Automata and Formal Languages - Endterm Exam

- You have 120 minutes to complete the exam.
- Answers must be written in a separate booklet. Do not answer on the exam.
- Please let us know if you need more paper.
- Write your name and Matrikelnummer on every sheet.
- Write with a non-erasable pen. Do not use red or green.
- You can obtain 40 points. You need 17 points to pass. There are 4 bonus points in the last exercise.
- The \star symbol indicates a more challenging question.

Question $1 \quad(2+3+2+2+3=12$ points)
a. Is there an NFA for $(a+b) c^{*}$ satisfying all the following conditions? If so, give one. If not, give a proof.

- No initial state has an incoming transition.
- No final state has an outgoing transition.
- For every state q, all transitions starting at q (if any) are labelled with the same letter.
- For every state q, all transitions ending at q (if any) are labelled with the same letter.
b. Give a transducer over alphabet $\{0,1\}^{3}$ accepting all least significant bit first (lsbf) encodings of pairs $(x, y, z) \in \mathbb{N}^{3}$ such that $x>0, y=x-1$ and $z=x+1$. For example, $(0101,1001,1101)$ encodes $(10,9,11)$ and should be accepted, while $(110,101,011)$ encodes $(3,5,6)$ and should be rejected.
c. Recall that $\inf (w)$ denotes the set of letters occurring infinitely often in the infinite word w. Give a Büchi automaton and an ω-regular expression for the following ω-language over $\Sigma=\{a, b, c\}$:

$$
L=\left\{w \in \Sigma^{\omega}: a \in \inf (w) \Rightarrow b \in \inf (w)\right\}
$$

d. Let $f: 2^{\mathbb{N}} \rightarrow \mathbb{N}$ be a surjective function.

Assume you are given an MSO formula $\operatorname{Sum}(X, Y, Z)$ for X, Y, Z in $2^{\mathbb{N}}$ that is true if and only if $f(X)+$ $f(Y)=f(Z)$. Give an MSO formula $\varphi(X, Y, Z)$ that is true if and only if $f(X)+f(Y) \leq f(Z)$.
e. Given languages L_{1}, L_{2} over alphabet $\Sigma \neq \emptyset$, the 2-shuffle of L_{1} and L_{2} is the language

$$
L_{1} ш L_{2}:=\left\{u_{1} v_{1} u_{2} v_{2} \mid u_{1} u_{2} \in L_{1} \wedge v_{1} v_{2} \in L_{2}\right\} .
$$

Let $\mathcal{K}=\left(Q_{K}, \Sigma, \delta_{K}, q_{0}^{K}, F_{K}\right)$ and $\mathcal{L}=\left(Q_{L}, \Sigma, \delta_{L}, q_{0}^{L}, F_{L}\right)$ be NFAs recognizing languages K and L, respectively. Give a tuple $\mathcal{M}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that \mathcal{M} is an ε-NFA recognizing $K \amalg L$.

Question 2 (4 points)

Consider the following languages over the alphabet $\Sigma=\{a, b, c\}$:

