Automata and Formal Languages - Endterm Exam

- You have 120 minutes to complete the exam.
- Answers must be written in a separate booklet. Do not answer on the exam.
- Please let us know if you need more paper.
- Write your name and Matrikelnummer on every sheet.
- Write with a non-erasable pen. Do not use red or green.
- You are not allowed to use auxiliary means other than pen and paper.
- You can obtain 40 points. You need 17 points to pass.
- The \star symbol indicates a more challenging question.

Question 1 (11 points)

a. Let Σ be the alphabet $\{a, b\}$, and let p be the word pattern ababaa. Build the DFA B_{p} (obtained by determinizing the naive NFA A_{p} for $\Sigma^{*} p$).
b. Give the fragment of the master automaton that contains the states of the language $L=\{a a b, b b b, b a b\}$ and all its residuals (all the states between q_{L} and q_{\emptyset}).
c. Given a word w over the alphabet $\Sigma=\{a, b\}$ we define \bar{w} to be the word obtained from w by replacing a by b, and b by a. For example, $\overline{a a b a b b a}=b b a b a a b$ and $\overline{b a b b}=a b a a$. Decide whether the language $L=\left\{w \bar{w}: w \in \Sigma^{*}\right\}$ is regular or irregular, and prove this by analyzing its residuals.
d. Give a regular expression recognizing the language of the following the MSO formula

$$
\varphi=\exists x \exists y \cdot x \neq y \wedge Q_{a}(x) \wedge Q_{a}(y) \wedge\left[\forall z .(z \neq x \wedge z \neq y) \rightarrow\left(Q_{b}(z) \wedge x<z \wedge z<y\right)\right]
$$

e. Consider the following NBA.

Draw $\operatorname{dag}\left(b(b a a)^{\omega}\right)$. Does it admit an odd ranking? Give such a ranking if it exists, and provide a short justification if it does not.

Question 2 (3 points)
Let \mathcal{A} be the following DFA:

(a) Compute the language partitions of \mathcal{A}.
(b) Draw the minimal automaton using the language partitions from (a).

Question 3 (6 points)

Given $n \in \mathbb{N}$, let $\operatorname{msbf}(n)$ be the set of most significant bit first encodings of n, i.e., the words that start with an arbitrary number of leading zeros, followed by n written in binary. For example, $\operatorname{msb} f(6)=0^{*} 110$ and $m s b f(3)=0^{*} 11$. Let val : $\{0,1\}^{*} \rightarrow \mathbb{N}$ be the function that associates to every word $w \in\{0,1\}^{*}$ the number $\operatorname{val}(w)$ represented by w in the most significant bit first encoding. For example, $\operatorname{val}(110)=6$ and $\operatorname{val}(011)=3$.
a. Let T be the following transducer over alphabet $\Sigma=\{0,1\} \times\{0,1\}$.

What is the relation between $\operatorname{val}(x)$ and $\operatorname{val}(y)$, for any $[x, y]$ accepted by T ?
b. Draw a transducer T_{+1} recognizing the language

$$
\left\{[x, y] \in \Sigma^{*} \mid \operatorname{val}(y)=\operatorname{val}(x)+1\right\}
$$

Question 4 (5 points)

Recall: A process can send a message m to the channel with the instruction $c!m$. A process can also consume the first message of the channel with the instruction c ? m. If the channel is full when executing $c!m$, then the process blocks and waits until it can send m. When a process executes c ? m, it blocks and waits until the first message of the channel becomes m.

Suppose there are two processes being executed concurrently that communicate through a channel c. Channel c is a queue that can store up to 1 message. The two processes follow these two algorithms respectively:

```
process(1):
    while true do
        c!m
        /* critical section */
        c?m
process(2):
    while true do
        c?m
        c?m
        /* critical section */
        c!m
```

a. Model the program by constructing a network of three automata:

- One for process 1 , using the alphabet $\Sigma_{1}=\left\{c ? m, c!m, c s_{1}\right\}$,
- One for process 2 , using the alphabet $\Sigma_{2}=\left\{\overline{c ? m}, \overline{c!m}, c s_{2}\right\}$,
- One for the channel c of size 1 , that is initially empty, using the alphabet $\Sigma_{c}=\{c ? m, c!m, \overline{c ? m}, \overline{c!m}\}$.
b. Construct the asynchronous product \mathcal{P} of the three automata obtained in (a). The alphabet of the automaton \mathcal{P} should be $\Sigma=\Sigma_{1} \cup \Sigma_{2} \cup \Sigma_{c}$.
c. Consider the state of the asynchronous product \mathcal{P} where both processes are in the critical section. Is this state reachable? Give a short justification based on automaton \mathcal{P}.

Question 5 (3 points)

Consider the following DBAs B_{1} and B_{2} :

a. Give ω-regular expressions recognizing the languages of B_{1} and B_{2}.
b. Give the DBA $B_{1} \cap B_{2}$ using the algorithm seen in class. Give an ω-regular expression for $B_{1} \cap B_{2}$.

Question 6 (3 points)
Let B be the following Büchi automaton.

a. For every state of B, give the discovery time and finishing time assigned by a DFS on B starting in s_{0} (i.e. the moment they first become grey and the moment they become black). Visit successors s_{i} of a given state in the ascending order of their indices i. For example, when visiting the successors of s_{2}, first visit s_{3} and later s_{4}.
b. The language of B is not empty. Give the witness lasso (as a sequence of states) found by applying TwoStack to B following the same convention for the order of successors as above.

Question 7 (6 points)

Let $\mathrm{AP}=\{p, q\}$ and let $\Sigma=2^{\mathrm{AP}}$. Recall: An LTL formula is a tautology if it is satisfied by all computations.
a. Is the following formula a tautology: $(\mathbf{G F} p \wedge \mathbf{G F} q) \Rightarrow \mathbf{G}(p \mathbf{U} q)$? Provide a formal proof if it is and a counter-example if it is not.
b. Is the following formula a tautology: $\mathbf{G}(p \mathbf{U} q) \Rightarrow(\mathbf{G F} p \vee \mathbf{G F} q)$? Provide a formal proof if it is and a counter-example if it is not.
c. Give a Büchi automaton for the ω-language over Σ defined by the following LTL formula: $\mathbf{G}(p \mathbf{U} q)$.

Question 8 (3 points)

\star Given a language L we define the language Cycle $(L)=\{v u \mid u v \in L\}$. For example, if $L=\{a b, a b c d\}$ then Cycle $(L)=\{a b, b a, a b c d, b c d a, c d a b, d a b c\}$; in particular, $a c b d$ is not in Cycle (L) as it cannot be written as $v u$ such that $u v \in L$.

Find a language L such that L is not regular and $\operatorname{Cycle}(L)$ is regular. Give proofs for both statements.

