Chair for Foundations of Software Reliability and Theoretical Computer Science Informatik
Technical University of Munich

Esolution

Place student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Automaten und formale Sprachen

Exam: IN2041 / Endterm **Date:** Thursday 17th February, 2022

Examiner: Prof. Javier Esparza **Time:** 11:00 – 13:00

	P 1	P 2	P 3	P 4	P 5	P 6	P 7
Ι							

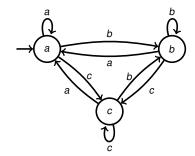
Working instructions

- This exam consists of 20 pages with a total of 7 problems.
- The total amount of achievable credits in this exam is 45 credits.
- · Allowed resources:
 - any electronic resources accessible using only the external mouse
- All answers have to be written on your own paper.
- Only write on one side of each sheet of paper.
- Write with black or blue pen on white DIN A4 paper.
- Write your name and immatriculation number on every sheet.

Left room from to / Early submission at	
---	--

Problem 1 Acceptance conditions (4 credits)

Consider the following ω -automaton \mathcal{A}



Notice that when we read any word w on \mathcal{A} , reading letter l leads to state l for every $l \in \{a, b, c\}$. Consider the following ω -languages over $\Sigma = \{a, b, c\}$, where $\inf(w)$ denotes the set of letters occurring infinitely often in the infinite word w:

- $L_1 = \{ w \in \Sigma^\omega : \{a, b\} \subseteq \inf(w) \},$
- $L_2 = \{ w \in \Sigma^{\omega} : a \notin \inf(w) \text{ or } b \notin \inf(w) \},$
- a) Interpreting \mathcal{A} as a generalized Büchi automaton, can you define an acceptance condition such that \mathcal{A} accepts language L_1 ? If yes, give the acceptance condition. If no, give a short justification.

Yes, $\{\{a\}, \{b\}\}.$

b) Interpreting A as a Rabin automaton, can you define an acceptance condition such that A accepts language L_1 ? If yes, give the acceptance condition. If no, give a short justification.

No: there must be a pair $\langle F, G \rangle$ in the acceptance condition with $a, b \in F$, but then a^{ω} is accepted, contradiction.

c) Interpreting A as a Büchi automaton, can you define an acceptance condition such that A accepts language L_2 ? If yes, give the acceptance condition. If no, give a short justification.

No: let F be the accepting states. Since $a^{\omega} \in L_2$, we have $a \in F$. Similarly $b \in F$. But then $(ab)^{\omega}$ is accepted, contradiction.

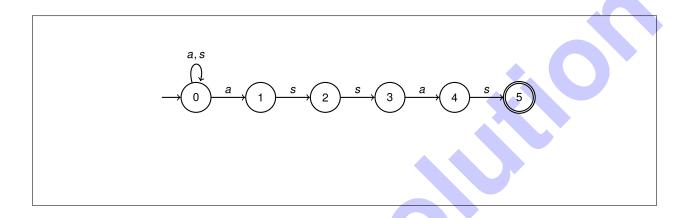
d) Interpreting \mathcal{A} as a Muller automaton, can you define an acceptance condition such that \mathcal{A} accepts language L_2 ? If yes, give the acceptance condition. If no, give a short justification.

Yes, $\{\{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}.$

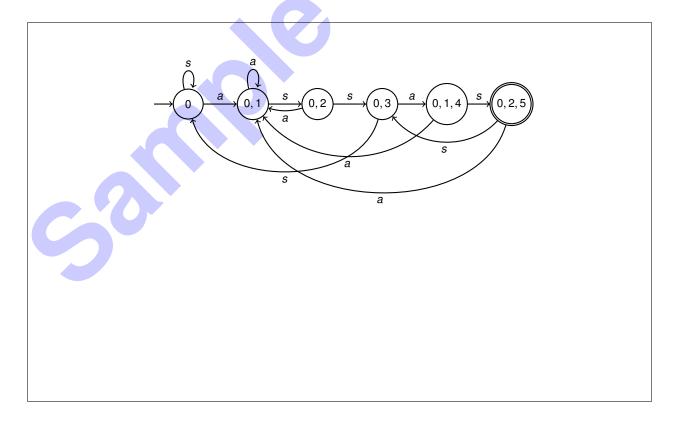
Problem 2 Pattern matching (5 credits)

Consider the pattern p = "assas" over the alphabet $\Sigma = \{a, s\}$.

a) Construct an NFA A_p recognizing Σ^*p according to the construction specified in the lectures.

