Esolution

Place student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Automaten und formale Sprachen

Exam:	IN2041 / Endterm	Date:	Thursday 17 th February, 2022
Examiner:	Prof. Javier Esparza	Time: $11: 00-13: 00$	

Examiner: Prof. Javier Esparza
Time: 11:00-13:00

Working instructions

- This exam consists of $\mathbf{2 0}$ pages with a total of $\mathbf{7}$ problems.
- The total amount of achievable credits in this exam is 45 credits.
- Allowed resources:
- any electronic resources accessible using only the external mouse
- All answers have to be written on your own paper.
- Only write on one side of each sheet of paper.
- Write with black or blue pen on white DIN A4 paper.
- Write your name and immatriculation number on every sheet.
\qquad
\qquad

Problem 1 Acceptance conditions (4 credits)

Consider the following ω-automaton \mathcal{A}

Notice that when we read any word w on \mathcal{A}, reading letter / leads to state I for every $I \in\{a, b, c\}$. Consider the following ω-languages over $\Sigma=\{a, b, c\}$, where $\inf (w)$ denotes the set of letters occurring infinitely often in the infinite word w :

- $L_{1}=\left\{w \in \Sigma^{\omega}:\{a, b\} \subseteq \inf (w)\right\}$,
- $L_{2}=\left\{w \in \Sigma^{\omega}: a \notin \inf (w)\right.$ or $\left.b \notin \inf (w)\right\}$,
a) Interpreting \mathcal{A} as a generalized Büchi automaton, can you define an acceptance condition such that \mathcal{A} accepts language L_{1} ? If yes, give the acceptance condition. If no, give a short justification.

Yes, $\{\{a\},\{b\}\}$.
b) Interpreting \mathcal{A} as a Rabin automaton, can you define an acceptance condition such that \mathcal{A} accepts language L_{1} ? If yes, give the acceptance condition. If no, give a short justification.

No: there must be a pair $\langle F, G\rangle$ in the acceptance condition with $a, b \in F$, but then a^{ω} is accepted, contradiction.
c) Interpreting \mathcal{A} as a Büchi automaton, can you define an acceptance condition such that \mathcal{A} accepts language L_{2} ? If yes, give the acceptance condition. If no, give a short justification.

No: let F be the accepting states. Since $a^{\omega} \in L_{2}$, we have $a \in F$. Similarly $b \in F$. But then $(a b)^{\omega}$ is accepted, contradiction.
d) Interpreting \mathcal{A} as a Muller automaton, can you define an acceptance condition such that \mathcal{A} accepts language L_{2} ? If yes, give the acceptance condition. If no, give a short justification.

Yes, $\{\{a\},\{b\},\{c\},\{b, c\},\{a, c\}\}$.

Problem 2 Pattern matching (5 credits)

Consider the pattern $p=$ "assas" over the alphabet $\Sigma=\{a, s\}$.
a) Construct an NFA A_{p} recognizing $\Sigma^{*} p$ according to the construction specified in the lectures.

b) Construct the DFA B_{p} by applying the powerset construction on the NFA A_{p}.

c) Construct the lazy DFA C_{p} for the pattern p by using B_{p}.

Problem 3 Coordinators for DFA (8 credits)

A word w is said to be a coordinator for a DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ if there is a state $p \in Q$ such that for all states $q \in Q, \delta(q, w)=p$. Intuitively, the word w acts as a coordinating mechanism among all the states, in the sense that reading this word from any state of the automaton leads to the same common state.
a) Give an example of a 2-state DFA A which has a coordinator and also give an example of a 2-state DFA B which does not have a coordinator.
A is the following DFA.

B is the following DFA.

b) Give an example of a 4-state DFA A such that every state of A is reachable from every other state and any shortest coordinator of A is of length 3 .

Notice that for any state q_{1} of A, there is another state q_{2} such that the shortest path from q_{2} to q_{1} is of length 3. Hence, the shortest coordinator of A must be of length at least 3. Further, aaa is a coordinator of 3 and so A is the required DFA.
c) Describe an algorithm that takes as input a DFA A and decides whether A is coordinating or not. Your description has to be sufficiently precise but you do not need to give a pseudocode of your procedure. (Hint: You can take inspiration from the NFAtoDFA algorithm).

Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA with state space Q. Let A^{\prime} be the NFA given by $(Q, \Sigma, \delta, Q, F)$ and let $B=(\mathcal{Q}, \Sigma, \Delta, Q, \mathcal{F})$ be the DFA obtained by running NFAtoDFA($\left.A^{\prime}\right)$.
For any word w, recall that $\delta(q, w)$ denotes the set of states reachable from q after reading the word w in A and $\Delta(Q, w)$ denotes the (unique) state reachable from Q after reading the word w in B. Note that by definition of the construction of $B, \Delta(Q, w)=\cup_{q \in Q} \delta(q, w)$ for any word w.
Notice that w is a coordinator for A iff there is a state p in Q such that $\delta(q, w)=\{p\}$ for all $q \in Q$ which (since A is a DFA), is true iff $\cup_{q \in Q} \delta(q, w)=\{p\}$ which is true iff $\Delta(Q, w)=\{p\}$. Hence,
w is a coordinator for A iff there is a state $p \in Q$ such that $\Delta(Q, w)=\{p\}$ in the DFA B.
Hence, to check if A has a coordinator we only need to check if there is a state $p \in Q$ such that $\{p\}$ is reachable from the state Q in the DFA B. To do this, we first construct the DFA B. Then we iterate over all states p of A and then check if there is a path from Q to $\{p\}$ in B, which can be done by either a BFS or a DFS.

Problem 4

An NFA A is said to be a 1 -loop NFA if A does not contain any simple cycle beyond self-loops, i.e. there are no two distinct states p, q such that p is reachable from q and q is reachable from p. A 1-loop DFA is a 1-loop NFA which is also a DFA.

The following automaton is a 1 -loop NFA.

The following automaton is not a 1-loop NFA, because there is a cycle between the states p and q.

a) Prove or disprove: For every 1-loop NFA A, the output of NFAtoDFA(A) is a 1-loop DFA. Here, NFAtoDFA is the algorithm which converts an NFA to a DFA by means of the powerset construction.

This claim is false. Let A be an NFA with initial state p and final state q over the alphabet $\{a, b\}$ with the following transitions: $\delta(p, a)=\{p, q\}, \delta(p, b)=\{p\}$. It is clear that A is a 1-loop NFA. If we let B be the DFA obtained by the powerset construction on the NFA A, then we get the cycle $\delta(\{p\}, a)=\{p, q\}$ and $\delta(\{p, q\}, b)=\{p\}$. So, B is not a 1-loop DFA.
b) Prove or disprove: For every pair of 1-loop NFAs A and B, the output of IntersNFA (A, B) is a 1-loop NFA. Here IntersNFA is the algorithm which takes as input two NFAs A and B and outputs an NFA which accepts the intersection of the languages of A and B.

This claim is true. Let A and B be any two 1 -loop NFAs and let $C=\operatorname{IntersNFA}(A, B)$. Suppose C is not a 1-loop NFA. Let $\left(p_{0}, q_{0}\right) \rightarrow\left(p_{1}, q_{1}\right) \rightarrow \ldots\left(p_{k}, q_{k}\right) \rightarrow\left(p_{0}, q_{0}\right)$ be a simple cycle which is not a self-loop in C. Hence, $\left(p_{1}, q_{1}\right) \neq\left(p_{0}, q_{0}\right)$ and so without loss of generality, we can assume that $p_{1} \neq p_{0}$. By definition of C, this implies that $p_{0} \rightarrow p_{1} \rightarrow \ldots p_{k} \rightarrow p_{0}$ is a cycle in A and so there is a path from the state p_{1} to p_{0} in A. Since, $p_{0} \neq p_{1}$, this immediately implies that there is a simple cycle from p_{0} to p_{0} which passes through $p_{1} \neq p_{0}$ and so we have a simple cycle in A which is not a self-loop, which contradicts the fact that A is a 1 -loop NFA.
C)

For 3 bonus points, prove or disprove the following: For every 1-loop NFA A, the minimal DFA which recognizes the same language as A is a 1 -loop DFA.

