

Signature

Note:

- Cross your Registration number(with leading zero). It will be evaluated automatically. - Sign in the corresponding signature field.

Automaten und formale Sprachen

Exam: IN2041 / Retake Date: Tuesday 4 ${ }^{\text {th }}$ April, 2023
Examiner: Prof. Javier Esparza Time: 17:00-19:00

Working instructions

- This exam consists of $\mathbf{1 8}$ pages with a total of 8 problems.

Please make sure now that you received a complete copy of the exam.

- The total amount of achievable credits in this exam is 45 credits.
- Detaching pages from the exam is prohibited.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.
\qquad
\qquad

Problem 1 NFAs and regular expressions (6 credits)

Let NFA-regtoNFA- ϵ be the algorithm given in the lectures, which given an NFA-reg M as input produces as output an NFA- ϵ which recognizes the same language as M.
a) Let A be the following NFA-reg over the alphabet $\Sigma=\{a, b\}$.

Apply the NFA-regtoNFA- ϵ algorithm on A to produce an NFA- ϵ B.

We obtain B by the following steps.

b) Consider the NFA- ϵ B from the previous subproblem. Apply any algorithm which converts an NFA- ϵ to an NFA recognizing the same language (for example, the NFA- ϵ toNFA algorithm given in the lectures), on the NFA- ϵB, to produce an NFA C.

The following is one possible solution for C.

c) Give a minimal NFA recognizing $\mathcal{L}\left(a b^{*}+b a^{*}\right)$. Note that you have to produce such an NFA and prove that any NFA which has strictly less states cannot recognize $\mathcal{L}\left(a b^{*}+b a^{*}\right)$.

The following is a minimal NFA for $\mathcal{L}\left(a b^{*}+b a^{*}\right)$.

We now prove that there is no 2-state NFA that can recognize $L=\mathcal{L}\left(a b^{*}+b a^{*}\right)$. For the sake of contradiction, suppose D is a 2-state NFA which recognizes L. Let q be some initial state of D. q cannot be final as otherwise D accepts $\epsilon \notin L$. D must have a final state, as otherwise D accepts nothing. Let $q^{\prime} \neq q$ be a final state of D. Note that q^{\prime} also cannot be initial as otherwise D accepts ϵ. Hence, we have exactly one initial state q and one final state $q^{\prime} \neq q$.
Since $a, b \in L$, it follows that $q \xrightarrow{a} q^{\prime}$ and $q \xrightarrow{b} q^{\prime}$ are transitions of D. Further since $a b \in L$, it follows that $q \xrightarrow{a} p \xrightarrow{b} q^{\prime}$ for some $p \in\left\{q, q^{\prime}\right\}$. If $p=q$, then aa is accepted by D because of the run $q \xrightarrow{a} q \xrightarrow{a} q^{\prime}$. If $p=q^{\prime}$, then $b b$ is accepted by D because of the run $q \xrightarrow{b} q^{\prime} \xrightarrow{b} q^{\prime}$. In either case, we have a contradiction.

Remark: We note that a residual-based argument does not work here, as it works only for DFAs.

Problem 2 occurrences of subwords (5 credits)

Let $\Sigma=\{a, b\}$.
a) Let L be the language of finite words over Σ defined as

$$
L=\{w: w \text { contains no occurrence of aba }\}
$$

Give the minimal DFA for the language L. Hint: It might help to think in terms of pattern matching.

We consider the minimal DFA obtained by the pattern matching algorithm for the pattern $p=a b a$, with the difference that the final state has self-loops for $\Sigma=\{a, b\}$.

Note that this is the minimal DFA for $\Sigma^{*} a b a \Sigma^{*}$. Flipping the accepting and rejecting states gives the miminal DFA for L.

b) Let L^{\prime} be the language of finite words over Σ defined as

$$
L^{\prime}=\{w: w \text { contains at least two distinct (but possibly overlapping) occurrences of aba }\}
$$

For example, the words $b \underbrace{a b a} a \underbrace{a b a} a \underbrace{a b a}, \overbrace{a b \underbrace{a b a}}^{a} \in L^{\prime}$ but $a b, a b a a b \notin L^{\prime}$.
Give a regular expression for the language L^{\prime}.

One possible solution is $\Sigma^{*} a b a \Sigma^{*} a b a \Sigma^{*}+\Sigma^{*} a b a b a \Sigma^{*}$.
c) Give the minimal DFA for the language L^{\prime} defined in the previous subproblem. Hint: It might help to think in terms of pattern matching. The final answer should have 7 states.

