
\square
Signature

Note:

- Cross your Registration number(with leading zero). It will be evaluated automatically - Sign in the corresponding signature field.

Automaten und formale Sprachen

Exam: IN2041 / Endterm Date: Tuesday 14 ${ }^{\text {th }}$ February, 2023
Examiner: Prof. Javier Esparza
Time: 14:15-15:45

Working instructions

- This exam consists of $\mathbf{1 6}$ pages with a total of $\mathbf{8}$ problems.

Please make sure now that you received a complete copy of the exam.

- The total amount of achievable credits in this exam is 45 credits.
- Detaching pages from the exam is prohibited.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.
\qquad
\qquad

Problem 1 Constructing NFAs (4 credits)

Give two NFAs, each of them with at most 25 states, that accept the following languages L_{1} and L_{2}. Note that you do not need to explicitly draw all the states, rather describe the structure of the automata precisely.

There are solutions with 12 states for L_{1} and 11 states for L_{2}. However, full points will be awarded for any correct solution with at most 25 states.

a) L_{1} is the set of strings over the alphabet $\{0,1, \ldots, 9\}$ such that the final digit has appeared before. For example, 4610216, 33, 2869322, 19401, $12343234 \in L_{1}$ and 25692553, 2, 14653345609, $\epsilon \notin L_{1}$.
b) L_{2} is the set of strings over the alphabet $\{0,1, \ldots, 9\}$ such that the final digit has not appeared before. For example, 46653, 5489890, $2 \in L_{2}$ and 5788, 578045, $\epsilon \notin L_{2}$.
\square

Problem 2 Automata and regular expressions (6 credits)

Consider the following two NFAs A_{1} and A_{2}.

a) Use the IntersNFA algorithm, as described in the lectures, to construct an NFA A which recognizes $\mathcal{L}\left(A_{1}\right) \cap \mathcal{L}\left(A_{2}\right)$. Label the states of A as 1, 2, 3 and 4, in the order by which the algorithm IntersNFA constructs them.
\square
b) Use the NFAtoRE algorithm, as described in the lectures, to convert the NFA A constructed in the previous subproblem, into a regular expression. The solution must contain the automaton after the preprocessing step and also the automata obtained after removing each state. Further,

- You must remove states in ascending order, i.e., you must first remove the state 1 , then state 2 and so on.
- While writing the solution, if you come across a long regular expression, you can abbreviate it by a variable and use this abbreviation. For example, you can let σ stand for the regular expression $\left(b^{*} a+a^{*} b\right)^{*}$ and then instead of writing ($\left.b^{*} a+a^{*} b\right)^{*}$ throughout the solution, you can instead use σ.
\square

Problem 3 Operations on languages (4 credits)

Let L be a language. The operation $T(L)$ is defined as follows:

- Remove every even-length word from L.
- For each odd-length word, remove the middle letter.

For example, if $L=\{a a b$, bbaa, babab\}, then $T(L)=\{a b, b a a b\}$. The even-length word bbaa is deleted, the middle letter of $a a b$ is removed to make $a b$, and the middle letter of babab is removed to make baab.

For each of the following languages $L_{i}, i=1,2$, determine if $T\left(L_{i}\right)$ is regular or not. If it is regular give a regular expression representing it; if it is not regular prove this by analyzing the set of its residuals.
a) L_{1} is the language of the regular expression $(b a b)^{*}$.
b) L_{2} is the language of the regular expression $a a^{*} b b^{*}$.

Problem 4 Fixed-length languages (7 credits)

For a fixed-length language L over $\Sigma=\{a, b\}$ we denote by q_{L} the state of the master automaton representing L. We also denote by $M(L)$ the fragment of the master automaton that contains q_{L} and all its residuals, that is, it contains all the states between q_{L} and q_{\emptyset}, including q_{L} and q_{\emptyset} (and no other states).
a) Give a fixed-length language L over $\Sigma=\{a, b\}$ of length 4 , such that $M(L)$ has exactly 10 states. Enumerate the words of L and draw $M(L)$.
b) What is the maximal possible number of states in $M(L)$, if L is a fixed-length language over $\Sigma=\{a, b\}$ of length 4 ? Justify your answer.
c) What is the minimal possible number of states in $M(L)$, if L is a fixed-length language over $\Sigma=\{a, b\}$ of length 4? Justify your answer.

Problem 5 Automata and logic (5 credits)

a) Let $\phi(x, y)=(x+y \geq 2) \wedge \exists z(y+z \leq 1)$, where x, y, z range over natural numbers (including 0). Give an NFA A_{φ} over $\{0,1\}^{2}$ which recognizes the set of all least significant bit first (lsbf) encodings of pairs which satisfy the formula ϕ. You can use any method to compute A_{φ}.
b) Give a regular expression and an NFA recognizing the language of the following MSO formula:

$$
\exists X, y . Q_{b}(y) \wedge \forall x\left(x \in X \Rightarrow Q_{a}(x)\right) \wedge \forall x(x=y \vee x \in X) \wedge \text { evensize }(X)
$$

Here evensize (X) is the formula which is true for a set X if and only if X contains an even number of elements.

Problem 6 DAGs and Büchi automata (7 credits)

The following is a fragment of $\operatorname{dag}\left((a b)^{\omega}\right)$ on a Büchi automaton with four states $\{p, q, r, s\}$. We omit most of the edge labels to increase readability.

a) Give a Büchi automaton B with four states $\{p, q, r, s\}$ over $\Sigma=\{a, b\}$ such that $\operatorname{dag}\left((a b)^{\omega}\right)$ on B matches the graph from above.
\square
b) Prove that every infinite path of dag((ab) $\left.{ }^{\omega}\right)$ has only even stable rankings.
c) Does dag((ab) $\left.{ }^{\omega}\right)$ have an odd ranking? Justify your answer.
\square

Problem 7 LTL tautologies (7 credits)

Recall: An LTL formula is a tautology if it is satisfied by all computations. For each of the following formulas over $\mathrm{AP}=\{p, q, r\}$, check if it is a tautology. If it is a tautology, give a formal proof. Otherwise, give a computation that does not satisfy the formula.
a) $\mathbf{G}(p \mathbf{U} \neg p) \Leftrightarrow \mathbf{G}(\neg p \mathbf{U} p)$
\square
b) $((\mathbf{G} \neg p) \mathbf{U} p) \Leftrightarrow p$
\square
c) $(((\mathbf{G} \neg p) \mathbf{U} p) \wedge \neg p) \Rightarrow((\mathbf{G} q) \vee(\neg q \mathbf{U} r))$

Problem 8
ω-regular languages (5 credits)
This is a bonus question.

Let $S=\left(Q, \Sigma, \delta, Q_{0}\right)$ be a semi-automaton. Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\}$ where each $F_{i} \subseteq Q$. Let $M_{S, \mathcal{F}}$ be the set of infinite words w such that there is a run ρ of w on S and a set $F_{i} \in \mathcal{F}$ with the property that the set of states appearing in the run ρ is exactly F_{i}. Prove that $M_{S, \mathcal{F}}$ is ω-regular.

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.
\square