The claim is false. We consider the same NFA A from the solution of the first subproblem which recognizes the language $(a+b)^{*} a$. Suppose the minimal DFA B which recognizes this language is also a 1 -loop DFA. Let q_{0} be the initial state of B and let q_{1}, q_{2} be such that $q_{0} \xrightarrow{a} q_{1} \xrightarrow{b} q_{2}$. We note that the language of q_{0} is, by definition, $(a+b)^{*} a$ and so the languages of q_{1} and q_{2} must be $\epsilon+(a+b)^{*} a$ and $(a+b)^{*} a$. Since B is minimal, this means that $q_{2}=q_{0}$ and $q_{1} \neq q_{0}$ and so there is a cycle between q_{0} and q_{1}, which leads to a contradiction.

Problem 5 Graph of regular languages (6 credits)

Consider the following directed graph $G=(V, E)$:

- The set V of nodes is the set of all regular languages over the alphabet $\Sigma=\{a, b\}$. (So the graph has infinitely many nodes.)
- For any two regular languages $L_{1}, L_{2} \subseteq \Sigma^{*}$, there is an edge $\left(L_{1}, L_{2}\right) \in E$, also denoted $L_{1} \rightarrow L_{2}$, iff $L_{2}=L_{1}^{a}$ or $L_{2}=L_{1}^{b}$. (That is, iff L_{2} is the residual of L_{1} w.r.t. a or w.r.t. b.)

Given two nodes $L_{1}, L_{2} \in V$, we say that L_{2} is reachable from L_{1} if $L_{1}=L_{2}$ or if there exists a path (a sequence of edges) leading from L_{1} to L_{2}. We write $\operatorname{Reach}(L)$ the set of languages reachable from a node L of V.
a) Give two regular languages L_{1}, L_{2} such that $L_{1} \neq L_{2}$ and $\operatorname{Reach}\left(L_{1}\right)=\operatorname{Reach}\left(L_{2}\right)=\left\{L_{1}, L_{2}\right\}$. Describe the languages as regular expressions.

For example, $L_{1}=\Sigma(\Sigma \Sigma)^{*}$ and $L_{2}=(\Sigma \Sigma)^{*}$. Indeed $L_{1}^{a}=L_{1}^{b}=L_{2}$ and respectively for the residuals of L_{2}.
b) A sink of G is a language L such that $\operatorname{Reach}(L)=\{L\}$. Give regular expressions for all sinks of G, and prove that there is no other sink.

The two sinks of G are Σ^{*} and \emptyset. They are clearly sinks as their residuals are equal to themselves. Let L be some sink of G. Assume L is not empty, and w is a word in L. By definition of being a sink, $L^{a}=L^{b}=L$. Thus $L^{w}=L$, so L contains the empty word ε. Now take any word u. Since $L^{u}=L$ by the same reasoning as above, we have $\varepsilon \in L^{u}$, and thus by definition of residuals $u \varepsilon=u \in L$. So $L=\Sigma^{*}$. Therefore the only two sinks of G are Σ^{*} and \emptyset.
c) Let L be the language described by the regular expression (aaa)*a. Draw the fragment of G containing all the languages of Reach (L) and all edges between them. Represent all languages as regular expressions, and recall that $\Sigma=\{a, b\}$.

d) Prove or disprove: For every regular language L the set $\operatorname{Reach}(L)$ is finite.

True: A regular language only has finitely many residuals. Since every language reachable from L in G is a residual, L can only reach finitely many other languages.

Problem 6 Automata and regular expressions (7 credits)

Let A be the following NFA.