Consider two copies of the minimal DFA for the pattern $p=a b a$, with the difference that the final state has self-loops for $\Sigma=\{a, b\}$.

We remove the accepting state in the first copy and divert its incoming a transition to the second state of the second copy, to get our required answer.

Problem 3 Fixed-length languages (4 credits)

For a fixed-length language L over $\Sigma=\{a, b\}$ we denote by q_{L} the state of the master automaton representing L. We also denote by $M(L)$ the fragment of the master automaton that contains q_{L} and all its residuals, that is, it contains all the states between q_{L} and q_{\emptyset}, including q_{L} and q_{\emptyset} (and no other states).

How many fixed-length languages L of length 3 exist such that $M(L)$ contains exactly 5 states? For instance, here is an example of a language L of length 3 such that $M(L)$ contains exactly 5 states.

If there are 5 states in $M(L), 2$ of them must be in level 0 (those are q_{\emptyset} and q_{ε}) and in every other layer there is exactly 1 state. A transition from the state in level i can either go to the state in level $i-1$ or to q_{\emptyset}, with the restriction that at least one transition must go to the state in level $i-1$. Hence, the edge between consecutive levels can be labeled either with a or with b or with a, b. Since we have 3 levels and 3 options for each level, there are in total $3^{3}=27$ different languages.

Problem 4 First-order logic on words (6 credits)

Let $\Sigma=\{0,1\}$ and let $n \geq 1$ be some natural number. Given a string $w \in \Sigma^{*}$, let $\operatorname{msbf}(w)$ denote the number represented by w in binary in the most significant bit first encoding. For example, if $w=0011$, then $\operatorname{msbf}(w)=3$ and if $w=1011$, then $\operatorname{msbf}(w)=11$.

For the purposes of this exercise, whenever you are asked to construct a formula over $\mathrm{FO}(\Sigma)$, in addition to the syntax of $\mathrm{FO}(\Sigma)$, you are only allowed to use the following macros: first (x), last $(x), x=y, y=x+k, y<x+k$ and $y<k$ for some number k. If you use any other macros, you have to explicitly give the FO formulas that these macros stand for.
a) For $n \geq 1$, consider the language $L_{n}:=\left\{w: w \in \Sigma^{2 n}\right\}$. Give a formula ϕ_{n} over $F O(\Sigma)$ which recognizes L_{n}. The formula ϕ_{n} must be of size polynomial in n, i.e., there must be a polynomial p such that the size of each ϕ_{n} is at most $p(n)$.

One possible solution is

$$
\phi_{n}:=\exists x, y . \operatorname{first}(x) \wedge \operatorname{last}(y) \wedge y=2 n-1+x
$$

Intuitively, this formula states that there are two positions x and y such that x is the first position, y is the last position and the distance between them is $2 n$.
b) For $n \geq 1$, consider the language $L_{n}^{\prime}:=\left\{u u: u \in \Sigma^{n}\right\}$. Give a formula ϕ_{n}^{\prime} over $\mathrm{FO}(\Sigma)$ which recognizes L_{n}^{\prime}. The formula ϕ_{n}^{\prime} must be of size polynomial in n, i.e., there must be a polynomial p^{\prime} such that the size of each ϕ_{n}^{\prime} is at most $p^{\prime}(n)$.

One possible solution is

$$
\phi_{n}^{\prime}:=\phi_{n} \wedge \forall x \cdot x<n+1 \Rightarrow \exists y \cdot\left(y=x+n \wedge\left(Q_{0}(x) \Longleftrightarrow Q_{0}(y)\right) \wedge\left(Q_{1}(x) \Longleftrightarrow Q_{1}(y)\right)\right)
$$

Intuitively, this formula states that the word has length exactly $2 n$ and further for every position $x<n+1$, the letter at position x is the same as the letter at position $y=x+n$.
c) For $n \geq 1$, consider the language $L_{n}^{\prime \prime}:=\left\{u v: u, v \in \Sigma^{n}\right.$, $\left.\operatorname{msbf}(u) \geq \operatorname{msbf}(v)\right\}$. Give a formula $\phi_{n}^{\prime \prime}$ over $\mathrm{FO}(\Sigma)$ which recognizes $L_{n}^{\prime \prime}$. The formula $\phi_{n}^{\prime \prime}$ must be of size polynomial in n, i.e., there must be a polynomial $p^{\prime \prime}$ such that the size of each $\phi_{n}^{\prime \prime}$ is at most $p^{\prime \prime}(n)$.