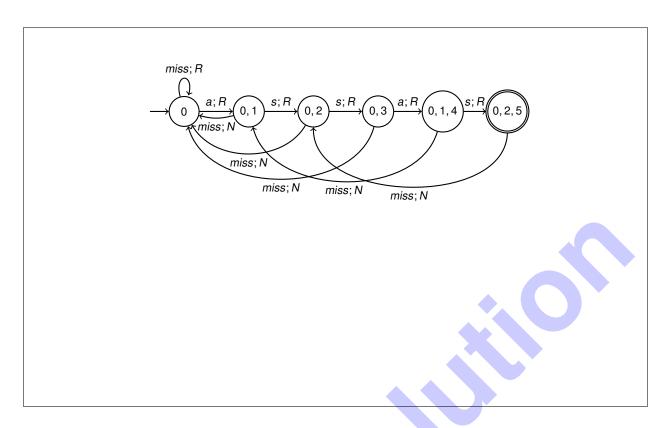


b) Construct the DFA B_p by applying the powerset construction on the NFA A_p .



c) Construct the lazy DFA C_p for the pattern p by using B_p .

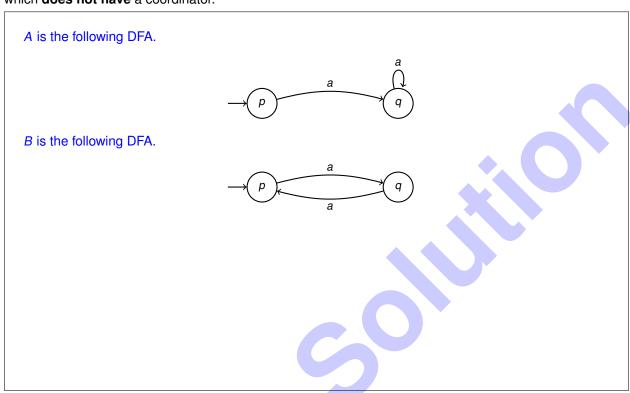
0 1 2



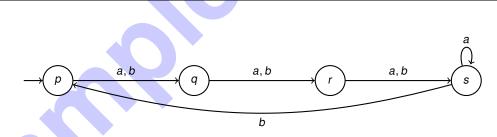
Problem 3 Coordinators for DFA (8 credits)

A word w is said to be a *coordinator* for a DFA $A = (Q, \Sigma, \delta, q_0, F)$ if there is a state $p \in Q$ such that **for all states** $q \in Q$, $\delta(q, w) = p$. Intuitively, the word w acts as a coordinating mechanism among all the states, in the sense that reading this word from any state of the automaton leads to the same common state.

a) Give an example of a 2-state DFA A which has a coordinator and also give an example of a 2-state DFA B which **does not have** a coordinator.



b) Give an example of a 4-state DFA A such that every state of A is reachable from every other state and any shortest coordinator of A is of length 3.



Notice that for any state q_1 of A, there is another state q_2 such that the shortest path from q_2 to q_1 is of length 3. Hence, the shortest coordinator of A must be of length at least 3. Further, aaa is a coordinator of 3 and so A is the required DFA.

c) Describe an algorithm that takes as input a DFA A and decides whether A is coordinating or not. Your description has to be sufficiently precise but you do not need to give a pseudocode of your procedure. (**Hint:** You can take inspiration from the *NFAtoDFA* algorithm).

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA with state space Q. Let A' be the NFA given by $(Q, \Sigma, \delta, Q, F)$ and let $B = (Q, \Sigma, \Delta, Q, F)$ be the DFA obtained by running NFAtoDFA(A').

