Automata and Formal Languages — Endterm Exam

- You have 120 minutes to complete the exam.
- Answers must be written in a separate booklet. Do not answer on the exam.
- Please let us know if you need more paper.
- Write your name and Matrikelnummer on every sheet.
- Write with a non-erasable pen. Do not use red or green.
- You can obtain 40 points. You need 17 points to pass. There are 4 bonus points in the last exercise.
- The \bigstar symbol indicates a more challenging question.

Question 1 (2+3+2+2+3 = 12 points)

- a. Is there an NFA for $(a + b)c^*$ satisfying all the following conditions? If so, give one. If not, give a proof.
 - No initial state has an incoming transition.
 - No final state has an outgoing transition.
 - For every state q, all transitions starting at q (if any) are labelled with the same letter.
 - For every state q, all transitions ending at q (if any) are labelled with the same letter.
- b. Give a transducer over alphabet $\{0,1\}^3$ accepting all least significant bit first (lsbf) encodings of pairs $(x, y, z) \in \mathbb{N}^3$ such that x > 0, y = x 1 and z = x + 1. For example, (0101, 1001, 1101) encodes (10, 9, 11) and should be accepted, while (110, 101, 011) encodes (3, 5, 6) and should be rejected.
- c. Recall that $\inf(w)$ denotes the set of letters occurring infinitely often in the infinite word w. Give a Büchi automaton and an ω -regular expression for the following ω -language over $\Sigma = \{a, b, c\}$:

$$L = \{ w \in \Sigma^{\omega} : a \in \inf(w) \Rightarrow b \in \inf(w) \}.$$

d. Let $f: 2^{\mathbb{N}} \to \mathbb{N}$ be a surjective function.

Assume you are given an MSO formula Sum(X, Y, Z) for X, Y, Z in $2^{\mathbb{N}}$ that is true if and only if f(X) + f(Y) = f(Z). Give an MSO formula $\varphi(X, Y, Z)$ that is true if and only if $f(X) + f(Y) \leq f(Z)$.

e. Given languages L_1, L_2 over alphabet $\Sigma \neq \emptyset$, the 2-shuffle of L_1 and L_2 is the language

$$L_1 \sqcup L_2 := \{ u_1 v_1 u_2 v_2 \mid u_1 u_2 \in L_1 \land v_1 v_2 \in L_2 \}$$

Let $\mathcal{K} = (Q_K, \Sigma, \delta_K, q_0^K, F_K)$ and $\mathcal{L} = (Q_L, \Sigma, \delta_L, q_0^L, F_L)$ be NFAs recognizing languages K and L, respectively. Give a tuple $\mathcal{M} = (Q, \Sigma, \delta, q_0, F)$ such that \mathcal{M} is an ε -NFA recognizing $K \sqcup L$.

Question 2 (4 points)

Consider the following languages over the alphabet $\Sigma = \{a, b, c\}$:

• $R \subseteq \Sigma^*$ is the language of all words of odd length, where the first and the last letter coincide. For example, $aba, abcca \in R$ and $bcab, baa \notin R$.

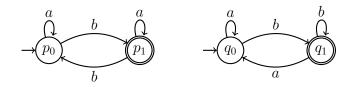
- $S \subseteq \Sigma^*$ is the language of all words 'w such that $|w|_a \leq |w|_b$ and $|w|_c \leq |w|_b$, where for every $\sigma \in \Sigma$ the expression $|w|_{\sigma}$ denotes the number of times that σ occurs in w. For example, *abbacc*, *bcab*, *cbcaacabb* $\in S$ and *aab*, *ccba* $\notin S$.
- Let $w = a_1 a_2 \dots a_n \in \Sigma^*$. A switch from a to b in w is a pair of indices $1 \leq i < j \leq n$ such that $a_i = a$, $a_{i+1} = \dots = a_{j-1} = c$, and $a_j = b$. Similarly, a switch from b to a in w is a pair of indices $1 \leq i < j \leq n$ such that $a_i = b$, $a_{i+1} = \dots = a_{j-1} = c$, and $a_j = a$. For example, in w = accbcaacbcba there are 2 switches from a to b (*accbcaacbcba*) and 2 from b to a (*accbcaacbcba*). In wb = accbcaacbcbab there are 3 switches from a to b (*accbcaacbcbab*), but only 2 from b to a (*accbcaacbcbab*).

