# Automata and Formal Languages — Endterm Exam

- You have 120 minutes to complete the exam.
- Answers must be written in a separate booklet. Do not answer on the exam.
- Please let us know if you need more paper.
- Write your name and Matrikelnummer on every sheet.
- Write with a non-erasable pen. Do not use red or green.
- You are not allowed to use auxiliary means other than pen and paper.
- You can obtain 40 points. You need 17 points to pass.
- The  $\bigstar$  symbol indicates a more challenging question.

## Question 1 (11 points)

- a. Let  $\Sigma$  be the alphabet  $\{a, b\}$ , and let p be the word pattern *ababaa*. Build the DFA  $B_p$  (obtained by determinizing the naive NFA  $A_p$  for  $\Sigma^* p$ ).
- b. Give the fragment of the master automaton that contains the states of the language  $L = \{aab, bbb, bab\}$ and all its residuals (all the states between  $q_L$  and  $q_{\emptyset}$ ).
- c. Given a word w over the alphabet  $\Sigma = \{a, b\}$  we define  $\overline{w}$  to be the word obtained from w by replacing a by b, and b by a. For example,  $\overline{aababba} = bbabaab$  and  $\overline{babb} = abaa$ . Decide whether the language  $L = \{w\overline{w} : w \in \Sigma^*\}$  is regular or irregular, and prove this by analyzing its residuals.
- d. Give a regular expression recognizing the language of the following the MSO formula

$$\varphi = \exists x \exists y. \ x \neq y \land Q_a(x) \land Q_a(y) \land [\forall z. (z \neq x \land z \neq y) \to (Q_b(z) \land x < z \land z < y)].$$

e. Consider the following NBA.



Draw  $dag(b(baa)^{\omega})$ . Does it admit an odd ranking? Give such a ranking if it exists, and provide a short justification if it does not.



- (a) Compute the language partitions of  $\mathcal{A}$ .
- (b) Draw the minimal automaton using the language partitions from (a).

## Question 3 (6 points)

Given  $n \in \mathbb{N}$ , let msbf(n) be the set of most significant bit first encodings of n, i.e., the words that start with an arbitrary number of leading zeros, followed by n written in binary. For example,  $msbf(6) = 0^*110$  and  $msbf(3) = 0^*11$ . Let val :  $\{0, 1\}^* \to \mathbb{N}$  be the function that associates to every word  $w \in \{0, 1\}^*$  the number val(w) represented by w in the most significant bit first encoding. For example, val(110) = 6 and val(011) = 3.

a. Let T be the following transducer over alphabet  $\Sigma = \{0, 1\} \times \{0, 1\}$ .



What is the relation between val(x) and val(y), for any [x, y] accepted by T?

b. Draw a transducer  ${\cal T}_{+1}$  recognizing the language

$$\left\{ [x, y] \in \Sigma^* \mid \operatorname{val}(y) = \operatorname{val}(x) + 1 \right\}.$$

## Question 4 (5 points)

Recall: A process can send a message m to the channel with the instruction c ! m. A process can also consume the first message of the channel with the instruction c ? m. If the channel is full when executing c ! m, then the process blocks and waits until it can send m. When a process executes c ? m, it blocks and waits until the first message of the channel becomes m.

Suppose there are two processes being executed concurrently that communicate through a channel c. Channel c is a queue that can store up to 1 message. The two processes follow these two algorithms respectively:

```
process(1):
   while true do
        c!m
        /* critical section */
        c?m
process(2):
   while true do
        c?m
        c?m
        c?m
        /* critical section */
        c!m
```

- a. Model the program by constructing a network of three automata:
  - One for process 1, using the alphabet  $\Sigma_1 = \{c?m, c!m, cs_1\},\$
  - One for process 2, using the alphabet  $\Sigma_2 = \{\overline{c?m}, \overline{c!m}, cs_2\},\$
  - One for the channel c of size 1, that is initially empty, using the alphabet  $\Sigma_c = \{c?m, c!m, \overline{c?m}, \overline{c!m}\}$ .
- b. Construct the asynchronous product  $\mathcal{P}$  of the three automata obtained in (a). The alphabet of the automaton  $\mathcal{P}$  should be  $\Sigma = \Sigma_1 \cup \Sigma_2 \cup \Sigma_c$ .
- c. Consider the state of the asynchronous product  $\mathcal{P}$  where both processes are in the critical section. Is this state reachable? Give a short justification based on automaton  $\mathcal{P}$ .

#### Question 5 (3 points)

Consider the following DBAs  $B_1$  and  $B_2$ :



- a. Give  $\omega$ -regular expressions recognizing the languages of  $B_1$  and  $B_2$ .
- b. Give the DBA  $B_1 \cap B_2$  using the algorithm seen in class. Give an  $\omega$ -regular expression for  $B_1 \cap B_2$ .

# Question 6 (3 points)

Let B be the following Büchi automaton.



- a. For every state of B, give the discovery time and finishing time assigned by a DFS on B starting in  $s_0$  (i.e. the moment they first become grey and the moment they become black). Visit successors  $s_i$  of a given state in the ascending order of their indices i. For example, when visiting the successors of  $s_2$ , first visit  $s_3$  and later  $s_4$ .
- b. The language of B is not empty. Give the witness lasso (as a sequence of states) found by applying TwoStack to B following the same convention for the order of successors as above.

## Question 7 (6 points)

Let  $AP = \{p, q\}$  and let  $\Sigma = 2^{AP}$ . Recall: An LTL formula is a tautology if it is satisfied by all computations.

- a. Is the following formula a tautology:  $(\mathbf{GF}p \wedge \mathbf{GF}q) \Rightarrow \mathbf{G}(p \ \mathbf{U} \ q)$ ? Provide a formal proof if it is and a counter-example if it is not.
- b. Is the following formula a tautology:  $\mathbf{G}(p \ \mathbf{U} \ q) \Rightarrow (\mathbf{GF}p \lor \mathbf{GF}q)$ ? Provide a formal proof if it is and a counter-example if it is not.
- c. Give a Büchi automaton for the  $\omega$ -language over  $\Sigma$  defined by the following LTL formula:  $\mathbf{G}(p \mathbf{U} q)$ .

## Question 8 (3 points)

★ Given a language L we define the language  $Cycle(L) = \{vu \mid uv \in L\}$ . For example, if  $L = \{ab, abcd\}$  then  $Cycle(L) = \{ab, ba, abcd, bcda, cdab, dabc\}$ ; in particular, acbd is not in Cycle(L) as it cannot be written as vu such that  $uv \in L$ .

Find a language L such that L is not regular and Cycle(L) is regular. Give proofs for both statements.