For any word w, recall that $\delta(q,w)$ denotes the set of states reachable from q after reading the word w in A and $\Delta(Q,w)$ denotes the (unique) state reachable from Q after reading the word w in B. Note that by definition of the construction of B, $\Delta(Q,w) = \bigcup_{q \in Q} \delta(q,w)$ for any word w.

Notice that w is a coordinator for A iff there is a state p in Q such that $\delta(q, w) = \{p\}$ for all $q \in Q$ which (since A is a DFA), is true iff $\bigcup_{q \in Q} \delta(q, w) = \{p\}$ which is true iff $\Delta(Q, w) = \{p\}$. Hence,

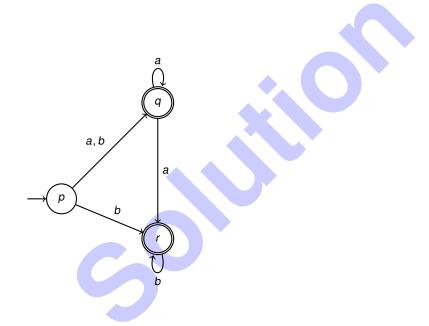
w is a coordinator for A iff there is a state $p \in Q$ such that $\Delta(Q, w) = \{p\}$ in the DFA B.

Hence, to check if A has a coordinator we only need to check if there is a state $p \in Q$ such that $\{p\}$ is reachable from the state Q in the DFA B. To do this, we first construct the DFA B. Then we iterate over all states p of A and then check if there is a path from Q to $\{p\}$ in B, which can be done by either a BFS or a DFS.

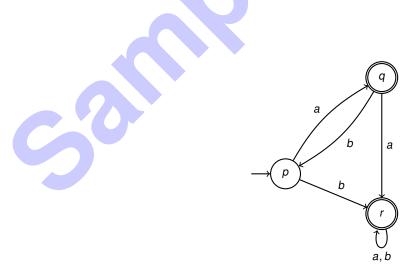
Problem 4 1-loop automata (9 credits)

An NFA A is said to be a 1-loop NFA if A does not contain any simple cycle beyond self-loops, i.e. there are no two distinct states p, q such that p is reachable from q and q is reachable from p. A 1-loop DFA is a 1-loop NFA which is also a DFA.

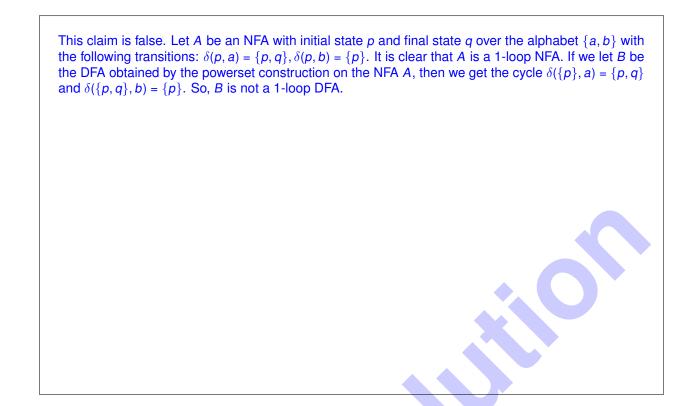
The following automaton is a 1-loop NFA.



The following automaton is not a 1-loop NFA, because there is a cycle between the states p and q.



a) Prove or disprove: For every 1-loop NFA A, the output of NFAtoDFA(A) is a 1-loop DFA. Here, NFAtoDFA is the algorithm which converts an NFA to a DFA by means of the powerset construction.



b) Prove or disprove: For every pair of 1-loop NFAs A and B, the output of IntersNFA(A, B) is a 1-loop NFA. Here IntersNFA is the algorithm which takes as input two NFAs A and B and outputs an NFA which accepts the intersection of the languages of A and B.

