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Working instructions
• This exam consists of 18 pages with a total of 8 problems.

Please make sure now that you received a complete copy of the exam.

• The total amount of achievable credits in this exam is 45 credits.

• Detaching pages from the exam is prohibited.

• Answers are only accepted if the solution approach is documented. Give a reason for each
answer unless explicitly stated otherwise in the respective subproblem.

• Do not write with red or green colors nor use pencils.

• Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from to / Early submission at
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Problem 1 NFAs and regular expressions (6 credits)

Let NFA-regtoNFA-ε be the algorithm given in the lectures, which given an NFA-reg M as input produces as
output an NFA-ε which recognizes the same language as M.

a) Let A be the following NFA-reg over the alphabet Σ = {a, b}.

ab∗ + ba∗

Apply the NFA-regtoNFA-ε algorithm on A to produce an NFA-ε B.

We obtain B by the following steps.

ab∗

ba∗

a

b

b∗

a∗

a

b

ε

ε

b

a

ε

ε
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b) Consider the NFA-ε B from the previous subproblem. Apply any algorithm which converts an NFA-ε to an
NFA recognizing the same language (for example, the NFA-εtoNFA algorithm given in the lectures), on the
NFA-ε B, to produce an NFA C.

The following is one possible solution for C.

a

b

a

b

a, b

b

b

a

a

b

a

b

a
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c) Give a minimal NFA recognizing L(ab∗ + ba∗). Note that you have to produce such an NFA and prove that
any NFA which has strictly less states cannot recognize L(ab∗ + ba∗).

The following is a minimal NFA for L(ab∗ + ba∗).

a

b

b

a

We now prove that there is no 2-state NFA that can recognize L = L(ab∗ + ba∗). For the sake of
contradiction, suppose D is a 2-state NFA which recognizes L . Let q be some initial state of D. q
cannot be final as otherwise D accepts ε /∈ L . D must have a final state, as otherwise D accepts
nothing. Let q′ 6= q be a final state of D. Note that q′ also cannot be initial as otherwise D accepts ε.
Hence, we have exactly one initial state q and one final state q′ 6= q.
Since a, b ∈ L , it follows that q a−→ q′ and q b−→ q′ are transitions of D. Further since ab ∈ L , it
follows that q a−→ p b−→ q′ for some p ∈ {q, q′}. If p = q, then aa is accepted by D because of the run
q a−→ q a−→ q′. If p = q′, then bb is accepted by D because of the run q b−→ q′ b−→ q′. In either case, we
have a contradiction.

Remark: We note that a residual-based argument does not work here, as it works only for DFAs.
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Problem 2 Occurrences of subwords (5 credits)

Let Σ = {a, b}.

a) Let L be the language of finite words over Σ defined as

L = {w : w contains no occurrence of aba}

Give the minimal DFA for the language L . Hint: It might help to think in terms of pattern matching.

We consider the minimal DFA obtained by the pattern matching algorithm for the pattern p = aba, with
the difference that the final state has self-loops for Σ = {a, b}.

b

a

a

b

b

a

a, b

Note that this is the minimal DFA for Σ∗abaΣ∗. Flipping the accepting and rejecting states gives the
miminal DFA for L .

b

a

a

b

b

a

a, b

b) Let L ′ be the language of finite words over Σ defined as

L ′ = {w : w contains at least two distinct (but possibly overlapping) occurrences of aba}

For example, the words b aba︸︷︷︸ a aba︸︷︷︸ a aba︸︷︷︸,
︷︸︸︷
ab aba︸︷︷︸ ∈ L ′ but ab, abaab /∈ L ′.

Give a regular expression for the language L ′.

One possible solution is Σ∗abaΣ∗abaΣ∗ + Σ∗ababaΣ∗.
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c) Give the minimal DFA for the language L ′ defined in the previous subproblem. Hint: It might help to think
in terms of pattern matching. The final answer should have 7 states.

Consider two copies of the minimal DFA for the pattern p = aba, with the difference that the final state
has self-loops for Σ = {a, b}.

b

a

a

b

b

a

a, b b

a

a

b

b

a

a, b

We remove the accepting state in the first copy and divert its incoming a transition to the second state
of the second copy, to get our required answer.

b

a

a

b

b

a

b

a

a

b

b

a

a, b
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Problem 3 Fixed-length languages (4 credits)

For a fixed-length language L over Σ = {a, b} we denote by qL the state of the master automaton represent-
ing L . We also denote by M(L ) the fragment of the master automaton that contains qL and all its residuals,
that is, it contains all the states between qL and q∅, including qL and q∅ (and no other states).

How many fixed-length languages L of length 3 exist such that M(L ) contains exactly 5 states? For instance,
here is an example of a language L of length 3 such that M(L ) contains exactly 5 states.

