ТШ

1 2 3 4 5 6 7 8						n number
6 7 8 9 0		Ħ			Ħ	Registration number

Signature

Note:

Cross your Registration number(with leading zero). It will be evaluated automatically.
Sign in the corresponding signature field.

Automaten und formale Sprachen

	Exam: Examiner:	IN2041 / Retake Prof. Javier Esparza			ate: Tuesday 4 th April, 2 ime: 17:00 – 19:00		
				C			
- /		5.0					5.0
P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8

Working instructions

I

- This exam consists of **18 pages** with a total of **8 problems**. Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 45 credits.
- Detaching pages from the exam is prohibited.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from to / Early submission	n at
--------------------------------------	------

Problem 1 NFAs and regular expressions (6 credits)

Let NFA-regtoNFA- ϵ be the algorithm given in the lectures, which given an NFA-reg *M* as input produces as output an NFA- ϵ which recognizes the same language as *M*.

a) Let A be the following NFA-reg over the alphabet $\Sigma = \{a, b\}$.

Apply the NFA-regtoNFA- ϵ algorithm on A to produce an NFA- ϵ B.

0 1 2

b) Consider the NFA- ϵ *B* from the previous subproblem. Apply any algorithm which converts an NFA- ϵ to an NFA recognizing the same language (for example, the NFA- ϵ toNFA algorithm given in the lectures), on the NFA- ϵ *B*, to produce an NFA *C*.

0 1 2 c) Give a minimal NFA recognizing $\mathcal{L}(ab^* + ba^*)$. Note that you have to produce such an NFA and prove that any NFA which has strictly less states cannot recognize $\mathcal{L}(ab^* + ba^*)$.

The following is a minimal NFA for $\mathcal{L}(ab^* + ba^*)$.

We now prove that there is no 2-state NFA that can recognize $L = \mathcal{L}(ab^* + ba^*)$. For the sake of contradiction, suppose *D* is a 2-state NFA which recognizes *L*. Let *q* be some initial state of *D*. *q* cannot be final as otherwise *D* accepts $\epsilon \notin L$. *D* must have a final state, as otherwise *D* accepts nothing. Let $q' \neq q$ be a final state of *D*. Note that q' also cannot be initial as otherwise *D* accepts ϵ . Hence, we have exactly one initial state *q* and one final state $q' \neq q$.

Since $a, b \in L$, it follows that $q \xrightarrow{a} q'$ and $q \xrightarrow{b} q'$ are transitions of *D*. Further since $ab \in L$, it follows that $q \xrightarrow{a} p \xrightarrow{b} q'$ for some $p \in \{q, q'\}$. If p = q, then aa is accepted by *D* because of the run $q \xrightarrow{a} q \xrightarrow{a} q'$. If p = q', then *bb* is accepted by *D* because of the run $q \xrightarrow{b} q' \xrightarrow{b} q'$. In either case, we have a contradiction.

Remark: We note that a residual-based argument does not work here, as it works only for DFAs.

Problem 2 Occurrences of subwords (5 credits)

Let $\Sigma = \{a, b\}$.

a) Let L be the language of finite words over $\boldsymbol{\Sigma}$ defined as

Give the minimal DFA for the language *L*. **Hint:** It might help to think in terms of pattern matching.

b) Let L' be the language of finite words over Σ defined as

 $L' = \{w : w \text{ contains at least two distinct (but possibly overlapping) occurrences of aba}\}$

- Page 5 / 18 -

For example, the words *b* aba *a* aba *a* aba, $aba \in L'$ but *ab*, $abaab \notin L'$.

Give a regular expression for the language L'.

One possible solution is $\Sigma^* aba\Sigma^* aba\Sigma^* + \Sigma^* ababa\Sigma^*$.

c) Give the minimal DFA for the language L' defined in the previous subproblem. **Hint:** It might help to think in terms of pattern matching. The final answer should have 7 states.

Problem 3 Fixed-length languages (4 credits)

For a fixed-length language *L* over $\Sigma = \{a, b\}$ we denote by q_L the state of the master automaton representing *L*. We also denote by M(L) the fragment of the master automaton that contains q_L and all its residuals, that is, it contains all the states between q_L and q_{\emptyset} , **including** q_L and q_{\emptyset} (and no other states).

How many fixed-length languages *L* of length 3 exist such that M(L) contains exactly 5 states? For instance, here is an example of a language *L* of length 3 such that M(L) contains exactly 5 states.