- $R \subseteq \Sigma^{*}$ is the language of all words of odd length, where the first and the last letter coincide. For example, $a b a, a b c c a \in R$ and $b c a b, b a a \notin R$.
- $S \subseteq \Sigma^{*}$ is the language of all words ' w such that $|w|_{a} \leq|w|_{b}$ and $|w|_{c} \leq|w|_{b}$, where for every $\sigma \in \Sigma$ the expression $|w|_{\sigma}$ denotes the number of times that σ occurs in w. For example, abbacc, $b c a b, c b c a a c a b b \in S$ and $a a b, c c b a \notin S$.
- Let $w=a_{1} a_{2} \ldots a_{n} \in \Sigma^{*}$. A switch from a to b in w is a pair of indices $1 \leq i<j \leq n$ such that $a_{i}=a$, $a_{i+1}=\cdots=a_{j-1}=c$, and $a_{j}=b$. Similarly, a switch from b to a in w is a pair of indices $1 \leq i<j \leq n$ such that $a_{i}=b, a_{i+1}=\cdots=a_{j-1}=c$, and $a_{j}=a$. For example, in $w=a c c b c a a c b c b a$ there are 2 switches from a to b ($\boldsymbol{a c c b} c a \boldsymbol{a} \boldsymbol{c b} c b a$) and 2 from b to $a(a c c \boldsymbol{b} \boldsymbol{c a} a c b c \boldsymbol{b})$. In $w b=a c c b c a a c b c b a b$ there are 3 switches from a to b ($\boldsymbol{a c c b} \boldsymbol{c} a \boldsymbol{a} \boldsymbol{c} \boldsymbol{b} c b \boldsymbol{a b}$), but only 2 from b to a ($a c c \boldsymbol{b} \boldsymbol{c} \boldsymbol{a} a c b c \boldsymbol{b} \boldsymbol{a} b$).
$T \subseteq \Sigma^{*}$ is the language of all words that have the same number of switches from a to b and switches from b to a. For example, $w=$ accbcaacbcba $\in T$, but $w b=a c c b c a a c b c b a b \notin T$.

For each of the languages R, S, and T, decide if it is regular or not. If a language is regular, give a NFA that recognizes it. If it is non-regular, prove this by analyzing its residuals.

Question 3 (3 points)

Consider the two following NBAs \mathcal{B}_{1} and \mathcal{B}_{2} :

(a) Give ω-regular expressions for the languages of the NBAs \mathcal{B}_{1} and \mathcal{B}_{2}.
(b) Give the NBA $\mathcal{B}_{1} \cap \mathcal{B}_{2}$ produced using the algorithm IntersNBA seen in class.

Question 4 (4 points)

Let \mathcal{B} the following Büchi automaton.

The language of \mathcal{B} is not empty. Consider the algorithm NestedDFS seen in class, with procedures $d f s_{1}$ and $d f s_{2}$.
(a) Give the discovery and finishing times assigned by $d f s_{1}\left(q_{0}\right)$ to every state, starting from 1 . Assume that, at every state, $d f s_{1}$ explores transitions labelled by a before transitions labelled by b, and transitions labelled by b before transitions labelled by c.
(b) Give the times at which $d f s_{2}$ is called on the final states p_{2}, p_{4}, p_{6} (if at all). For each such procedure call, give the discovery and finishing times assigned by $d f s_{2}$ to each state it explores. Assume that calls to $d f s_{2}$ start at time 1, and that they also explore transitions labelled by a before transitions labelled by b, and transitions labelled by b before transitions labelled by c.

Question 5 (4 points)

Recall: a nondeterministic Muller automaton (NMA) is empty if it has no accepting run. Consider the following automaton A :

(a) Does the acceptance condition $F_{1}=\left\{\left\{p_{1}, p_{3}\right\}\right\}$ give an empty Muller automaton? Justify your answer: if it is empty prove that no run is accepting, and if it is non-empty give an example of accepting run. Additionally, if it is non-empty, construct a non-deterministic Büchi automaton that recognizes the same language as A.
(b) Does the acceptance condition $F_{2}=\left\{\left\{p_{1}, p_{2}\right\}\right\}$ give an empty Muller automaton? Justify your answer: if it is empty prove that no run is accepting, and if it is non-empty give an example of accepting run. Additionally, if it is non-empty, construct a non-deterministic Büchi automaton that recognizes the same language as A.

Question 6 (5 points)

Let \mathcal{A} be the following NBA:

1. Draw $\operatorname{dag}\left(a b^{\omega}\right)$ and $\operatorname{dag}\left(b b b a^{\omega}\right)$.
2. Does $\operatorname{dag}\left(a b^{\omega}\right)$ admit an odd ranking? Give such a ranking if it exists. If it does not, argue why the conditions of an odd ranking cannot be fulfilled.