{aab, abb} {ab, bb} {b} ε

∅

a

a

b

b

a, b

b

a

If there are 5 states in M(L ), 2 of them must be in level 0 (those are q∅ and qε) and in every other layer
there is exactly 1 state. A transition from the state in level i can either go to the state in level i − 1 or to
q∅, with the restriction that at least one transition must go to the state in level i − 1. Hence, the edge
between consecutive levels can be labeled either with a or with b or with a, b. Since we have 3 levels
and 3 options for each level, there are in total 33 = 27 different languages.
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Problem 4 First-order logic on words (6 credits)

Let Σ = {0, 1} and let n ≥ 1 be some natural number. Given a string w ∈ Σ∗, let msbf(w) denote the
number represented by w in binary in the most significant bit first encoding. For example, if w = 0011, then
msbf(w) = 3 and if w = 1011, then msbf(w) = 11.

For the purposes of this exercise, whenever you are asked to construct a formula over FO(Σ), in addition to the
syntax of FO(Σ), you are only allowed to use the following macros: first(x), last(x), x = y, y = x + k , y < x + k
and y < k for some number k . If you use any other macros, you have to explicitly give the FO formulas that
these macros stand for.

a) For n ≥ 1, consider the language Ln := {w : w ∈ Σ2n}. Give a formula φn over FO(Σ) which recognizes Ln.
The formula φn must be of size polynomial in n, i.e., there must be a polynomial p such that the size of each
φn is at most p(n).

One possible solution is
φn := ∃x, y. first(x) ∧ last(y) ∧ y = 2n − 1 + x

Intuitively, this formula states that there are two positions x and y such that x is the first position, y is
the last position and the distance between them is 2n.

b) For n ≥ 1, consider the language L ′n := {uu : u ∈ Σn}. Give a formula φ′n over FO(Σ) which recognizes L ′n.
The formula φ′n must be of size polynomial in n, i.e., there must be a polynomial p′ such that the size of each
φ′n is at most p′(n).

One possible solution is

φ′n := φn ∧ ∀x. x < n + 1 =⇒ ∃y. (y = x + n ∧ (Q0(x) ⇐⇒ Q0(y)) ∧ (Q1(x) ⇐⇒ Q1(y)))

Intuitively, this formula states that the word has length exactly 2n and further for every position x < n+1,
the letter at position x is the same as the letter at position y = x + n.
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c) For n ≥ 1, consider the language L ′′n := {uv : u, v ∈ Σn, msbf(u) ≥ msbf(v)}. Give a formula φ′′n over FO(Σ)
which recognizes L ′′n . The formula φ′′n must be of size polynomial in n, i.e., there must be a polynomial p′′

such that the size of each φ′′n is at most p′′(n).

One possible solution is

φ′′n := φn ∧ (φ′n ∨ (∃x, y. x < n + 1 ∧ y = x + n ∧ Q1(x) ∧ Q0(y)∧
(∀x ′. x ′ < x =⇒ ∃y ′. (y ′ = x ′ + n ∧ (Q0(x ′) ⇐⇒ Q0(y ′)) ∧ (Q1(x ′) ⇐⇒ Q1(y ′))))))

Intuitively, this formula states that the word has length exactly 2n and

• Either φ′n holds, in which case the word is of the form uu with u ∈ Σn

• Or there is a position x < n + 1 such that the letter at x is 1 and the letter at y = x + n is 0 and for
every x ′ < x, the letter at x ′ and the letter at y ′ = x ′ + n are the same.

0

1

2

3
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Problem 5 Operations on languages (6 credits)

Let Σ = {a, b}. Let L ⊆ Σ∗ be any language consisting of finite words over Σ. We define the ω-language
Laω ⊆ Σω as

Laω = {waω : w ∈ L}

Note that Laω is a language of infinite words over Σ. Intuitively, each word in Laω is obtained by first taking
some finite word w ∈ L and then adding the infinite suffix aω to it.

a) Prove or disprove: If L ⊆ Σ∗ is regular, then Laω is ω-regular.

The claim is true. Suppose L is a regular language. Let r be a regular expression for L . Then, the
ω-regular expression r · {a}ω recognizes Laω.

b) Prove or disprove: If Laω is ω-regular for some L ⊆ Σ∗, then L is regular.

The claim is false. Let L be any non-regular language over {a}, for example {a2n
: n ≥ 1}. Then

Laω = aω which is ω-regular.
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c) Prove or disprove: If (L · {b})aω is ω-regular for some L ⊆ Σ∗, then L is regular.

The claim is true. Suppose L ′ := (L · {b})aω is ω-regular. Let A = (Q ,Σ, δ, Q0, F) be an NBA which
recognizes L ′. Let Q ′ be the set of states of A which accept baω. Let B be the NFA given by
B = (Q ,Σ, δ, Q0, Q ′). We claim that B recognizes L .

