
Prof. Javier Esparza Technical University of Munich
Philipp Czerner Chair for Foundations of Software Reliability

Automata and Formal Languages
Winter Term 2023/24 – Exercise Sheet 11

Exercise 11.1.
Give generalized Büchi automata (NGA) for the following ω-languages:

• L1 = {w ∈ {a, b, c}ω : w contains infinitely many a’s and b’s and c’s.},
• L2 = {w ∈ {a, b, c}ω : w contains finitely many b’s},

Intersect these automata and decide if the obtained automaton is the smallest generalized
Büchi automaton for L1 ∩ L2 in terms of number of states.
Solution. The following Büchi automata respectively accept L1 and L2, where the ac-
cepting condition of A1 is {{pa}, {pb}, {pc}}:

pa pb

pc

q0 q1

a

b

b

a
c

c
c b

a

a, b, c

a, b, c

a, c

Taking the intersection of these automata leads to the following generalized Büchi au-
tomaton with the acceptance condition {{a0, a1}, {b0, b1}, {c0, c1}, {a1, b1, c1}}, where
xi is the state corresponding to the pair (px, qi).

a0 b0

c0

a1 b1

c1

a

b

b

a
c

c
c b

a

a

a
c

c
c

a

a
b

b

a

c

cc ba

Note that the language of this automaton is the empty language. Therefore, the
obtained automaton is surely not the smallest NGA accepting the empty language.

Exercise 11.2.
Give an algorithm that directly complements deterministic Muller automata, without
going through Büchi automata. Is this algorithm “practical”?

https://www7.in.tum.de/~esparza/
https://www.tum.de/
https://nicze.de/philipp/
https://www.cs.cit.tum.de/en/tcs/main/
https://www.cs.cit.tum.de/en/tcs/lehre/wintersemester-2023-2024/automaten-und-formale-sprachen/

Solution. Let us consider the case of a deterministic Muller automaton A with acceptance
condition F = {F0, . . . , Fm−1} ⊆ 2Q. Since every ω-word w has a single run ρw in A, we
have w ̸∈ Lω(A) iff inf(ρw) ∈ 2Q \ F . Thus, to complement A, we change its acceptance
condition to F ′ = 2Q \ F .

The practical problem is that the description of the new complement automaton is
exponentially larger. When complementing a Muller automaton with say 1000 states,
which is the minimum in real-life applications, assuming that your original description
was not already larger than 2999, the new description will have size more than 2999,
which is too large.

Imagine testing whether a word is contained in the language of the automaton. Then
all those pairs have to be tested.

Exercise 11.3.
(a) Consider the following Büchi automaton A over Σ = {a, b}:

q0 q1

a, b b

b

Draw dag(ababω) and dag((ab)ω).
(b) Let rw be the ranking of dag(w) defined by

rw(q, i) =


1 if q = q0 and ⟨q0, i⟩ appears in dag(w),
0 if q = q1 and ⟨q1, i⟩ appears in dag(w),
⊥ otherwise.

Are rababω and r(ab)ω (over A) odd rankings?
(c) Consider the following Büchi automaton B over Σ = {a, b}:

q0 q1 q2

a b a

a a

Draw dag(aω). Show that any odd ranking for this dag must contain a node of
rank 3 or more.

(d) Consider again the automaton A from (a). Let w be an ω-word and rw the ranking
of dag(w) as defined in (b). Show that rw is an odd ranking for dag(w) if and only
if w ̸∈ Lω(A).

(e) Construct a Büchi automaton accepting Lω(A) using the construction seen in class.
Hint: by (d), it is sufficient to use {0, 1} as ranks.

Solution.
(a) dag(ababω):

q0, 0 q0, 1 q0, 2

q1, 2

q0, 3 q0, 4

q1, 4

a b

b

a b

b

b

b

b

dag((ab)ω):

q0, 0 q0, 1 q0, 2

q1, 2

q0, 3 q0, 4

q1, 4

a b

b

a b

b

a

(b) • r is not an odd rank for dag(ababω) since

⟨q0, 0⟩ a−→ ⟨q0, 1⟩ b−→ ⟨q0, 2⟩ a−→ ⟨q0, 3⟩ b−→ ⟨q1, 4⟩ b−→ ⟨q1, 5⟩ b−→ · · ·

is an infinite path of dag(ababω) not visiting odd nodes infinitely often.