 $T \subseteq \Sigma^*$ is the language of all words that have the same number of switches from a to b and switches from b to a. For example, $w = accbcaacbcba \in T$, but $wb = accbcaacbcbab \notin T$.

For each of the languages R, S, and T, decide if it is regular or not. If a language is regular, give a NFA that recognizes it. If it is non-regular, prove this by analyzing its residuals.

Question 3 (3 points)

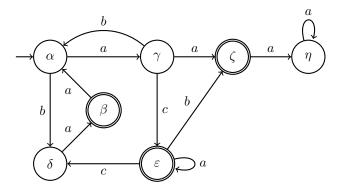
Consider the two following NBAs \mathcal{B}_1 and \mathcal{B}_2 :



- (a) Give ω -regular expressions for the languages of the NBAs \mathcal{B}_1 and \mathcal{B}_2 .
- (b) Give the NBA $\mathcal{B}_1 \cap \mathcal{B}_2$ produced using the algorithm *IntersNBA* seen in class.

Question 4 (4 points)

Let ${\mathcal B}$ the following Büchi automaton.

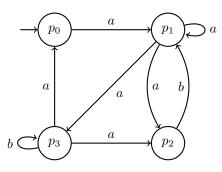


The language of \mathcal{B} is not empty. Consider the algorithm *NestedDFS* seen in class, with procedures dfs_1 and dfs_2 .

- (a) Give the discovery and finishing times assigned by $dfs_1(q_0)$ to every state, starting from 1. Assume that, at every state, dfs_1 explores transitions labelled by *a* before transitions labelled by *b*, and transitions labelled by *b* before transitions labelled by *c*.
- (b) Give the times at which dfs_2 is called on the final states p_2, p_4, p_6 (if at all). For each such procedure call, give the discovery and finishing times assigned by dfs_2 to each state it explores. Assume that calls to dfs_2 start at time 1, and that they also explore transitions labelled by a before transitions labelled by b, and transitions labelled by b before transitions labelled by c.

Question 5 (4 points)

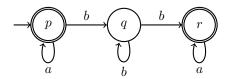
Recall: a nondeterministic Muller automaton (NMA) is *empty* if it has no accepting run. Consider the following automaton A:



- (a) Does the acceptance condition $F_1 = \{\{p_1, p_3\}\}$ give an empty Muller automaton? Justify your answer: if it is empty prove that no run is accepting, and if it is non-empty give an example of accepting run. Additionally, if it is non-empty, construct a non-deterministic Büchi automaton that recognizes the same language as A.
- (b) Does the acceptance condition $F_2 = \{\{p_1, p_2\}\}$ give an empty Muller automaton? Justify your answer: if it is empty prove that no run is accepting, and if it is non-empty give an example of accepting run. Additionally, if it is non-empty, construct a non-deterministic Büchi automaton that recognizes the same language as A.

Question 6 (5 points)

Let \mathcal{A} be the following NBA:



- 1. Draw dag (ab^{ω}) and dag $(bbba^{\omega})$.
- 2. Does $dag(ab^{\omega})$ admit an odd ranking? Give such a ranking if it exists. If it does not, argue why the conditions of an odd ranking cannot be fulfilled.

Does $dag(bbba^{\omega})$ admit an odd ranking? Give such a ranking if it exists. If it does not, argue why the conditions of an odd ranking cannot be fulfilled.

3. Below is part of the complement automaton $\overline{\mathcal{A}}$ constructed with the rank method seen in class. Give possible states for s_0, s_1, s_2 . A reminder on notation: state $([\bot, 4, 4], \{q, r\})$ represents the level ranking $([\bot, 4, 4], \{q, r\})$ where q and r have rank 4 and there is no rank for p; and $\{q, r\}$ is the set of owing states.



Question 7 (6 points) Let $AP = \{p, q, r\}$ and let $\Sigma = 2^{AP}$.