Suppose w ∈ L . Then there is an accepting run for wbaω over A . Let q be the state that is reached
along this run after reading w. By definition, q ∈ Q ′ and so it follows that w is also accepted over B.

Suppose w is accepted by B. Then there is an accepting run of w over B which ends in some state in Q ′.
By definition, this means that there is an accepting run for wbaω over A and so wbaω ∈ L ′ = (L · {b})aω.
Hence, wbaω = w ′baω for some w ′ ∈ L . If w is a strict prefix of w ′, then let w ′ = ww ′′ for some w ′′ 6= ε.
We then have baω = w ′′baω, which leads to a contradiction. A similar argument can be made for the
case of w ′ being a strict prefix of w. It follows then that w = w ′ and so w ∈ L .
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Problem 6 Acceptance conditions (10 credits)

Throughout this exercise, we will only be considering languages of infinite words over Σ = {a, b, c}.

a) Consider the ω-regular language L1 defined as

L1 = {w ∈ Σω : ab and ac appear infinitely often in w}

Give a non-deterministic Büchi automaton (A1,F1) which accepts L1 such that A1 has at most 5 states.

The following is one possible solution.

1 2 3 4 5

a, b, c

a b

a, b, c

a c

a, b, c

b) Give a non-deterministic generalized Büchi automaton (A ′1,F ′1) which accepts L1 such that A ′1 has at most
3 states.

The following is one possible solution whose generalized Büchi condition is {{2}, {3}}.

1

2

3

Σ a

b

a

c
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c) Consider the ω-regular language L2 defined as

L2 = {w ∈ Σω : ab appears infinitely often in w and ac appears finitely often in w}

Give a deterministic Rabin automaton (A2,F2) which accepts L2 such that A2 has at most 4 states.

The following is one possible solution whose Rabin condition is {〈{3}, {4}〉}, i.e., 3 must be visited
infinitely often and 4 must be visited finitely often.

1 2

3

4

b, c

a

a b

c

a

b, c

a

b, c

d) This is a bonus subproblem.

Give a non-deterministic Muller automaton (A ′2,F ′2) which accepts L2 such that A ′2 has at most 3 states.

The following is one possible solution whose Muller condition is {{1, 2}}.

1

2

3

b, c a

a

b

a a

c
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Problem 7 DAGs and Büchi automata (4 credits)

Consider the following Büchi automaton over Σ = {a, b}.

p q

r

a

b

a b

a

b

a) Draw dag((aab)ω) and give an odd ranking for it.

The dag((aab)ω) is presented below.

p, 0 p, 3 p, 6

q, 1 q, 2 q, 4 q, 5 q, 7

r , 1 r , 3 r , 4 r , 6 r , 7

a a a

a
a a

a a

b
b

b b

One possible way to define an odd ranking is

f (s, i) =


1 if (s = p or s = q) and 〈s, i〉 appears in dag((aab)ω),
0 if s = r and 〈s, i〉 appears in dag((aab)ω),
⊥ otherwise.
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b) Find an ω-word w such that dag(w) does not have an odd ranking. Draw dag(w) and prove that it does
not have an odd ranking by analyzing the dag.

For example, abω has this property. Below we sketch dag(abω).

p, 0 p, 2

q, 1

r , 1 r , 2 r , 3 r , 4 r , 5

a

a

b

b

b b b b b

There are only two infinite paths in this dag and starting from layer 2 both of them visit only the state r
which is accepting. Hence, there can be no odd ranking in this case.

0

1

2
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Problem 8 Linear Temporal Logic (4 credits)

a) Let AP = {p, q, r} and let Σ = 2AP . Consider the formulas

φ := (p U q) U r and ξ := p U (q U r)

Give four computations σ1,σ2,σ3,σ4, all of them over AP, such that

• σ1 |= φ and σ1 |= ξ

• σ2 |= φ and σ2 6|= ξ

• σ3 6|= φ and σ3 |= ξ

• σ4 6|= φ and σ4 6|= ξ

There are many possible solutions, here is an example:

• σ1 = {r}ω

• σ2 = {p}{q}{p}{q}{r}ω

• σ3 = {p}{r}ω

• σ4 = ∅ω

b) This is a bonus subproblem.

Let AP = {p, q} and let Σ = 2AP . Give an ω-regular expression over Σ for the set of all computations which
satisfy the formula

ϕ := (p U q) U p

{q}∗({p} + {p, q})Σω
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c) This is a bonus subproblem.

Consider the formula ϕ defined in the previous subproblem. Use the ω-regular expression you defined in the
previous subproblem to derive a formula ϕ′ such that ϕ′ and ϕ are equivalent and ϕ′ is of strictly smaller size
than ϕ.

q U p

0

1
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Additional space for solutions–clearly mark the (sub)problem your answers are related to and strike
out invalid solutions.
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