
Prof. Javier Esparza Technical University of Munich
Philipp Czerner Chair for Foundations of Software Reliability

Automata and Formal Languages
Winter Term 2023/24 – Exercise Sheet 12

Exercise 12.1.
Let B be the following Büchi automaton:

q0 q1

q2

q6

q3

q5 q4 q7 q8

a

b a

b

b

a

a
b

a

a b
a

(a) Execute the emptiness algorithm NestedDFS on B.
(b) Recall that NestedDFS is a non-deterministic algorithm and different choices of

runs may return different lassos. Which lassos of B can be found by NestedDFS?
(c) Show that NestedDFS is non optimal by exhibiting some search sequence on B.
(d) Execute the emptiness algorithm SCCsearch on B.
(e) Which lassos of B can be found by SCCsearch?

Solution.
(a) Let us assume that the algorithms always pick states in ascending order with

respect to their indices. dfs1 visits q0, q1, q2, q3, q4, q5, q6, then calls dfs2 which
visits q6, q1, q2, q3, q4, q5, q6 and reports “non empty”.

(b) Since q7 does not belong to any lasso, only lassos containing q1 or q6 can be found.
In every run of the algorithm, dfs1 blackens q6 before q1. The only lasso containing
q6 is: q0, q1, q3, q4, q6, q1. Therefore, this is the only lasso that can be found by the
algorithm.

(c) The execution given in (a) shows that NestedDFS is non optimal since it returns
the lasso q0, q1, q3, q4, q6, q1 even though the lasso q0, q1, q2, q1 was already appearing
in the explored subgraph.

(d) Let us assume that the algorithm always pick states in ascending order with respect
to their indices. The algorithm reports “non empty” after the following execution:

N.push(q0,{q0})−−−−−−−−−−→

N

(q0, {q0})

N.push(q1,{q1})−−−−−−−−−−→

N

(q1, {q1})
(q0, {q0})

N.push(q2,{q2})−−−−−−−−−−→

N

(q2, {q2})
(q1, {q1})
(q0, {q0})

https://www7.in.tum.de/~esparza/
https://www.tum.de/
https://nicze.de/philipp/
https://www.cs.cit.tum.de/en/tcs/main/
https://www.cs.cit.tum.de/en/tcs/lehre/wintersemester-2023-2024/automaten-und-formale-sprachen/

N.pop()−−−−−→

N

(q1, {q1})
(q0, {q0})

N.pop()−−−−−→

N

(q0, {q0})

(e) All of them. The lasso q0, q1, q2, q1 is found by the above execution. The lasso
q0, q1, q3, q4, q6, q1 is found by the following execution:

N.push(q0,{q0})−−−−−−−−−−→

N

(q0, {q0})

N.push(q1,{q1})−−−−−−−−−−→

N

(q1, {q1})
(q0, {q0})

N.push(q3,{q3})−−−−−−−−−−→

N

(q3, {q3})
(q1, {q1})
(q0, {q0})

N.push(q4,{q4})−−−−−−−−−−→

N

(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

N.push(q6,{q6})−−−−−−−−−−→

N

(q6, {q6})
(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

N.pop()−−−−−→

N

(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

The lasso q0, q1, q3, q4, q5, q1 is found by the following execution:

N.push(q0,{q0})−−−−−−−−−−→

N

(q0, {q0})

N.push(q1,{q1})−−−−−−−−−−→

N

(q1, {q1})
(q0, {q0})

N.push(q3,{q3})−−−−−−−−−−→

N

(q3, {q3})
(q1, {q1})
(q0, {q0})

N.push(q4,{q4})−−−−−−−−−−→

N

(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

N.push(q5,{q5})−−−−−−−−−−→

N

(q5, {q5})
(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

N.pop()−−−−−→

N

(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

N.pop()−−−−−→

N

(q3, {q3})
(q1, {q1})
(q0, {q0})

N.pop()−−−−−→

N

(q1, {q1})
(q0, {q0})

N.pop()−−−−−→

N

(q0, {q0})

Exercise 12.2.
Let B be the following Büchi automaton.

s0 s1

s2s3

s4

s5

b

a b

a

ba
a

b

(a) For every state of B, give the discovery time and finishing time assigned by a DFS
on B starting in s0 (i.e. the moment they first become grey and the moment they
become black). Visit successors si of a given state in the ascending order of their
indices i. For example, when visiting the successors of s2, first visit s3 and later
s4.

(b) The language of B is not empty. Give the witness lasso found by applying
NestedDFS to B following the same convention for the order of successors as
above.

(c) Given a non-empty NBA, we use the following definition of optimal execution of
NestedDFS: the algorithm reports NONEMPTY at the earliest time such that all
the states of a witness lasso have been explored. Is the execution in (b) optimal?
Does there exists an optimal execution of NestedDFS on B with a different order
for visiting successors?

Solution.
(a) We note "state[discovery time/finishing time]".

s0[1/12], s1[2/11], s2[3/10], s3[4/5], s4[6/9], s5[7/8].
(b) The lasso found by NestedDFS from s0 is s0s1s2s4s5s5.
(c) Given a non-empty NBA, we use the following definition of optimal execution of

NestedDFS: the algorithm reports NONEMPTY at the earliest time such that all
the states of a witness lasso have been explored.
The execution given in (b) is non optimal since it does not return the lasso
s0s1s2s3s1 which already appeared in the explored subgraph.

There is no execution of NestedDFS which blackens s2 before s5. But there is an
execution of NestedDFS on B which returns the lasso s0s1s2s3s4s5s5 before it has
visited the only other witness lasso s0s1s2s3s1 and thus is optimal: the execution
which does dfs1 via s0s1s2s4s5, blackens s5 then launches dfs2 from s5 and finds
a cycle. Node s3 is not part of the explored subgraph so the algorithm reports
NONEMPTY at the earliest time such that all the states of a witness lasso have
been explored.

Exercise 12.3.
A Büchi automaton is weak if none of its strongly connected components contains both
accepting and non-accepting states. Give an emptiness algorithm for weak Büchi au-
tomata. What is the complexity of the algorithm?
Solution. The idea is to maintain a set V of the gray vertices: when a dfs meets a
gray state r, by the gray-path theorem this means that there is a cycle with r in it, and
since we are considering weak Büchi automata it suffices to check if r is accepting. The
following algorithm works in linear time:

Input: Weak Büchi automaton B = (Q, Σ, δ, q0, F).
Output: Lω(B) = ∅?

1 S, V ← ∅
2 dfs(q0)
3 report “empty”
4
5 dfs(q):
6 S.add(q)
7 V.add(q)
8 for r ∈ succ(q) do
9 if r ̸∈ S then

10 dfs(r)
11 else if r ∈ V and r ∈ F then
12 report “non empty”
13 V.remove(q)

The space complexity is O(|V |), as we maintain two sets S, V that can both contain
at most all the nodes of the graph. The time complexity is O(|V |+ |E|), same as DFS.