(a) Give an LTL formula that is satisfied by computations σ_1 and σ_2 , and not satisfied by computations σ_3 and σ_4 , where

$$\sigma_1 = \{p,q\}(\{r\}\{p,r\})^{\omega}, \quad \sigma_2 = \emptyset \emptyset\{p,q,r\}\{q\}^{\omega}, \quad \sigma_3 = \{r\}\{p,q,r\}\{p\}^{\omega}, \quad \sigma_4 = (\emptyset\{r\})^{\omega}.$$

Let C be the set of computations σ over Σ satisfying the following property: If there exists $i \ge 1$ such that $p, q \in \sigma(i)$ and $r \notin \sigma(i)$, then there also exists j < i such that $r \in \sigma(j)$.

- (b) Give a formula φ such that $L(\varphi) = C$
- (c) Give an ω -regular expression s such that L(s) is equal to the complement of $L(\varphi)$, that is, s represents the ω -language of all computations over Σ that do not belong to C.

Question 8 (2 points)

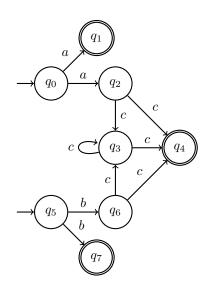
★ Let $\Sigma = \{a, b\}$. For every $n \ge 0$, let P_n the language of all palindromes over Σ of length 2n.

- (a) Show that every NFA recognizing P_n has at least 2^n states.
- (b) For 2 **bonus** points: Show that every NFA recognizing P_n has at least $2^{n+1} 1$ states.
- (c) For 2 **bonus** points: Show that every NFA recognizing P_n has at least $2^{n+1} + 2^n 2$ states.

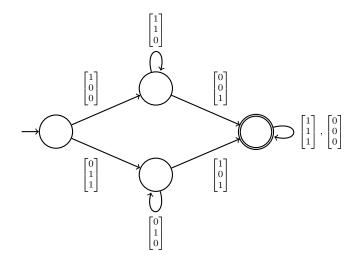
(A correct answer to (b) counts as a correct answer to both (a) and (b), and a correct answer to (c) counts as a correct answer to (a), (b), and (c).)

Solution 1 (2+3+2+2+3 = 12 points)

a. Here is a possible solution.



b. This is the minimal transducer:



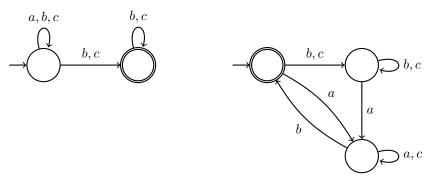
c. The exercise can be solved in many different ways, we just give one solution. There are other solutions with smaller ω -regular expressions and/or smaller NBAs.

Observe that $L = L_1 \cup L_2$, where $L_1 = \{w \in \Sigma^{\omega} : a \notin \inf(w)\}$ is the language of all words over Σ containing finitely many as, and $L_2 = \{w \in \Sigma^{\omega} : \{a, b\} \subseteq \inf(w)\}$ is the language of all words over Σ containing infinitely many as and infinitely many bs. In the tutorials we have considered these two languages:

• ω -regular expressions: $(a+b+c)^*(b+c)^{\omega}$ for L_1 , and $((b+c)^*a(a+c)^*b)^{\omega}$ for L_2 (there are others). So a possible ω -regular expression for L is

$$(a+b+c)^{*}(b+c)^{\omega} + ((b+c)^{*}a(a+c)^{*}b)^{\omega}$$

• NBAs for L_1 and L_2 :



A possible NBA for L is just the result of putting the two automata above side by side (NBA with two initial states).

- d. $\varphi(X, Y, Z) = \exists W \exists U Sum(X, Y, W) \land Sum(W, U, Z)$
- e. Let $\mathcal{K} = (Q_K, \delta_K, \Sigma, q_0^K, F_K)$ and $\mathcal{L} = (Q_L, \delta_L, \Sigma, q_0^L, F_L)$ be NFAs recognizing K and L. We define an ε -NFA $\mathcal{M} = (Q, \delta, \Sigma, q_0, F)$ that recognizes $K \sqcup L$.

Intuitively, \mathcal{M} runs in four phases, and decides nondeterministically when to move to the next phase. In phases 1 and 2 the automaton initiates a simulation of \mathcal{K} and \mathcal{L} , respectively. In phase 3 it continues the simulation of \mathcal{K} from the state reached at the end of phase 1. In phase 4 it continues the simulation of \mathcal{L} from the state reached at the end of phase 2.

