Chair of Theoretical Computer Science and Software Reliability Informatik Technical University of Munich

et e

, for

Signature			
-			

Note:

- · Cross your Registration number(with leading zero). It will be evaluated automatically.
- Sign in the corresponding signature field.

Automaten und formale Sprachen

Exam:	IN2041 / Endterm	Date:	Tuesday 14 th February, 2023
Examiner:	Prof. Javier Esparza	Time:	14:15 – 15:45

	P 1	P 2	P 3	P 4	P 5	P 6	Ρ7	P 8
۱ [

Working instructions

- This exam consists of 16 pages with a total of 8 problems. Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 45 credits.
- · Detaching pages from the exam is prohibited.
- · Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- · Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from _____ to ____

/ Early submission at _____

0

Problem 1 Constructing NFAs (4 credits)

Give two **NFA**s, each of them with at most 25 states, that accept the following languages L_1 and L_2 . Note that you do not need to explicitly draw all the states, rather describe the structure of the automata precisely.

There are solutions with 12 states for L_1 and 11 states for L_2 . However, full points will be awarded for any correct solution with at most 25 states.

a) L_1 is the set of strings over the alphabet $\{0, 1, ..., 9\}$ such that the final digit has appeared before. For example, 4610216, 33, 2869322, 19401, 12343234 $\in L_1$ and 25692553, 2, 14653345609, $\epsilon \notin L_1$.

0	
1	
2	

b) L_2 is the set of strings over the alphabet $\{0, 1, ..., 9\}$ such that the final digit has *not* appeared before. For example, 46653, 5489890, $2 \in L_2$ and 5788, 578045, $\epsilon \notin L_2$.

*. *.

Problem 2 Automata and regular expressions (6 credits)

Consider the following two NFAs A_1 and A_2 .

et.

a) Use the *IntersNFA* algorithm, as described in the lectures, to construct an NFA A which recognizes $\mathcal{L}(A_1) \cap \mathcal{L}(A_2)$. Label the states of A as 1, 2, 3 and 4, in the order by which the algorithm *IntersNFA* constructs them.

2

b) Use the *NFAtoRE* algorithm, as described in the lectures, to convert the NFA A constructed in the previous subproblem, into a regular expression. The solution must contain the automaton after the preprocessing step and also the automata obtained after removing each state. Further,

• You must remove states in ascending order, i.e., you must first remove the state 1, then state 2 and so on.

• While writing the solution, if you come across a long regular expression, you can abbreviate it by a variable and use this abbreviation. For example, you can let σ stand for the regular expression $(b^*a + a^*b)^*$ and then instead of writing $(b^*a + a^*b)^*$ throughout the solution, you can instead use σ .

Page empty

* * *

84° 84°

cit-afl-3-20230214-E0001-05

Problem 3 Operations on languages (4 credits)

Let *L* be a language. The operation T(L) is defined as follows:

- Remove every even-length word from L.
- For each odd-length word, remove the middle letter.

For example, if $L = \{aab, bbaa, babab\}$, then $T(L) = \{ab, baab\}$. The even-length word bbaa is deleted, the middle letter of *aab* is removed to make *ab*, and the middle letter of *babab* is removed to make *baab*.

For each of the following languages L_i , i = 1, 2, determine if $T(L_i)$ is regular or not. If it is regular give a regular expression representing it; if it is not regular prove this by analyzing the set of its residuals.

a) L_1 is the language of the regular expression $(bab)^*$.

0		
I	Н	
2		

0	
1	Н
2	

b) L_2 is the language of the regular expression aa^*bb^* .

* * *

Problem 4 Fixed-length languages (7 credits)

For a fixed-length language *L* over $\Sigma = \{a, b\}$ we denote by q_L the state of the master automaton representing *L*. We also denote by M(L) the fragment of the master automaton that contains q_L and all its residuals, that is, it contains all the states between q_L and q_{\emptyset} , **including** q_L and q_{\emptyset} (and no other states).

a) Give a fixed-length language L over $\Sigma = \{a, b\}$ of length 4, such that M(L) has exactly 10 states. Enumerate the words of L and draw M(L).

0	
1	
2	
3	

b) What is the maximal possible number of states in M(L), if L is a fixed-length language over $\Sigma = \{a, b\}$ of length 4? Justify your answer.

c) What is the minimal possible number of states in M(L), if L is a fixed-length language over $\Sigma = \{a, b\}$ of length 4? Justify your answer.

0
1
_
2

Page empty

Problem 5 Automata and logic (5 credits)

a) Let $\phi(x, y) = (x + y \ge 2) \land \exists z(y + z \le 1)$, where x, y, z range over natural numbers (including 0). Give an NFA A_{φ} over $\{0, 1\}^2$ which recognizes the set of all least significant bit first (lsbf) encodings of pairs which satisfy the formula ϕ . You can use any method to compute A_{φ} .

b) Give a regular expression and an NFA recognizing the language of the following MSO formula:

 $\exists X, y. \ Q_b(y) \land \forall x (x \in X \Rightarrow Q_a(x)) \land \forall x (x = y \lor x \in X) \land \text{evensize}(X)$

Here evensize(X) is the formula which is true for a set X if and only if X contains an even number of elements.

*. *.

Problem 6 DAGs and Büchi automata (7 credits)

×

et.

The following is a fragment of dag($(ab)^{\omega}$) on a Büchi automaton with four states {p, q, r, s}. We omit most of the edge labels to increase readability.

a) Give a Büchi automaton *B* with four states $\{p, q, r, s\}$ over $\Sigma = \{a, b\}$ such that dag $((ab)^{\omega})$ on *B* matches the graph from above.

	0	
_	1	
	2	
	2	

0	
1	
2	
3	
4	

b) Prove that every infinite path of dag($(ab)^{\omega}$) has only even stable rankings.

c) Does dag($(ab)^{\omega}$) have an odd ranking? Justify your answer.

J. J. J.

0

2

Problem 7 LTL tautologies (7 credits)

Recall: An LTL formula is a tautology if it is satisfied by all computations. For each of the following formulas over AP = $\{p, q, r\}$, check if it is a tautology. If it is a tautology, give a formal proof. Otherwise, give a computation that does not satisfy the formula.

a) $\mathbf{G}(p \mathbf{U} \neg p) \Leftrightarrow \mathbf{G}(\neg p \mathbf{U} p)$

b) (($\mathbf{G} \neg p$) **U** p) $\Leftrightarrow p$

c) $(((\mathbf{G}\neg p) \mathbf{U} p) \land \neg p) \Rightarrow ((\mathbf{G}q) \lor (\neg q \mathbf{U} r))$

Page empty

0

Problem 8 ω-regular languages (5 credits)

This is a bonus question.

Let $S = (Q, \Sigma, \delta, Q_0)$ be a semi-automaton. Let $\mathcal{F} = \{F_1, ..., F_k\}$ where each $F_i \subseteq Q$. Let $M_{S,\mathcal{F}}$ be the set of **infinite words** *w* such that there is a run ρ of *w* on *S* and a set $F_i \in \mathcal{F}$ with the property that the set of states appearing in the run ρ is **exactly** F_i . Prove that $M_{S,\mathcal{F}}$ is ω -regular.

*. *.

st. Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

* * *