If there are 5 states in M(L), 2 of them must be in level 0 (those are q_{\emptyset} and q_{ε}) and in every other layer there is exactly 1 state. A transition from the state in level *i* can either go to the state in level *i* – 1 or to q_{\emptyset} , with the restriction that at least one transition must go to the state in level *i* – 1. Hence, the edge between consecutive levels can be labeled either with *a* or with *b* or with *a*, *b*. Since we have 3 levels and 3 options for each level, there are in total $3^3 = 27$ different languages.

Problem 4 First-order logic on words (6 credits)

Let $\Sigma = \{0, 1\}$ and let $n \ge 1$ be some natural number. Given a string $w \in \Sigma^*$, let msbf(w) denote the number represented by w in binary in the most significant bit first encoding. For example, if w = 0011, then msbf(w) = 3 and if w = 1011, then msbf(w) = 11.

For the purposes of this exercise, whenever you are asked to construct a formula over $FO(\Sigma)$, in addition to the syntax of $FO(\Sigma)$, you are only allowed to use the following macros: first(x), last(x), x = y, y = x + k, y < x + k and y < k for some number k. If you use any other macros, you have to explicitly give the FO formulas that these macros stand for.

a) For $n \ge 1$, consider the language $L_n := \{w : w \in \Sigma^{2n}\}$. Give a formula ϕ_n over FO(Σ) which recognizes L_n . The formula ϕ_n must be of size polynomial in n, i.e., there must be a polynomial p such that the size of each ϕ_n is at most p(n).

One possible solution is

 $\phi_n := \exists x, y. \text{ first}(x) \land \text{last}(y) \land y = 2n - 1 + x$

Intuitively, this formula states that there are two positions x and y such that x is the first position, y is the last position and the distance between them is 2n.

b) For $n \ge 1$, consider the language $L'_n := \{uu : u \in \Sigma^n\}$. Give a formula ϕ'_n over FO(Σ) which recognizes L'_n . The formula ϕ'_n must be of size polynomial in n, i.e., there must be a polynomial p' such that the size of each ϕ'_n is at most p'(n).

One possible solution is

 $\phi'_n := \phi_n \land \forall x. \ x < n+1 \implies \exists y. \ (y = x + n \land (Q_0(x) \iff Q_0(y)) \land (Q_1(x) \iff Q_1(y)))$

Intuitively, this formula states that the word has length exactly 2n and further for every position x < n+1, the letter at position x is the same as the letter at position y = x + n.

c) For $n \ge 1$, consider the language $L''_n := \{uv : u, v \in \Sigma^n, msbf(u) \ge msbf(v)\}$. Give a formula ϕ''_n over FO(Σ) which recognizes L''_n . The formula ϕ''_n must be of size polynomial in n, i.e., there must be a polynomial p'' such that the size of each ϕ''_n is at most p''(n).

Problem 5 Operations on languages (6 credits)

Let $\Sigma = \{a, b\}$. Let $L \subseteq \Sigma^*$ be any language consisting of finite words over Σ . We define the ω -language $La^{\omega} \subseteq \Sigma^{\omega}$ as

$$La^{\omega} = \{wa^{\omega} : w \in L\}$$

Note that La^{ω} is a language of *infinite words* over Σ . Intuitively, each word in La^{ω} is obtained by first taking some finite word $w \in L$ and then adding the infinite suffix a^{ω} to it.

a) Prove or disprove: If $L \subseteq \Sigma^*$ is regular, then La^{ω} is ω -regular.

0

2

The claim is true. Suppose *L* is a regular language. Let *r* be a regular expression for *L*. Then, the ω -regular expression $r \cdot \{a\}^{\omega}$ recognizes La^{ω} .

b) Prove or disprove: If La^{ω} is	\sim regular for comp $L \subset \Sigma^*$	than L is regular
	ω -requiar for some $L \subseteq Z$.	literi L is regular.

The claim is false. Let *L* be any non-regular language over $\{a\}$, for example $\{a^{2^n} : n \ge 1\}$. Then $La^{\omega} = a^{\omega}$ which is ω -regular.

The claim is true. Suppose $L' := (L \cdot \{b\})a^{\omega}$ is ω -regular. Let $A = (Q, \Sigma, \delta, Q_0, F)$ be an NBA which recognizes L'. Let Q' be the set of states of A which accept ba^{ω} . Let B be the NFA given by $B = (Q, \Sigma, \delta, Q_0, Q')$. We claim that B recognizes L.