Does $\operatorname{dag}\left(b b b a^{\omega}\right)$ admit an odd ranking? Give such a ranking if it exists. If it does not, argue why the conditions of an odd ranking cannot be fulfilled.
3. Below is part of the complement automaton $\overline{\mathcal{A}}$ constructed with the rank method seen in class. Give possible states for s_{0}, s_{1}, s_{2}. A reminder on notation: state ($[\perp, 4,4],\{q, r\}$) represents the level ranking ($[\perp, 4,4],\{q, r\}$) where q and r have rank 4 and there is no rank for p; and $\{q, r\}$ is the set of owing states.

Question 7 (6 points)

Let $A P=\{p, q, r\}$ and let $\Sigma=2^{A P}$.
(a) Give an LTL formula that is satisfied by computations σ_{1} and σ_{2}, and not satisfied by computations σ_{3} and σ_{4}, where

$$
\sigma_{1}=\{p, q\}(\{r\}\{p, r\})^{\omega}, \quad \sigma_{2}=\emptyset \emptyset\{p, q, r\}\{q\}^{\omega}, \quad \sigma_{3}=\{r\}\{p, q, r\}\{p\}^{\omega}, \quad \sigma_{4}=(\emptyset\{r\})^{\omega} .
$$

Let C be the set of computations σ over Σ satisfying the following property: If there exists $i \geq 1$ such that $p, q \in \sigma(i)$ and $r \notin \sigma(i)$, then there also exists $j<i$ such that $r \in \sigma(j)$.
(b) Give a formula φ such that $L(\varphi)=C$
(c) Give an ω-regular expression s such that $L(s)$ is equal to the complement of $L(\varphi)$, that is, s represents the ω-language of all computations over Σ that do not belong to C.

Question 8 (2 points)
\star Let $\Sigma=\{a, b\}$. For every $n \geq 0$, let P_{n} the language of all palindromes over Σ of length $2 n$.
(a) Show that every NFA recognizing P_{n} has at least 2^{n} states.
(b) For 2 bonus points: Show that every NFA recognizing P_{n} has at least $2^{n+1}-1$ states.
(c) For 2 bonus points: Show that every NFA recognizing P_{n} has at least $2^{n+1}+2^{n}-2$ states.
(A correct answer to (b) counts as a correct answer to both (a) and (b), and a correct answer to (c) counts as a correct answer to (a), (b), and (c).)

Solution $1 \quad(2+3+2+2+3=12$ points)

a. Here is a possible solution.

b. This is the minimal transducer:

c. The exercise can be solved in many different ways, we just give one solution. There are other solutions with smaller ω-regular expressions and/or smaller NBAs.
Observe that $L=L_{1} \cup L_{2}$, where $L_{1}=\left\{w \in \Sigma^{\omega}: a \notin \inf (w)\right\}$ is the language of all words over Σ containing finitely many as, and $L_{2}=\left\{w \in \Sigma^{\omega}:\{a, b\} \subseteq \inf (w)\right\}$ is the language of all words over Σ containing infinitely many a s and infinitely many $b s$. In the tutorials we have considered these two languages:

- ω-regular expressions: $(a+b+c)^{*}(b+c)^{\omega}$ for L_{1}, and $\left((b+c)^{*} a(a+c)^{*} b\right)^{\omega}$ for L_{2} (there are others). So a possible ω-regular expression for L is

$$
(a+b+c)^{*}(b+c)^{\omega}+\left((b+c)^{*} a(a+c)^{*} b\right)^{\omega}
$$

- NBAs for L_{1} and L_{2} :

A possible NBA for L is just the result of putting the two automata above side by side (NBA with two initial states).
d. $\varphi(X, Y, Z)=\exists W \exists U \operatorname{Sum}(X, Y, W) \wedge \operatorname{Sum}(W, U, Z)$
e. Let $\mathcal{K}=\left(Q_{K}, \delta_{K}, \Sigma, q_{0}^{K}, F_{K}\right)$ and $\mathcal{L}=\left(Q_{L}, \delta_{L}, \Sigma, q_{0}^{L}, F_{L}\right)$ be NFAs recognizing K and L. We define an ε-NFA $\mathcal{M}=\left(Q, \delta, \Sigma, q_{0}, F\right)$ that recognizes $K \amalg L$.
Intuitively, \mathcal{M} runs in four phases, and decides nondeterministically when to move to the next phase. In phases 1 and 2 the automaton initiates a simulation of \mathcal{K} and \mathcal{L}, respectively. In phase 3 it continues the simulation of \mathcal{K} from the state reached at the end of phase 1 . In phase 4 it continues the simulation of \mathcal{L} from the state reached at the end of phase 2.
Formally, $\mathcal{M}=\left(Q, \delta, \Sigma, q_{0}, F\right)$ is defined as follows:

- $Q:=Q_{K} \times Q_{L} \times\{1,2,3,4\}$.
- A transition $[p, q, c] \xrightarrow{a}\left[p^{\prime}, q^{\prime}, c^{\prime}\right]$ belongs to δ if and only if

$$
\begin{array}{llllllllll}
a \in \Sigma & \text { and } & p \xrightarrow{a} p^{\prime} \in \delta_{K} & \text { and } & q=q^{\prime} & \text { and } & c^{\prime}=c & \text { and } c \in\{1,3\}, & \text { or } \\
a \in \Sigma & \text { and } & p=p^{\prime} & \text { and } & q \rightarrow q^{\prime} \in \delta_{L} & \text { and } & c^{\prime}=c & \text { and } & c \in\{2,4\}, & \text { or } \\
a=\varepsilon & \text { and } & p=p^{\prime} & \text { and } & q=q^{\prime} & \text { and } & c^{\prime}=c+1 & \text { and } & c<4 . &
\end{array}
$$

- The initial state is $\left[q_{0}^{K}, q_{0}^{L}, 1\right]$.
- The set of final states is $F_{K} \times F_{L} \times\{4\}$.

Solution 2 (4 points)

(a) R is a regular language. Here are two NFAs recognizing R :

(b) S is non-regular. We prove that $S^{a^{i}} \neq S^{a^{j}}$ for every $0 \leq i<j, i \neq j$, which shows that S has infinitely many residuals. For this, we observe that $b^{i} \in S^{a^{i}}$, becaue $a^{i} b^{i} \in S$, but $b^{i} \notin S^{a^{j}}$, because $a^{j} b^{i} \notin S$.
Common mistakes:
$b^{i} \notin S^{a^{j}}$ and $b^{j} \in S^{a^{j}}$ is not a proof that $S^{a^{i}} \neq S^{a^{j}}$. For example, it is compatible with $S^{a^{j}}=\left\{b^{j}\right\}=S^{a^{j}}$ Showing that a language $L \subseteq S$ is not regular is not a proof that S is not regular. Recall that Σ^{*} is regular and $L \subseteq \Sigma^{*}$. Thus, a superset of a non-regular language can be regular.
(c) T is a regular language. Intuitively, since a switch from a to b can only be followed by a switch from b to a, the language consists of all words over $\{a, b, c\}$ whose projection onto a, b is a word of $\varepsilon+a(a+b)^{*} a+$ $b(a+b)^{*} b$. Here are two automata recognizing T :

Solution 3 (3 points)

\mathcal{B}_{1} recognizes the ω-language with an odd number of b s: this can be written $a^{*} b\left(a^{*} b a^{*} b+a^{*}\right)^{\omega}$, or $a^{*} b\left(b a^{*} b+a\right)^{\omega}$, or $a^{*} b\left(a^{*}\left(b a^{*} b\right)^{*}\right)^{\omega}$.
\mathcal{B}_{2} recognizes the ω-language with an infinite number of b s: this can be written $\left(a^{*} b\right)^{\omega}$, or $a^{*} b\left(a a^{*} b+b\right)^{\omega}$, or $a^{*} b\left(b^{*}\left(a a^{*} b\right)^{*}\right)^{\omega}$.

The NBA $\mathcal{B}_{1} \cap \mathcal{B}_{2}$ produced using the algorithm IntersNBA is:

Solution 4 (4 points)

We note "state[discovery time/finishing time]" for $d f s_{1}$'s exploration: $\alpha[1 / 14], \gamma[2 / 13], \zeta[3 / 6], \eta[4 / 5], \varepsilon[7 / 12], \delta[8 / 11], \beta[9 / 10]$.