This claim is true. Let A and B be any two 1-loop NFAs and let C = IntersNFA(A, B). Suppose C is not a 1-loop NFA. Let $(p_0, q_0) \to (p_1, q_1) \to ... (p_k, q_k) \to (p_0, q_0)$ be a simple cycle which is not a self-loop in C. Hence, $(p_1, q_1) \neq (p_0, q_0)$ and so without loss of generality, we can assume that $p_1 \neq p_0$. By definition of C, this implies that $p_0 \to p_1 \to ... p_k \to p_0$ is a cycle in A and so there is a path from the state p_1 to p_0 in A. Since, $p_0 \neq p_1$, this immediately implies that there is a simple cycle from p_0 to p_0 which passes through $p_1 \neq p_0$ and so we have a simple cycle in A which is not a self-loop, which contradicts the fact that A is a 1-loop NFA.

c)

For **3 bonus points**, prove or disprove the following: For every 1-loop NFA *A*, the minimal DFA which recognizes the same language as *A* is a 1-loop DFA.

The claim is false. We consider the same NFA A from the solution of the first subproblem which recognizes the language $(a+b)^*a$. Suppose the minimal DFA B which recognizes this language is also a 1-loop DFA. Let q_0 be the initial state of B and let q_1, q_2 be such that $q_0 \stackrel{a}{\to} q_1 \stackrel{b}{\to} q_2$. We note that the language of q_0 is, by definition, $(a+b)^*a$ and so the languages of q_1 and q_2 must be $\epsilon + (a+b)^*a$ and $(a+b)^*a$. Since B is minimal, this means that $q_2 = q_0$ and $q_1 \neq q_0$ and so there is a cycle between q_0 and q_1 , which leads to a contradiction.

Problem 5 Graph of regular languages (6 credits)

Consider the following directed graph G = (V, E):

- The set V of nodes is the set of all regular languages over the alphabet $\Sigma = \{a, b\}$. (So the graph has infinitely many nodes.)
- For any two regular languages $L_1, L_2 \subseteq \Sigma^*$, there is an edge $(L_1, L_2) \in E$, also denoted $L_1 \to L_2$, iff $L_2 = L_1^a$ or $L_2 = L_1^b$. (That is, iff L_2 is the residual of L_1 w.r.t. a or w.r.t. b.)

Given two nodes $L_1, L_2 \in V$, we say that L_2 is reachable from L_1 if $L_1 = L_2$ or if there exists a path (a sequence of edges) leading from L_1 to L_2 . We write Reach(L) the set of languages reachable from a node L of V.

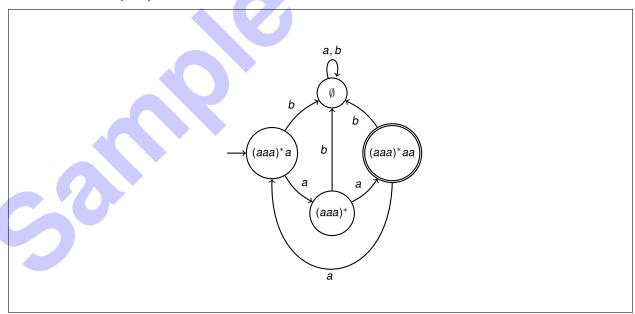
a) Give two regular languages L_1 , L_2 such that $L_1 \neq L_2$ and $Reach(L_1) = Reach(L_2) = \{L_1, L_2\}$. Describe the languages as regular expressions.

For example, $L_1 = \Sigma(\Sigma\Sigma)^*$ and $L_2 = (\Sigma\Sigma)^*$. Indeed $L_1^a = L_1^b = L_2$ and respectively for the residuals of L_2 .

b) A sink of G is a language L such that $Reach(L) = \{L\}$. Give regular expressions for all sinks of G, and prove that there is no other sink.

The two sinks of G are Σ^* and \emptyset . They are clearly sinks as their residuals are equal to themselves. Let L be some sink of G. Assume L is not empty, and w is a word in L. By definition of being a sink, $L^a = L^b = L$. Thus $L^w = L$, so L contains the empty word ε . Now take any word u. Since $L^u = L$ by the same reasoning as above, we have $\varepsilon \in L^u$, and thus by definition of residuals $u\varepsilon = u \in L$. So $L = \Sigma^*$. Therefore the only two sinks of G are Σ^* and \emptyset .

c) Let L be the language described by the regular expression $(aaa)^*a$. Draw the fragment of G containing all the languages of Reach(L) and all edges between them. Represent all languages as regular expressions, and recall that $\Sigma = \{a, b\}$.