Suppose $w \in L$. Then there is an accepting run for wba^{ω} over A. Let q be the state that is reached along this run after reading w. By definition, $q \in Q'$ and so it follows that w is also accepted over B.

Suppose *w* is accepted by *B*. Then there is an accepting run of *w* over *B* which ends in some state in *Q'*. By definition, this means that there is an accepting run for wba^{ω} over *A* and so $wba^{\omega} \in L' = (L \cdot \{b\})a^{\omega}$. Hence, $wba^{\omega} = w'ba^{\omega}$ for some $w' \in L$. If *w* is a strict prefix of *w'*, then let w' = ww'' for some $w'' \neq \epsilon$. We then have $ba^{\omega} = w''ba^{\omega}$, which leads to a contradiction. A similar argument can be made for the case of *w'* being a strict prefix of *w*. It follows then that w = w' and so $w \in L$.

Problem 6 Acceptance conditions (10 credits)

Throughout this exercise, we will only be considering languages of infinite words over $\Sigma = \{a, b, c\}$.

a) Consider the ω -regular language L_1 defined as

 $L_1 = \{w \in \Sigma^{\omega} : ab \text{ and } ac \text{ appear infinitely often in } w\}$

Give a non-deterministic Büchi automaton (A_1 , \mathcal{F}_1) which accepts L_1 such that A_1 has **at most 5 states**.

b) Give a non-deterministic generalized Büchi automaton (A'_1, \mathcal{F}'_1) which accepts L_1 such that A'_1 has **at most 3 states**.

The following is one possible solution whose generalized Büchi condition is $\{\{2\}, \{3\}\}$.

0

c) Consider the ω -regular language L_2 defined as

 $L_2 = \{w \in \Sigma^{\omega} : ab \text{ appears infinitely often in } w \text{ and } ac \text{ appears finitely often in } w\}$

Give a deterministic Rabin automaton (A_2, \mathcal{F}_2) which accepts L_2 such that A_2 has at most 4 states.

The following is one possible solution whose Rabin condition is $\{\langle \{3\}, \{4\} \rangle\}$, i.e., 3 must be visited infinitely often and 4 must be visited finitely often.

d) This is a bonus subproblem.

Give a non-deterministic Muller automaton (A'_2, \mathcal{F}'_2) which accepts L_2 such that A'_2 has **at most 3 states**.

The following is one possible solution whose Muller condition is $\{\{1,2\}\}$. b,c а

Problem 7 DAGs and Büchi automata (4 credits)

Consider the following Büchi automaton over $\Sigma = \{a, b\}$.

b) Find an ω -word w such that dag(w) **does not** have an odd ranking. Draw dag(w) and prove that it does not have an odd ranking by analyzing the *dag*.

Problem 8 Linear Temporal Logic (4 credits)

a) Let $AP = \{p, q, r\}$ and let $\Sigma = 2^{AP}$. Consider the formulas

 $\phi := (p \mathbf{U} q) \mathbf{U} r$ and $\xi := p \mathbf{U} (q \mathbf{U} r)$

Give four computations $\sigma_1, \sigma_2, \sigma_3, \sigma_4$, all of them over *AP*, such that

- $\sigma_1 \models \phi$ and $\sigma_1 \models \xi$
- $\sigma_2 \models \phi$ and $\sigma_2 \not\models \xi$
- $\sigma_3 \not\models \phi$ and $\sigma_3 \models \xi$
- $\sigma_4 \not\models \phi$ and $\sigma_4 \not\models \xi$

There are many possible solutions, here is an example:

- $\sigma_1 = \{r\}^{\omega}$
- $\sigma_2 = \{p\}\{q\}\{p\}\{q\}\{r\}^{\omega}$
- $\sigma_3 = \{p\}\{r\}^{\omega}$
- $\sigma_4 = \emptyset^{\omega}$

b) This is a bonus subproblem.

Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. Give an ω -regular expression over Σ for the set of all computations which satisfy the formula

 $\varphi := (p \mathbf{U} q) \mathbf{U} p$

 $\{q\}^*(\{p\} + \{p, q\})\Sigma^{\omega}$

0 1 2

c) This is a bonus subproblem.

Consider the formula φ defined in the previous subproblem. Use the ω -regular expression you defined in the previous subproblem to derive a formula φ' such that φ' and φ are equivalent and φ' is of strictly smaller size than φ .

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.