For the purposes of this problem,

- Whenever you use the algorithm NFAtoRE, you must remove states in ascending order, i.e., you must first remove the state 1 , then state 2 and so on.
- While writing the solution, if you come across a long regular expression, you can abbreviate it by a variable and use this abbreviation. For example, you can let σ stand for the regular expression $\left(b^{*} a+a^{*} b\right)^{*}$ and then instead of writing $\left(b^{*} a+a^{*} b\right)^{*}$ throughout the solution, you can instead use σ.
a)

Use the NFAtoRE algorithm, as described in the lectures, to convert A into a regular expression. The solution must contain the automaton after the preprocessing step and also the automata obtained after removing each state.

We perform a preprocessing step and also merge the multiple transitions between states 1 and 2 into a single transition.

Now we remove state 1 and also merge any multiple transitions along the way.

Now we remove state 2 and also merge any multiple transitions along the way. Let $\sigma=a b^{*} a+\left(a b^{*}(a+\right.$ $b)+b) b$ in the sequel.

Now we remove state 3.

And finally we remove state 4.

Hence, the final regular expression is $\sigma(\mathrm{a} \sigma)^{*}$.
b)
b)

Consider A as a non-deterministic Büchi automaton and compute an ω-regular expression for A. You may use the results of the first subproblem for this subproblem. If you are using NFAtoRE, you do not need to draw each intermediate automaton. It is sufficient to give the final result while describing the steps that you have followed.

First, we need to compute $r_{3,4}$, i.e., a regular expression for the set of words with runs leading from state 3 to state 4 while visiting state 4 exactly once after leaving state 3 . To do this, it suffices to compute a regular expression for the automaton B obtained by from A by deleting the transition $4 \xrightarrow{a} 3$. From the steps of the solution for the first subproblem, this is exactly σ.

Next, we need to compute $r_{4,4}$, i.e., a regular expression for the set of words with runs leading from state 4 to state 4 while visiting state 4 exactly once after leaving state 4 . To do this, we need to redirect all the incoming arrows of 4 to a new state fin and take the initial state to be 4 and the final state to be fin. This results in the following automaton.

Removing states 1 and 2 is exactly similar to the solution of the first subproblem and so we get

Removing state 3 gives us that the resulting regular expression is a σ.
Hence, the ω-regular expression for A is $\sigma \cdot(a \sigma)^{\omega}$.

Problem 7 Büchi Complementation (6 credits)

Consider the following Büchi automaton \mathcal{B}

We denote by $\overline{\mathcal{B}}$ the complement of \mathcal{B}, defined with level rankings and owing states as in the lecture. We write the states of $\overline{\mathcal{B}}$ as the pairs $[l r, O]$ where $I r$ is a level ranking and O is the set of owing states. We write Ir with rank of q_{0} on top, rank of q_{1} below, and rank of q_{2} on the bottom.
a) For the following pairs $[/ r, O]$, say whether or not they are states of $\overline{\mathcal{B}}$. If they are not, give a justification.

