Automata and Formal Languages
 Winter Term 2023/24 - Exercise Sheet 13

Exercise 13.1.

Let $\mathrm{AP}=\{p, q\}$ and let $\Sigma=2^{\mathrm{AP}}$. Give LTL formulas for the following ω-languages:
(a) $\{p, q\} \emptyset \Sigma^{\omega}$
(b) $\Sigma^{*}\{q\}^{\omega}$
(c) $\Sigma^{*}(\{p\}+\{p, q\}) \Sigma^{*}\{q\} \Sigma^{\omega}$
(d) $\{p\}^{*}\{q\}^{*} \not \emptyset^{\omega}$

In (a) and (d) the \emptyset symbol stands for the letter $\emptyset \in \Sigma$, and not for the empty ω-language.

Solution.

(a) $(p \wedge q) \wedge \mathbf{X}(\neg p \wedge \neg q)$
(b) $\mathbf{F G}(\neg p \wedge q)$
(c) $\mathbf{F}(p \wedge \mathbf{X F}(\neg p \wedge q))$
(d) $(p \wedge \neg q) \mathbf{U}((\neg p \wedge q) \mathbf{U} \mathbf{G}(\neg p \wedge \neg q))$

Exercise 13.2.

Let $\mathrm{AP}=\{p, q\}$ and let $\Sigma=2^{\mathrm{AP}}$. Give Büchi automata for the ω-languages over Σ defined by the following LTL formulas:
(a) $\mathbf{X G} \neg p$
(b) $(\mathbf{G F} p) \rightarrow(\mathbf{F} q)$
(c) $p \wedge \neg(\mathbf{X F} p)$
(d) $\mathbf{G}(p \mathbf{U}(p \rightarrow q))$
(e) $\mathbf{F} q \rightarrow(\neg q \mathbf{U}(\neg q \wedge p))$

Solution.

(a)

(b) Note that $(\mathbf{G F} p) \rightarrow(\mathbf{F} q) \equiv \neg(\mathbf{G F} p) \vee(\mathbf{F} q) \equiv(\mathbf{F} \mathbf{G} \neg p) \vee(\mathbf{F} q)$. We construct Büchi automata for $\mathbf{F G} \neg p$ and $\mathbf{F} q$, and take their union:

(c) Note that $p \wedge \neg(\mathbf{X F} p) \equiv p \wedge \mathbf{X G} \neg p$. We construct a Büchi automaton for $p \wedge \mathbf{X G} \neg p$:

(d)

(e) Note that $\mathbf{F} q \rightarrow(\neg q \mathbf{U}(\neg q \wedge p)) \equiv \mathbf{G} \neg q \vee(\neg q \mathbf{U}(\neg q \wedge p))$. Consider this case split over the occurence of a p : computations that satisfy the formula either have no occurrence of p, in which case they must satisfy the first part of the \vee (i.e. $\mathbf{G} \neg q$), or they have a first occurrence of p with no q before or at the same time:

Exercise 13.3.

Say which of the following equivalences hold. For every equivalence that does not hold give an instantiation of φ and ψ together with a computation that disproves the equivalence.
(c) $\mathbf{G}(\varphi \vee \psi) \equiv \mathbf{G} \varphi \vee$
(e) $\mathbf{G F}(\varphi \wedge \psi) \equiv \mathbf{G F} \varphi \wedge$ GF ψ
$\mathbf{G} \psi$
(a) $\mathbf{F}(\varphi \vee \psi) \equiv \mathbf{F} \varphi \vee \mathbf{F} \psi$
(f) $\mathbf{X}(\varphi \mathbf{U} \psi) \quad \equiv$
(b) $\mathbf{F}(\varphi \wedge \psi) \equiv \mathbf{F} \varphi \wedge \mathbf{F} \psi$
(d) $(\varphi \vee \psi) \quad \mathbf{U} \quad \rho \equiv$ $(\varphi \mathbf{U} \rho) \vee(\psi \mathbf{U} \rho)$ $(\mathbf{X} \varphi \mathbf{U} \mathbf{X} \psi)$

Solution.