One possible solution is

$$
\begin{aligned}
& \phi_{n}^{\prime \prime}:=\phi_{n} \wedge\left(\phi _ { n } ^ { \prime } \vee \left(\exists x, y . x<n+1 \wedge y=x+n \wedge Q_{1}(x) \wedge Q_{0}(y) \wedge\right.\right. \\
& \left.\left.\quad\left(\forall x^{\prime} \cdot x^{\prime}<x \Rightarrow \exists y^{\prime} \cdot\left(y^{\prime}=x^{\prime}+n \wedge\left(Q_{0}\left(x^{\prime}\right) \Longleftrightarrow Q_{0}\left(y^{\prime}\right)\right) \wedge\left(Q_{1}\left(x^{\prime}\right) \Longleftrightarrow Q_{1}\left(y^{\prime}\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

Intuitively, this formula states that the word has length exactly $2 n$ and

- Either ϕ_{n}^{\prime} holds, in which case the word is of the form $u u$ with $u \in \Sigma^{n}$
- Or there is a position $x<n+1$ such that the letter at x is 1 and the letter at $y=x+n$ is 0 and for every $x^{\prime}<x$, the letter at x^{\prime} and the letter at $y^{\prime}=x^{\prime}+n$ are the same.

Problem 5 Operations on languages (6 credits)

Let $\Sigma=\{a, b\}$. Let $L \subseteq \Sigma^{*}$ be any language consisting of finite words over Σ. We define the ω-language $L a^{\omega} \subseteq \Sigma^{\omega}$ as

$$
L a^{\omega}=\left\{w a^{\omega}: w \in L\right\}
$$

Note that $L a^{\omega}$ is a language of infinite words over Σ. Intuitively, each word in $L a^{\omega}$ is obtained by first taking some finite word $w \in L$ and then adding the infinite suffix a^{ω} to it.
a) Prove or disprove: If $L \subseteq \Sigma^{*}$ is regular, then $L a^{\omega}$ is ω-regular.

The claim is true. Suppose L is a regular language. Let r be a regular expression for L. Then, the ω-regular expression $r \cdot\{a\}^{\omega}$ recognizes $L a^{\omega}$.
b) Prove or disprove: If $L a^{\omega}$ is ω-regular for some $L \subseteq \Sigma^{*}$, then L is regular.

The claim is false. Let L be any non-regular language over $\{a\}$, for example $\left\{a^{2^{n}}: n \geq 1\right\}$. Then $L a^{\omega}=a^{\omega}$ which is ω-regular.
c) Prove or disprove: If $(L \cdot\{b\}) a^{\omega}$ is ω-regular for some $L \subseteq \Sigma^{*}$, then L is regular.

The claim is true. Suppose $L^{\prime}:=(L \cdot\{b\}) a^{\omega}$ is ω-regular. Let $A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ be an NBA which recognizes L^{\prime}. Let Q^{\prime} be the set of states of A which accept ba ${ }^{\omega}$. Let B be the NFA given by $B=\left(Q, \Sigma, \delta, Q_{0}, Q^{\prime}\right)$. We claim that B recognizes L.

Suppose $w \in L$. Then there is an accepting run for $w b a^{\omega}$ over A. Let q be the state that is reached along this run after reading w. By definition, $q \in Q^{\prime}$ and so it follows that w is also accepted over B.

Suppose w is accepted by B. Then there is an accepting run of w over B which ends in some state in Q^{\prime}. By definition, this means that there is an accepting run for wba ${ }^{\omega}$ over A and so $w b a^{\omega} \in L^{\prime}=(L \cdot\{b\}) a^{\omega}$. Hence, $w b a^{\omega}=w^{\prime} b a^{\omega}$ for some $w^{\prime} \in L$. If w is a strict prefix of w^{\prime}, then let $w^{\prime}=w w^{\prime \prime}$ for some $w^{\prime \prime} \neq \epsilon$. We then have $b a^{\omega}=w^{\prime \prime} b a^{\omega}$, which leads to a contradiction. A similar argument can be made for the case of w^{\prime} being a strict prefix of w. It follows then that $w=w^{\prime}$ and so $w \in L$.

Problem 6 Acceptance conditions (10 credits)

Throughout this exercise, we will only be considering languages of infinite words over $\Sigma=\{a, b, c\}$.

a) Consider the ω-regular language L_{1} defined as

$$
L_{1}=\left\{w \in \Sigma^{\omega}: a b \text { and ac appear infinitely often in } w\right\}
$$

Give a non-deterministic Büchi automaton $\left(A_{1}, \mathcal{F}_{1}\right)$ which accepts L_{1} such that A_{1} has at most 5 states.