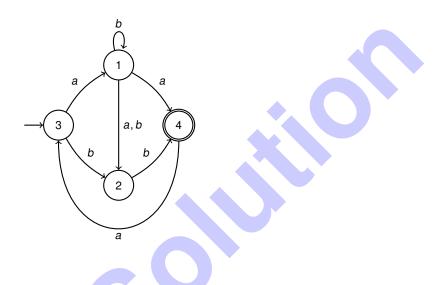


d) Prove or disprove: For every regular language L the set Reach(L) is finite.

True: A regular language only has finitely many residuals. Since every language reachable from L in G is a residual, L can only reach finitely many other languages.

Problem 6 Automata and regular expressions (7 credits)

Let A be the following NFA.



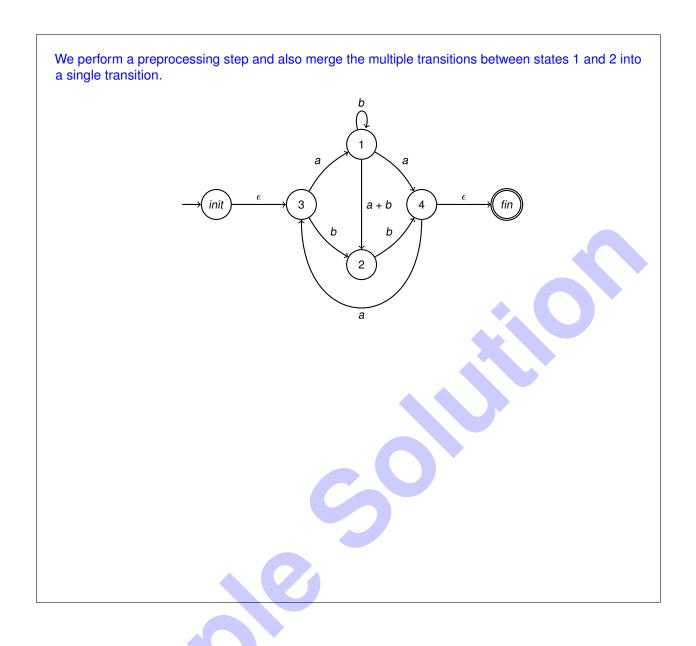
For the purposes of this problem,

• Whenever you use the algorithm *NFAtoRE*, **you must remove states in ascending order**, i.e., you must first remove the state 1, then state 2 and so on.

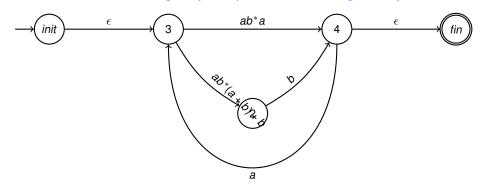
• While writing the solution, if you come across a long regular expression, you can abbreviate it by a variable and use this abbreviation. **For example**, you can let σ stand for the regular expression $(b^*a + a^*b)^*$ and then instead of writing $(b^*a + a^*b)^*$ throughout the solution, you can instead use σ .

a)

Use the *NFAtoRE* algorithm, as described in the lectures, to convert *A* into a regular expression. The solution must contain the automaton after the preprocessing step and also the automata obtained after removing each state.

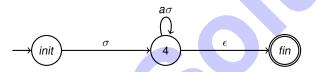


Now we remove state 1 and also merge any multiple transitions along the way.

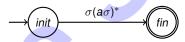


Now we remove state 2 and also merge any multiple transitions along the way. Let $\sigma = ab^*a + (ab^*(a + b) + b)b$ in the sequel.

Now we remove state 3.



And finally we remove state 4.