Formally, $\mathcal{M} = (Q, \delta, \Sigma, q_0, F)$ is defined as follows:

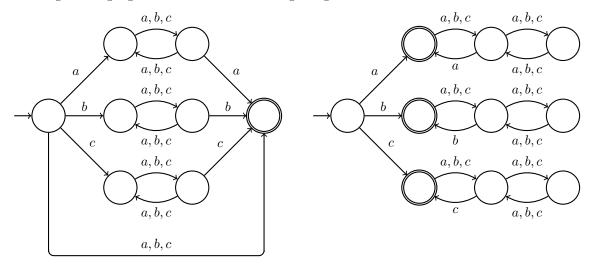
- $Q := Q_K \times Q_L \times \{1, 2, 3, 4\}.$
- A transition $[p, q, c] \xrightarrow{a} [p', q', c']$ belongs to δ if and only if

$$\begin{array}{lll} a \in \Sigma & \text{and} & p \xrightarrow{a} p' \in \delta_K & \text{and} & q = q' & \text{and} & c' = c & \text{and} & c \in \{1,3\}, \text{ or} \\ a \in \Sigma & \text{and} & p = p' & \text{and} & q \xrightarrow{a} q' \in \delta_L & \text{and} & c' = c & \text{and} & c \in \{2,4\}, \text{ or} \\ a = \varepsilon & \text{and} & p = p' & \text{and} & q = q' & \text{and} & c' = c + 1 & \text{and} & c < 4. \end{array}$$

- The initial state is $[q_0^K, q_0^L, 1]$.
- The set of final states is $F_K \times F_L \times \{4\}$.

Solution 2 (4 points)

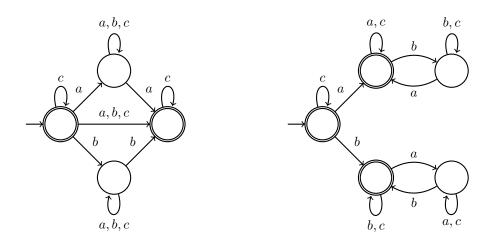
(a) R is a regular language. Here are two NFAs recognizing R:



(b) S is non-regular. We prove that $S^{a^i} \neq S^{a^j}$ for every $0 \le i < j, i \ne j$, which shows that S has infinitely many residuals. For this, we observe that $b^i \in S^{a^i}$, becaue $a^i b^i \in S$, but $b^i \notin S^{a^j}$, because $a^j b^i \notin S$. Common mistakes:

 $b^i \notin S^{a^j}$ and $b^j \in S^{a^j}$ is not a proof that $S^{a^i} \neq S^{a^j}$. For example, it is compatible with $S^{a^j} = \{b^j\} = S^{a^j}$ Showing that a language $L \subseteq S$ is not regular is not a proof that S is not regular. Recall that Σ^* is regular and $L \subseteq \Sigma^*$. Thus, a superset of a non-regular language can be regular.

(c) T is a regular language. Intuitively, since a switch from a to b can only be followed by a switch from b to a, the language consists of all words over $\{a, b, c\}$ whose projection onto a, b is a word of $\varepsilon + a(a+b)^*a + b(a+b)^*b$. Here are two automata recognizing T:

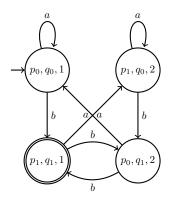


Solution 3 (3 points)

 \mathcal{B}_1 recognizes the ω -language with an odd number of bs: this can be written $a^*b(a^*ba^*b+a^*)^{\omega}$, or $a^*b(ba^*b+a)^{\omega}$, or $a^*b(a^*(ba^*b)^*)^{\omega}$.

 \mathcal{B}_2 recognizes the ω -language with an infinite number of bs: this can be written $(a^*b)^{\omega}$, or $a^*b(aa^*b+b)^{\omega}$, or $a^*b(b^*(aa^*b)^*)^{\omega}$.

The NBA $\mathcal{B}_1 \cap \mathcal{B}_2$ produced using the algorithm *IntersNBA* is:



Solution 4 (4 points)

We note "state[discovery time/finishing time]" for dfs_1 's exploration: $\alpha[1/14], \gamma[2/13], \zeta[3/6], \eta[4/5], \varepsilon[7/12], \delta[8/11], \beta[9/10].$

Procedure dfs_2 is called on ζ at time 6 of dfs_1 's exploration, and on β at time 10. Exploration of dfs_2 on ζ : $\zeta[1/4], \eta[2/3]$; exploration of dfs_2 on β : $\beta[1/], \alpha[2/], \gamma[3/], \varepsilon[4/], \delta[5/]$ and then the algorithm answers NEMP.