Procedure $d f s_{2}$ is called on ζ at time 6 of $d f s_{1}$'s exploration, and on β at time 10. Exploration of $d f s_{2}$ on ζ : $\zeta[1 / 4], \eta[2 / 3]$; exploration of $d f s_{2}$ on $\beta: \beta[1 /], \alpha[2 /], \gamma[3 /], \varepsilon[4 /], \delta[5 /]$ and then the algorithm answers NEMP.

Solution 5 (4 points)

(a) F_{1} gives an empty Muller automaton. First, note that there is no direct path from p_{3} to p_{1}, that is, every path from p_{3} to p_{1} visits either p_{0} or p_{2}. Therefore, every run that visits both states p_{1} and p_{3} infinitely often, also has to visit p_{0} or p_{2} infinitely often (or both). Since the Muller acceptance condition requires that the states visited infinitely often are exactly p_{1} and p_{3}, we conclude that there is no accepting run, the NMA is empty.
(Note that the only way to avoid visiting p_{0} and p_{2} infinitely often is that a run stays either in p_{1} or in p_{3}, which is also not allowed, as we have to visit both p_{1} and p_{3} infinitely often.)
(b) F_{1} gives a non-empty Muller automaton. Namely, a run of the ω-word $a(a b)^{\omega}$ is accepting as it visits infinitely often exactly p_{1} and p_{2}.
First we transform the NMA into an equivalent NGA with acceptance condition $\left\{\left\{\left[p_{1}, 1\right]\right\},\left\{\left[p_{2}, 1\right]\right\}\right\}$:

Now, we transform the NGA into an equivalent NBA:

Note that some transitions are omitted for simplicity, and some more could be omitted without changing the recogniized language.

Solution 6 (5 points)

1. $\operatorname{dag}\left(a b^{\omega}\right)$:

$\operatorname{dag}\left(b b b a^{\omega}\right):$

2. Yes it does, for example 2 on the first two p-nodes, then 1 on the q nodes and 0 on the r-nodes.

No it does not: the only infinite path is made of r-nodes which are final and thus must have even rank by definition of a rank.
3. An answer for the complement automaton:

Solution $7 \quad$ (6 points)

(a) There are many solutions, for example (1) $\mathbf{F}(p \wedge q) \wedge \neg r$ or (2) $\mathbf{X X} r$ or (3) $p \vee \mathbf{F} \mathbf{G} q \ldots$
(b) $\mathbf{X F}(p \wedge q \wedge \neg r) \rightarrow(\mathbf{X} \neg(p \wedge q \wedge \neg r) \mathbf{U} r)$ or equivalently $\mathbf{X G} \neg(p \wedge q \wedge \neg r) \vee(\mathbf{X} \neg(p \wedge q \wedge \neg r) \mathbf{U} r)$

Frequent mistakes:
$\mathbf{F}(p \wedge q \wedge \neg r) \rightarrow(\neg(p \wedge q \wedge \neg r) \mathbf{U} r)$ is not correct since we have the requirement that $i \geq 1$, and we have to take care of the point 0 using the operator \mathbf{X}.
$\mathbf{F}(p \wedge q \wedge \neg r) \rightarrow(\mathbf{F} r \mathbf{U}(p \wedge q \wedge \neg r))$ is not correct since this formula just claims that r will appear eventually, but we have no guarantee that it will happen strictly before $p \wedge q \wedge \neg r$. Also, we have to take care of the $i=0$ point as above.
$\mathbf{F}(p \wedge q \wedge \neg r) \rightarrow(r \mathbf{U}(p \wedge q \wedge \neg r))$ is not correct since it forces r to appear everywhere before $p \wedge q \wedge \neg r$, and we only need one point where r will appear. Also, we have to take care of the $i=0$ point as above.
(c) $s=(\emptyset+\{p\}+\{q\}+\{p, q\})(\emptyset+\{p\}+\{q\}+\{p, q\})^{*}\{p, q\} \Sigma^{\omega}$, that is, $(\emptyset+\{p\}+\{q\}+\{p, q\})^{+}\{p, q\} \Sigma^{\omega}$. Frequent mistakes: $s=(\emptyset+\{p\}+\{q\}+\{p, q\})^{*}\{p, q\} \Sigma^{\omega}$. This ω-expression is not correct. For example, consider $\sigma=\{p, q\} \emptyset^{\omega}$. We have that $\sigma \in C$ so this computation should not be captured by the solution expression. Still, $\sigma \in L(s)$. $s=(\emptyset+\{p\}+\{q\})^{*}\{p, q\} \Sigma^{\omega}$. This ω-expression is not correct. For example, consider $\sigma=\{p, q\}\{r\}\{p, q\} \emptyset^{\omega}$. We have that $\sigma \in C$ so this computation should not be captured by the solution expression. Still, $\sigma \in L(s)$.