(a) True, since:

$$
\begin{aligned}
\sigma \models \mathbf{F}(\varphi \vee \psi) & \Longleftrightarrow \exists k \geq 0 \text { s.t. } \sigma^{k} \models(\varphi \vee \psi) \\
& \Longleftrightarrow \exists k \geq 0 \text { s.t. }\left(\sigma^{k} \models \varphi\right) \vee\left(\sigma^{k} \models \psi\right) \\
& \Longleftrightarrow\left(\exists k \geq 0 \text { s.t. } \sigma^{k} \models \varphi\right) \vee\left(\exists k \geq 0 \text { s.t. } \sigma^{k} \models \psi\right) \\
& \Longleftrightarrow \sigma \models \mathbf{F} \varphi \vee \mathbf{F} \psi .
\end{aligned}
$$

(b) False. Let $\sigma=\{p\}\{q\} \emptyset^{\omega}$. We have $\sigma \models \mathbf{F} p \wedge \mathbf{F} q$ and $\sigma \not \models \mathbf{F}(\varphi \wedge \psi)$.
(c) False. Let $\sigma=(\{p\}\{q\})^{\omega}$. We have $\sigma \models \mathbf{G}(p \vee q)$ and $\sigma \not \vDash \mathbf{G} p \vee \mathbf{G} q$.
(d) False. Let $\sigma=\{p\}\{q\}\{r\} \emptyset^{\omega}$. We have $\sigma \models(p \vee q) \mathbf{U} r$ and $\sigma \not \vDash(p \mathbf{U} r) \vee(q \mathbf{U} r)$.
(e) False. Let $\sigma=(\{p\}\{q\})^{\omega}$. We have $\sigma \not \models \mathbf{G F}(p \wedge q)$ and $\sigma \models \mathbf{G F} p \wedge \mathbf{G F} q$.
(f) True, since:

$$
\begin{aligned}
\sigma \models \mathbf{X}(\varphi \mathbf{U} \psi) & \Longleftrightarrow \sigma^{1} \models(\varphi \mathbf{U} \psi) \\
& \Longleftrightarrow \exists k \geq 0:\left(\sigma^{1}\right)^{k} \models \varphi \text { and } \forall 0 \leq i<k\left(\sigma^{1}\right)^{i} \models \psi \\
& \Longleftrightarrow \exists k \geq 0:\left(\sigma^{k}\right)^{1} \models \varphi \text { and } \forall 0 \leq i<k\left(\sigma^{i}\right)^{1} \models \psi \\
& \Longleftrightarrow \exists k \geq 0: \sigma^{k} \models \mathbf{X} \varphi \text { and } \forall 0 \leq i<k\left(\sigma^{i} \models \mathbf{X} \psi\right) \\
& \Longleftrightarrow \sigma \models(\mathbf{X} \varphi) \mathbf{U}(\mathbf{X} \psi) .
\end{aligned}
$$

Exercise 13.4.

Let AP $=\{p, q\}$ and let $\Sigma=2^{\text {AP }}$. An LTL formula is a tautology if it is satisfied by all computations. Which of the following LTL formulas are tautologies?
(a) $\mathbf{G} p \rightarrow \mathbf{F} p$
(b) $\mathbf{G}(p \rightarrow q) \rightarrow(\mathbf{G} p \rightarrow \mathbf{G} q)$
(e) $(\mathbf{G} p \rightarrow \mathbf{F} q) \leftrightarrow(p \mathbf{U}(\neg p \vee q))$
(c) $\mathbf{F G} p \vee \mathbf{F G} \neg p$
(f) $\neg(p \mathbf{U} q) \leftrightarrow(\neg p \mathbf{U} \neg q)$
(d) $\neg \mathbf{F} p \rightarrow \mathbf{F} \neg \mathbf{F} p$
(g) $\mathbf{G}(p \rightarrow \mathbf{X} p) \rightarrow(p \rightarrow \mathbf{G} p)$

Solution.