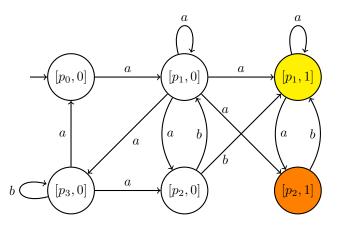
Solution 5 (4 points)

(a) F_1 gives an empty Muller automaton. First, note that there is no direct path from p_3 to p_1 , that is, every path from p_3 to p_1 visits either p_0 or p_2 . Therefore, every run that visits both states p_1 and p_3 infinitely often, also has to visit p_0 or p_2 infinitely often (or both). Since the Muller acceptance condition requires that the states visited infinitely often are exactly p_1 and p_3 , we conclude that there is no accepting run, the NMA is empty.

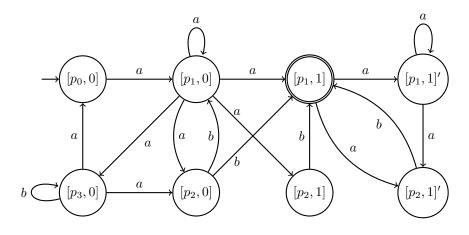
(Note that the only way to avoid visiting p_0 and p_2 infinitely often is that a run stays either in p_1 or in p_3 , which is also not allowed, as we have to visit both p_1 and p_3 infinitely often.)

(b) F_1 gives a non-empty Muller automaton. Namely, a run of the ω -word $a(ab)^{\omega}$ is accepting as it visits infinitely often exactly p_1 and p_2 .

First we transform the NMA into an equivalent NGA with acceptance condition $\{\{[p_1, 1]\}, \{[p_2, 1]\}\}$:



Now, we transform the NGA into an equivalent NBA:



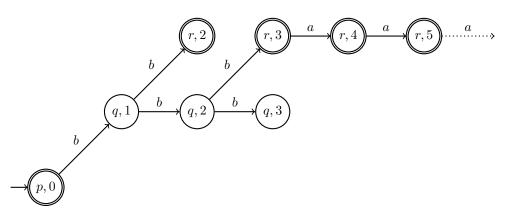
Note that some transitions are omitted for simplicity, and some more could be omitted without changing the recognized language.

Solution 6 (5 points)

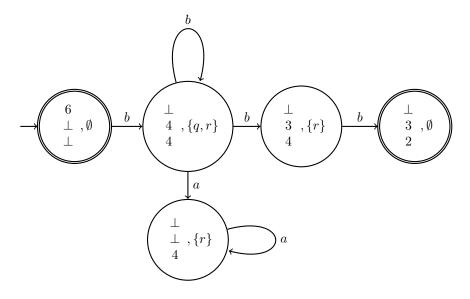
1. dag (ab^{ω}) :



 $dag(bbba^{\omega}):$



- Yes it does, for example 2 on the first two p-nodes, then 1 on the q nodes and 0 on the r-nodes. No it does not: the only infinite path is made of r-nodes which are final and thus must have even rank by definition of a rank.
- 3. An answer for the complement automaton:



Solution 7 (6 points)

- (a) There are many solutions, for example (1) $\mathbf{F}(p \wedge q) \wedge \neg r$ or (2) $\mathbf{XX}r$ or (3) $p \vee \mathbf{FG}q...$
- (b) $\mathbf{XF}(p \land q \land \neg r) \rightarrow (\mathbf{X} \neg (p \land q \land \neg r) \mathbf{U} r)$ or equivalently $\mathbf{XG} \neg (p \land q \land \neg r) \lor (\mathbf{X} \neg (p \land q \land \neg r) \mathbf{U} r)$ Frequent mistakes:

 $\mathbf{F}(p \wedge q \wedge \neg r) \rightarrow (\neg (p \wedge q \wedge \neg r) \mathbf{U} r)$ is not correct since we have the requirement that $i \ge 1$, and we have to take care of the point 0 using the operator \mathbf{X} .