Solution 8 (2 points)

Let A_{n} be an arbitrary NFA recognizing P_{n}. Let $w_{1} w_{1}^{R}, w_{2} w_{2}^{R}$ be two different palindromes of length $2 n$. Since they are both accepted by A_{n}, there exist initial states q_{01}, q_{02}, states q_{1}, q_{2}, and final states $q_{1 f}, q_{2 f}$ such that $q_{01} \xrightarrow{w_{1}} q_{1} \xrightarrow{w_{1}^{R}} q_{f 1}$ and $q_{02} \xrightarrow{w_{2}} q_{2} \xrightarrow{w_{2}^{R}} q_{f 2}$. We have $q_{1} \neq q_{2}$, since otherwise A would accept $w_{1} w_{2}^{R}$, which is not a palindrome. Since there are exactly 2^{n} palindromes of length $2 n$ (one for each word $w \in\{a, b\}^{n}$), and A has a different state for each of them, the automaton A has at least 2^{n} states.

For the first bonus points: Let w_{1}, w_{2} be two different words of length $0 \leq \ell_{1}, \ell_{2} \leq n-1$. There exist different words $w_{1}^{\prime}, w_{2}^{\prime}$ such that $w_{1} w_{1}^{\prime}$ and $w_{2} w_{2}^{\prime}$ are palindromes. Assume $q_{01} \xrightarrow{w_{1}} q_{1} \xrightarrow{w_{1}^{\prime}} q_{f 1}$ and $q_{02} \xrightarrow{w_{2}} q_{1} \xrightarrow{w_{2}^{\prime}} q_{f 2}$. We prove $q_{1} \neq q_{2}$. Assume $q_{1}=q_{2}$. Then the NFA accepts $w_{1} w_{2}^{\prime}$. If $\ell_{1} \neq \ell_{2}$ then $w_{1} w_{2}^{\prime}$ does not have length $2 n$, and so it does not belong to P_{n}, contradiction. If $\ell_{1}=\ell_{2}$ then $w_{1} w_{2}^{\prime}$ is not a palindrome, contradiction. Since there are $\sum_{i=0}^{n-1} 2^{i}=2^{n}-1$ words of length up to $n-1$, the NFA has at least $2^{n}-1$ additional states, on top of the 2^{n} above. So the NFA has at least $2^{n+1}-1$ states.

For the second bonus points: Let w_{1}, w_{2} be two different words of length $1 \leq \ell_{1}, \ell_{2}<n$. There exist different words $w_{1}^{\prime}, w_{2}^{\prime}$ such that $w_{1}^{\prime} w_{1}$ and $w_{2}^{\prime} w_{2}$ (observe the order!) are palindromes. Using the same argument as above, we get $q_{1} \neq q_{2}$. So we get at least $2^{n}-1$ states for the words of length $0 \leq \ell \leq n-1$, at least 2^{n} states for the words of length n, and at least $2^{n}-1$ state for the words of length $n+1 \leq \ell \leq 2 n$. In total: $2\left(2^{n}-1\right)+2^{n}=2^{n+1}+2^{n}-2$ states.