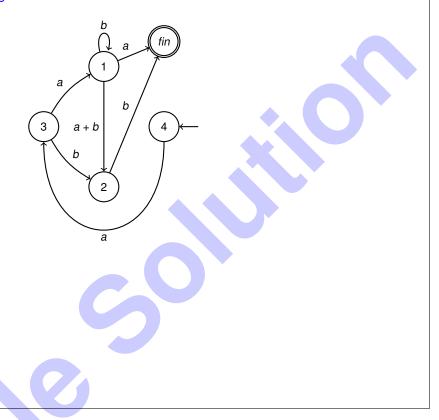


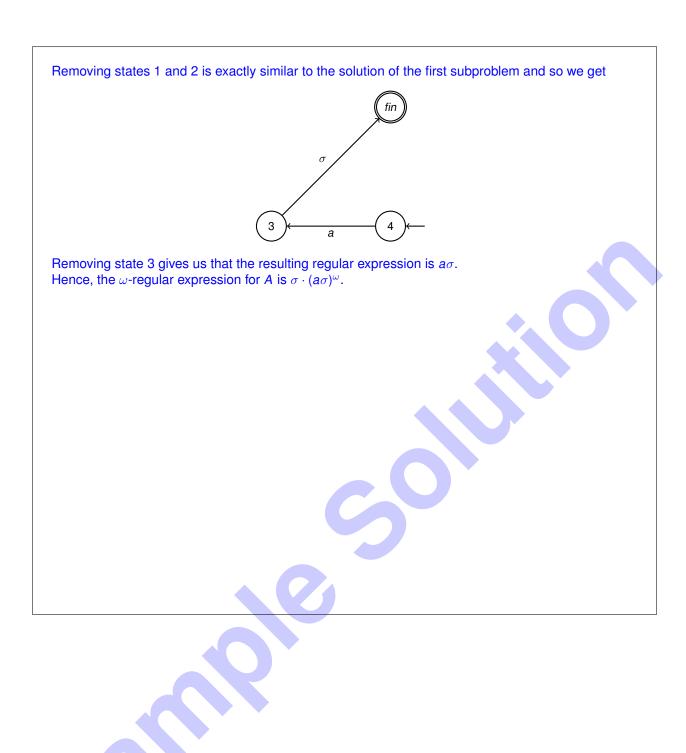
Hence, the final regular expression is $\sigma(a\sigma)^*$

Consider A as a non-deterministic Büchi automaton and compute an ω -regular expression for A. You may use the results of the first subproblem for this subproblem. If you are using *NFAtoRE*, you do not need to draw each intermediate automaton. It is sufficient to give the final result while describing the steps that you have followed.

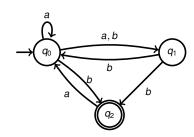
First, we need to compute $r_{3,4}$, i.e., a regular expression for the set of words with runs leading from state 3 to state 4 while visiting state 4 exactly once after leaving state 3. To do this, it suffices to compute a regular expression for the automaton B obtained by from A by deleting the transition $4 \stackrel{a}{\rightarrow} 3$. From the steps of the solution for the first subproblem, this is exactly σ .

Next, we need to compute $r_{4,4}$, i.e., a regular expression for the set of words with runs leading from state 4 to state 4 while visiting state 4 exactly once after leaving state 4. To do this, we need to redirect all the incoming arrows of 4 to a new state *fin* and take the initial state to be 4 and the final state to be *fin*. This results in the following automaton.





Consider the following Büchi automaton ${\cal B}$



We denote by $\overline{\mathcal{B}}$ the complement of \mathcal{B} , defined with level rankings and owing states as in the lecture. We write the states of $\overline{\mathcal{B}}$ as the pairs [lr, O] where lr is a level ranking and O is the set of owing states. We write lr with rank of q_0 on top, rank of q_1 below, and rank of q_2 on the bottom.

0 1 2 a) For the following pairs [Ir, O], say whether or not they are states of $\overline{\mathcal{B}}$. If they are not, give a justification.

•
$$\begin{bmatrix} 2 \\ 0 , \{q_0, q_2\} \\ 0 \end{bmatrix}$$

$$\bullet \left[\begin{array}{c} \bot \\ 5 \\ 5 \end{array}\right]$$

$$\bullet \left[\begin{array}{c} 1 \\ \bot \\ 0 \end{array}, \{q_1, q_2\}\right]$$

- · Yes.
- No: q₂ is accepting and must have even rank.
- No: q_1 should not be in the owing states as $lr(q_1) \notin [0, 2n]$.