- $\left[\begin{array}{l}2 \\ 0 \\ 0\end{array},\left\{q_{0}, q_{2}\right\}\right]$
$\cdot\left[\begin{array}{ll}\perp & \\ 5 \\ 5\end{array}, \emptyset\right]$
- $\left[\begin{array}{c}1 \\ \perp \\ 0\end{array},\left\{q_{1}, q_{2}\right\}\right]$
- Yes.
- No: q_{2} is accepting and must have even rank.
- No: q_{1} should not be in the owing states as $\operatorname{Ir}\left(q_{1}\right) \notin[0,2 n]$.
b) For the following transitions, say whether or not they are transitions of $\overline{\mathcal{B}}$. If they are not, give a justification.
$\cdot\left[\begin{array}{l}2 \\ 1 \\ 0\end{array},\left\{q_{0}, q_{2}\right\}\right] \xrightarrow{a}\left[\begin{array}{l}1 \\ 0 \\ \perp\end{array},\left\{q_{1}\right\}\right]$
$\cdot\left[\begin{array}{l}6 \\ 4 \\ 0\end{array},\left\{q_{0}\right\}\right] \xrightarrow{b}\left[\begin{array}{l}4 \\ 3 \\ 0\end{array},\left\{q_{0}, q_{2}\right\}\right]$
$\cdot\left[\begin{array}{l}6 \\ 4 \\ 0\end{array},\left\{q_{0}\right\}\right] \xrightarrow{b}\left[\begin{array}{l}4 \\ 3 \\ 0\end{array},\left\{q_{2}\right\}\right]$
$\cdot\left[\begin{array}{l}3 \\ 3 \\ \perp\end{array}, \emptyset\right] \xrightarrow{b}\left[\begin{array}{l}2 \\ 0 \\ 0\end{array},\left\{q_{1}, q_{2}\right\}\right]$
$\cdot\left[\begin{array}{l}\perp \\ 3 \\ 3\end{array}, \emptyset\right] \xrightarrow{b}\left[\begin{array}{l}\perp \\ \perp \\ 2\end{array},\left\{q_{2}\right\}\right]$
- No: $q_{2} \xrightarrow{a} q_{0}$ so rank cannot increase.
- No: $q_{0} \notin \delta\left(q_{0}, b\right)$.
- Yes.
- No: q_{0} should be in the owing states.
- No: q_{0} should have a rank since $q_{1} \xrightarrow{b} q_{0}$. Another reason is: $\left[\begin{array}{c}\perp \\ 3 \\ 3\end{array}, \emptyset\right]$ is not a valid state since q_{2} should not have odd rank.

c)

This question is for $\mathbf{2}$ bonus points. Let A be any DBA. States p and q of A are said to be mutually reachable if p is reachable from q and q is reachable from p. A is said to be a uniform DBA if the following is true: For every pair of mutually reachable states p, q, either both p and q are accepting states or both p and q are rejecting states.
Prove the following: If A is a uniform DBA recognizing an ω-regular language L, then there is a uniform DBA B such that B recognizes the complement of L.

Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a uniform DBA recognizing L. Consider the DBA $B=\left(Q, \Sigma, \delta, q_{0}, Q \backslash F\right)$. Notice that B is a uniform DBA. We claim that B recognizes the complement of L.
Let w be any infinite word and let ρ be the unique run of A on the word w (unique because A is deterministic). Notice that ρ is also the unique run of B on the word w. Let $\inf (\rho)$ be the set of states which appear infinitely often in ρ.
Notice that if $p, q \in \inf (\rho)$ then p and q are mutually reachable in A. Indeed, let i, j, k be positions along the run ρ such that $i<j<k, p$ appears at position i, q appears at position j and p appears at position k. (Such positions exist because $p, q \in \inf (\rho)$). This implies that there must be a path from p to q and a path from q to p, which enables us to conclude that p and q are mutually reachable. Hence, all the states in $\inf (\rho)$ are mutually reachable from one another. Since A is uniform, this implies that either $\inf (\rho) \subseteq F$ or $\inf (\rho) \subseteq Q \backslash F$.
If $\inf (\rho) \subseteq F$, this means that w is accepted by A. Since ρ is also the unique run of B on w and since the accepting states of B is $Q \backslash F$, it follows that B rejects the word w.
If $\inf (\rho) \subseteq Q \backslash F$, this means that w is rejected by A. Since ρ is also the unique run of B on w and since the accepting states of B is $Q \backslash F$, it follows that B accepts the word w.
It follows that B recognizes the complement of L.
Notice that a Büchi automaton may accept words w that are not accepted by a run that ends in a cycle/ that are not of the form $w=u(v)^{\omega}$ with $u, v \in \Sigma^{*}$. For example, the Büchi automaton that accepts $(0+1+\ldots+9)^{\omega}$ accepts the word w of the decimals of $\sqrt{2}$.

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

																							,	
																					-	-	,	+
																					\checkmark	,		
																		\checkmark			,			
																			-		\checkmark			
																		2	\checkmark					
																	\checkmark		,	+				
																			\bigcirc					
																	,	,						
																	-							
																\checkmark								
														-	-									
										-														
										,	\rangle													
											-													
								,																
								-																
					\checkmark			,																
					'																			
			\checkmark																					
		-	-	-																				
		-																						
	-																							
	,																							