 $\mathbf{F}(p \wedge q \wedge \neg r) \rightarrow (\mathbf{F}r \ \mathbf{U} \ (p \wedge q \wedge \neg r))$ is not correct since this formula just claims that r will appear eventually, but we have no guarantee that it will happen strictly before $p \wedge q \wedge \neg r$. Also, we have to take care of the i = 0 point as above.

 $\mathbf{F}(p \wedge q \wedge \neg r) \rightarrow (r \mathbf{U} (p \wedge q \wedge \neg r))$ is not correct since it forces r to appear everywhere before $p \wedge q \wedge \neg r$, and we only need one point where r will appear. Also, we have to take care of the i = 0 point as above.

(c) $s = (\emptyset + \{p\} + \{q\} + \{p,q\})(\emptyset + \{p\} + \{q\} + \{p,q\})^* \{p,q\}\Sigma^{\omega}$, that is, $(\emptyset + \{p\} + \{q\} + \{p,q\})^+ \{p,q\}\Sigma^{\omega}$. Frequent mistakes:

 $s = (\emptyset + \{p\} + \{q\} + \{p,q\})^* \{p,q\} \Sigma^{\omega}$. This ω -expression is not correct. For example, consider $\sigma = \{p,q\} \emptyset^{\omega}$. We have that $\sigma \in C$ so this computation should not be captured by the solution expression. Still, $\sigma \in L(s)$. $s = (\emptyset + \{p\} + \{q\})^* \{p,q\} \Sigma^{\omega}$. This ω -expression is not correct. For example, consider $\sigma = \{p,q\} \{r\} \{p,q\} \emptyset^{\omega}$. We have that $\sigma \in C$ so this computation should not be captured by the solution expression. Still, $\sigma \in L(s)$.

Solution 8 (2 points)

Let A_n be an arbitrary NFA recognizing P_n . Let $w_1 w_1^R, w_2 w_2^R$ be two different palindromes of length 2n. Since they are both accepted by A_n , there exist initial states q_{01}, q_{02} , states q_1, q_2 , and final states q_{1f}, q_{2f} such that $q_{01} \xrightarrow{w_1} q_1 \xrightarrow{w_1^R} q_{f1}$ and $q_{02} \xrightarrow{w_2} q_2 \xrightarrow{w_2^R} q_{f2}$. We have $q_1 \neq q_2$, since otherwise A would accept $w_1 w_2^R$, which is not a palindrome. Since there are exactly 2^n palindromes of length 2n (one for each word $w \in \{a, b\}^n$), and Ahas a different state for each of them, the automaton A has at least 2^n states.

For the first bonus points: Let w_1, w_2 be two different words of length $0 \leq \ell_1, \ell_2 \leq n-1$. There exist different words w'_1, w'_2 such that $w_1w'_1$ and $w_2w'_2$ are palindromes. Assume $q_{01} \xrightarrow{w_1} q_1 \xrightarrow{w'_1} q_{f1}$ and $q_{02} \xrightarrow{w_2} q_1 \xrightarrow{w'_2} q_{f2}$. We prove $q_1 \neq q_2$. Assume $q_1 = q_2$. Then the NFA accepts $w_1w'_2$. If $\ell_1 \neq \ell_2$ then $w_1w'_2$ does not have length 2n, and so it does not belong to P_n , contradiction. If $\ell_1 = \ell_2$ then $w_1w'_2$ is not a palindrome, contradiction. Since there are $\sum_{i=0}^{n-1} 2^i = 2^n - 1$ words of length up to n-1, the NFA has at least $2^n - 1$ additional states, on top of the 2^n above. So the NFA has at least $2^{n+1} - 1$ states.

For the second bonus points: Let w_1, w_2 be two different words of length $1 \leq \ell_1, \ell_2 < n$. There exist different words w'_1, w'_2 such that w'_1w_1 and w'_2w_2 (observe the order!) are palindromes. Using the same argument as above, we get $q_1 \neq q_2$. So we get at least $2^n - 1$ states for the words of length $0 \leq \ell \leq n - 1$, at least 2^n states for the words of length n, and at least $2^n - 1$ state for the words of length $n + 1 \leq \ell \leq 2n$. In total: $2(2^n - 1) + 2^n = 2^{n+1} + 2^n - 2$ states.