0 1 2 b) For the following transitions, say whether or not they are transitions of $\overline{\mathcal{B}}$. If they are not, give a justification.

$$\bullet \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \{q_0, q_2\} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \\ \bot \end{bmatrix}$$

$$\bullet \begin{bmatrix} 6 \\ 4 \\ 0 \end{bmatrix}, \{q_0\} \begin{bmatrix} b \\ 3 \\ 0 \end{bmatrix}, \{q_0, q_2\} \begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix}$$

•
$$\begin{bmatrix} 6 \\ 4 , \{q_0\} \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 4 \\ 3 , \{q_2\} \\ 0 \end{bmatrix}$$

$$\bullet \left[\begin{array}{c} 3\\3\\ \bot\end{array},\emptyset\right] \stackrel{b}{\rightarrow} \left[\begin{array}{c} 2\\0\\0\end{array},\{q_1,q_2\}\right]$$

$$\bullet \left[\begin{array}{c} \bot \\ 3 \\ 3 \end{array}, \emptyset \right] \xrightarrow{b} \left[\begin{array}{c} \bot \\ \bot \\ 2 \end{array}, \{q_2\} \right]$$

- No: $q_2 \stackrel{a}{\rightarrow} q_0$ so rank cannot increase.
- No: $q_0 \notin \delta(q_0, b)$.
- · Yes.
- No: q₀ should be in the owing states.
- No: q_0 should have a rank since $q_1 \stackrel{b}{\rightarrow} q_0$. Another reason is: $\begin{bmatrix} \bot \\ 3 \\ , \emptyset \end{bmatrix}$ is not a valid state since q_2 should not have odd rank.

c)

This question is for **2 bonus points**. Let A be any DBA. States p and q of A are said to be *mutually reachable* if p is reachable from q and q is reachable from p. A is said to be a *uniform* DBA if the following is true: For every pair of mutually reachable states p, q, either both p and q are accepting states or both p and q are rejecting states.

Prove the following: If A is a uniform DBA recognizing an ω -regular language L, then there is a uniform DBA B such that B recognizes the **complement of** L.

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a uniform DBA recognizing L. Consider the DBA $B = (Q, \Sigma, \delta, q_0, Q \setminus F)$. Notice that B is a uniform DBA. We claim that B recognizes the complement of L.

Let w be any infinite word and let ρ be the unique run of A on the word w (unique because A is deterministic). Notice that ρ is also the unique run of B on the word w. Let $inf(\rho)$ be the set of states which appear infinitely often in ρ .

Notice that if $p,q\in inf(\rho)$ then p and q are mutually reachable in A. Indeed, let i,j,k be positions along the run ρ such that i< j< k, p appears at position i,q appears at position j and p appears at position k. (Such positions exist because $p,q\in inf(\rho)$). This implies that there must be a path from p to q and a path from q to p, which enables us to conclude that p and q are mutually reachable. Hence, all the states in $inf(\rho)$ are mutually reachable from one another. Since A is uniform, this implies that either $inf(\rho) \subseteq F$ or $inf(\rho) \subseteq Q \setminus F$.

If $\inf(\rho) \subseteq F$, this means that w is accepted by A. Since ρ is also the unique run of B on w and since the accepting states of B is $Q \setminus F$, it follows that B rejects the word w.

If $inf(\rho) \subseteq Q \setminus F$, this means that w is rejected by A. Since ρ is also the unique run of B on w and since the accepting states of B is $Q \setminus F$, it follows that B accepts the word w.

It follows that B recognizes the complement of L.

Notice that a Büchi automaton may accept words w that are not accepted by a run that ends in a cycle/ that are not of the form $w = u(v)^{\omega}$ with $u, v \in \Sigma^*$. For example, the Büchi automaton that accepts $(0+1+...+9)^{\omega}$ accepts the word w of the decimals of $\sqrt{2}$.

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