(a) $\mathbf{G} p \rightarrow \mathbf{F} p$ is a tautology since

$$
\begin{aligned}
\sigma \models \mathbf{G} p & \Longleftrightarrow \forall k \geq 0 \sigma^{k} \models p \\
& \Longleftrightarrow \exists k \geq 0 \sigma^{k} \models p \\
& \Longleftrightarrow \sigma \models \mathbf{F} p .
\end{aligned}
$$

(b) $\mathbf{G}(p \rightarrow q) \rightarrow(\mathbf{G} p \rightarrow \mathbf{G} q)$ is a tautology. For the sake of contradiction, suppose this is not the case. There exists σ such that

$$
\begin{align*}
& \sigma \neq \mathbf{G}(p \rightarrow q), \text { and } \tag{1}\\
& \sigma \not \models(\mathbf{G} p \rightarrow \mathbf{G} q) . \tag{2}
\end{align*}
$$

By (2), we have

$$
\begin{aligned}
& \sigma \neq \mathbf{G} p, \text { and } \\
& \sigma \nLeftarrow \mathbf{G} q .
\end{aligned}
$$

Therefore, there exists $k \geq 0$ such that $p \in \sigma(k)$ and $q \notin \sigma(k)$ which contradicts (1).
(c) $\mathbf{F G} p \vee \mathbf{F G} \neg p$ is not a tautology since it is not satisfied by $(\{p\}\{q\})^{\omega}$.
(d) $\neg \mathbf{F} p \rightarrow \mathbf{F} \neg \mathbf{F} p$ is a tautology since $\varphi \rightarrow \mathbf{F} \varphi$ is a tautology for every formula φ.
(e) $(\mathbf{G} p \rightarrow \mathbf{F} q) \leftrightarrow(p \mathbf{U}(\neg p \vee q))$ is a tautology. We have

$$
\begin{array}{rlrl}
\mathbf{G} p \rightarrow \mathbf{F} q & \equiv \neg \mathbf{G} p \vee \mathbf{F} q & & \text { (by def. of implication) } \\
& \equiv \mathbf{F} \neg p \vee \mathbf{F} q & \\
& \equiv \mathbf{F}(\neg p \vee q) & \\
& \equiv \mathbf{F}(p \rightarrow q) & \text { (by def. of implication) }
\end{array}
$$

Therefore, we have to show that

$$
\mathbf{F}(p \rightarrow q) \leftrightarrow(p \mathbf{U}(p \rightarrow q)) .
$$

$\leftarrow)$ Let σ be such that $\sigma \models(p \mathbf{U}(p \rightarrow q))$. In particular, there exists $k \geq 0$ such that $\sigma^{k} \models(p \rightarrow q)$. Therefore, $\sigma \models \mathbf{F}(p \rightarrow q)$.
$\rightarrow)$ Let σ be such that $\sigma \models \mathbf{F}(p \rightarrow q)$. Let $k \geq 0$ be the smallest position such that $\sigma^{k} \models(p \rightarrow q)$. For every $0 \leq i<k$, we have $\sigma^{i} \not \models(p \rightarrow q)$ which is equivalent to $\sigma^{i} \models p \wedge \neg q$. Therefore, for every $0 \leq i<k$, we have $\sigma^{i} \models p$. This implies that $\sigma \models p \mathbf{U}(p \rightarrow q)$.
(f) $\neg(p \mathrm{U} q) \leftrightarrow(\neg p \mathrm{U} \neg q)$ is not a tautology. Let $\sigma=\{p\}\{q\}^{\omega}$. We have $\sigma \not \vDash$ $\neg(p \mathbf{U} q)$ and $\sigma \models(\neg p \mathbf{U} \neg q)$.
(g) $\mathbf{G}(p \rightarrow \mathbf{X} p) \rightarrow(p \rightarrow \mathbf{G} p)$ is a tautology since

$$
\begin{aligned}
\mathbf{G}(p \rightarrow \mathbf{X} p) \rightarrow(p \rightarrow \mathbf{G} p) & \equiv \neg \mathbf{G}(\neg p \vee \mathbf{X} p) \vee(\neg p \vee \mathbf{G} p) \quad \text { (by def. of implication) } \\
& \equiv \mathbf{F}(p \wedge \neg \mathbf{X} p) \vee \neg p \vee \mathbf{G} p \\
& \equiv \neg \mathbf{G} p \rightarrow(\neg p \vee(\mathbf{F}(p \wedge \mathbf{X} \neg p)) \quad \text { (by def. of implication) } \\
& \equiv \mathbf{F} \neg p \rightarrow(\neg p \vee(\mathbf{F}(p \wedge \mathbf{X} \neg p)) \\
& \equiv \mathbf{F} \neg p \rightarrow \mathbf{F} \neg p .
\end{aligned}
$$

