = \begin{cases}
 1 & \text{if } (s = p \text{ or } s = q) \text{ and } (s, i) \text{ appears in } \text{dag}(\text{aab}^\omega), \\
 0 & \text{if } s = r \text{ and } (s, i) \text{ appears in } \text{dag}(\text{aab}^\omega), \\
 \bot & \text{otherwise.}
 \end{cases}
\]
b) Find an ω-word w such that $\text{dag}(w)$ does not have an odd ranking. Draw $\text{dag}(w)$ and prove that it does not have an odd ranking by analyzing the dag.

For example, ab^ω has this property. Below we sketch $\text{dag}(ab^\omega)$.

There are only two infinite paths in this dag and starting from layer 2 both of them visit only the state r which is accepting. Hence, there can be no odd ranking in this case.
Problem 8 Linear Temporal Logic (4 credits)

a) Let $AP = \{p, q, r\}$ and let $\Sigma = 2^{AP}$. Consider the formulas

$$\phi := (p U q) U r \quad \text{and} \quad \xi := p U (q U r)$$

Give four computations $\sigma_1, \sigma_2, \sigma_3, \sigma_4$, all of them over AP, such that

- $\sigma_1 \models \phi$ and $\sigma_1 \models \xi$
- $\sigma_2 \models \phi$ and $\sigma_2 \not\models \xi$
- $\sigma_3 \not\models \phi$ and $\sigma_3 \models \xi$
- $\sigma_4 \not\models \phi$ and $\sigma_4 \not\models \xi$

There are many possible solutions, here is an example:

- $\sigma_1 = \{r\}^\omega$
- $\sigma_2 = \{p\} \{q\} \{p\} \{q\} \{r\}^\omega$
- $\sigma_3 = \{p\} \{r\}^\omega$
- $\sigma_4 = \emptyset^\omega$

b) This is a bonus subproblem.

Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. Give an ω-regular expression over Σ for the set of all computations which satisfy the formula

$$\varphi := (p U q) U p$$

$$\{q\}^* (\{p\} + \{p, q\}) \Sigma^\omega$$
c) This is a bonus subproblem.

Consider the formula φ defined in the previous subproblem. Use the ω-regular expression you defined in the previous subproblem to derive a formula φ' such that φ' and φ are equivalent and φ' is of strictly smaller size than φ.

$q \mathsf{U} p$
Additional space for solutions—clearly mark the (sub)problem your answers are related to and strike out invalid solutions.