The following is one possible solution.

b) Give a non-deterministic generalized Büchi automaton $\left(A_{1}^{\prime}, \mathcal{F}_{1}^{\prime}\right)$ which accepts L_{1} such that A_{1}^{\prime} has at most 3 states.

The following is one possible solution whose generalized Büchi condition is $\{\{2\},\{3\}\}$.

c) Consider the ω-regular language L_{2} defined as
$L_{2}=\left\{w \in \Sigma^{\omega}: a b\right.$ appears infinitely often in w and ac appears finitely often in $\left.w\right\}$
Give a deterministic Rabin automaton $\left(A_{2}, \mathcal{F}_{2}\right)$ which accepts L_{2} such that A_{2} has at most 4 states.

The following is one possible solution whose Rabin condition is $\{\langle\{3\},\{4\}\rangle\}$, i.e., 3 must be visited infinitely often and 4 must be visited finitely often.

d) This is a bonus subproblem.

Give a non-deterministic Muller automaton $\left(A_{2}^{\prime}, \mathcal{F}_{2}^{\prime}\right)$ which accepts L_{2} such that A_{2}^{\prime} has at most 3 states.

The following is one possible solution whose Muller condition is $\{\{1,2\}\}$.

Problem 7 DAGs and Büchi automata (4 credits)

Consider the following Büchi automaton over $\Sigma=\{a, b\}$.

a) Draw $\operatorname{dag}\left((a a b)^{\omega}\right)$ and give an odd ranking for it.

The $\operatorname{dag}\left((a a b)^{\omega}\right)$ is presented below.

One possible way to define an odd ranking is

$$
f(s, i)= \begin{cases}1 & \text { if }(s=p \text { or } s=q) \text { and }\langle s, i\rangle \text { appears in } \operatorname{dag}\left((a a b)^{\omega}\right) \\ 0 & \text { if } s=r \text { and }\langle s, i\rangle \text { appears in } \operatorname{dag}\left((a a b)^{\omega}\right) \\ \perp & \text { otherwise. }\end{cases}
$$

b) Find an ω-word w such that $\operatorname{dag}(w)$ does not have an odd ranking. Draw dag(w) and prove that it does not have an odd ranking by analyzing the dag.

For example, $a b^{\omega}$ has this property. Below we sketch $\operatorname{dag}\left(a b^{\omega}\right)$.

There are only two infinite paths in this dag and starting from layer 2 both of them visit only the state r which is accepting. Hence, there can be no odd ranking in this case.

Problem 8 Linear Temporal Logic (4 credits)

a) Let $A P=\{p, q, r\}$ and let $\Sigma=2^{A P}$. Consider the formulas

$$
\phi:=(p \mathbf{U} q) \mathbf{U} r \quad \text { and } \quad \xi:=p \mathbf{U}(q \mathbf{U} r)
$$

Give four computations $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$, all of them over $A P$, such that

- $\sigma_{1} \models \phi$ and $\sigma_{1} \models \xi$
- $\sigma_{2} \neq \phi$ and $\sigma_{2} \not \neq \xi$
- $\sigma_{3} \not \models \phi$ and $\sigma_{3} \vDash \xi$
- $\sigma_{4} \not \vDash \phi$ and $\sigma_{4} \not \vDash \xi$

There are many possible solutions, here is an example:

- $\sigma_{1}=\{r\}^{\omega}$
- $\sigma_{2}=\{p\}\{q\}\{p\}\{q\}\{r\}^{\omega}$
- $\sigma_{3}=\{p\}\{r\}^{\omega}$
- $\sigma_{4}=\emptyset \omega$
b) This is a bonus subproblem.

Let $A P=\{p, q\}$ and let $\Sigma=2^{A P}$. Give an ω-regular expression over Σ for the set of all computations which satisfy the formula

$$
\varphi:=(p \mathbf{U} q) \mathbf{U} p
$$

$\{q\}^{*}(\{p\}+\{p, q\}) \Sigma^{\omega}$
c) This is a bonus subproblem.

Consider the formula φ defined in the previous subproblem. Use the ω-regular expression you defined in the previous subproblem to derive a formula φ^{\prime} such that φ^{\prime} and φ are equivalent and φ^{\prime} is of strictly smaller size than φ.

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