• r is an odd rank for dag((ab)ω) since it has a single infinite path:

⟨q0, 0⟩ a−→ ⟨q0, 1⟩ b−→ ⟨q0, 2⟩ a−→ ⟨q0, 3⟩ b−→ ⟨q0, 4⟩ a−→ ⟨q0, 5⟩ b−→ · · ·

which only visits odd nodes.
(c) dag(aω):

q0, 0 q0, 1

q1, 1

q0, 2

q1, 2

q2, 2

q0, 3

q1, 3

q2, 3

q0, 4

q1, 4

q2, 4

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

Let r be an odd rank for dag(aω). It exists since aω is not accepted by B. Since r
is odd, all infinite paths must visit odd nodes infinitely often (i.o.). In particular
the bottom infinite path of q0 nodes must stabilize to nodes with odd rank.

Let us assume the nodes ⟨q0, j⟩ have rank 1 for all j ≥ i for some i ≥ 0. Consider
the infinite path ρ = ⟨q0, i⟩ a−→ ⟨q1, i + 1⟩ a−→ ⟨q2, i + 2⟩ a−→ ⟨q2, i + 3⟩ Node
⟨q1, i + 1⟩ must have an even rank (since q1 is accepting) smaller or equal to 1, so
it has rank 0. This entails that ⟨q2, k⟩ has rank 0 for all k ≥ i+2. This contradicts
r being an odd ranking because the path ρ is infinite yet does not visit odd nodes
infinitely often.
Thus the bottom infinite path of q0 nodes must stabilize to nodes with odd rank
strictly bigger than 1, i.e., bigger or equal to 3.

(d) ⇒) (By contraposition) Let w ∈ Lω(B). We have w = ubω for some u ∈ {a, b}∗.
This implies that

⟨q0, 0⟩ u−→ ⟨q0, |u|⟩ b−→ ⟨q1, |u| + 1⟩ b−→ ⟨q1, |u| + 2⟩ b−→ · · ·

is an infinite path of dag(w). Since this path does not visit odd nodes infinitely
often, R is not odd for dag(w).

⇐) Let w ̸∈ Lω(B). Suppose there exists an infinite path of dag(w) that does not
visit odd nodes infinitely often. At some point, this path must only visit nodes of
the form ⟨q1, i⟩. Therefore, there exists u ∈ {a, b}∗ such that

⟨q0, 0⟩ u−→ ⟨q1, |u|⟩ b−→ ⟨q1, |u| + 1⟩ b−→ ⟨q1, |u| + 2⟩ b−→ · · ·

This implies that w = ubω ∈ Lω(B) which is contradiction.
(e) Recall: we construct an NBA whose runs on an ω-word w are all the valid rankings

of dag(w). The automaton accepts a ranking R iff every infinite path of R visits
nodes of odd rank i.o. By (d), for every w ∈ {a, b}ω, if dag(w) has an odd ranking,
then it has one ranging over 0 and 1. Therefore, it suffices to execute CompNBA
with rankings ranging over 0 and 1. We obtain the following Büchi automaton, for
which some intuition is given below:

1
⊥
∅

0
⊥

{q0}

0
0

{q0, q1}

1
0

{q1}

0
0

{q1}

0
⊥
∅

a

a

b

a

b

a

b

ba

b

b

a

b

a

a

b

General explanation: Any ranking r of dag(w) can be decomposed into a sequence
lr1, lr2, . . . such that lri(q) = r(< q, i >), the level i of rank r. Recall that in this

automaton, the transitions
[
lr(q0)
lr(q1)

]
a−→

[
lr′(q0)
lr′(q1)

]
represent the possible next level

for ranks r such that lr(q) = r(< q, i >) and lr′(q) = r(< q, i + 1 >) for q = q0, q1.
The additional set of states in the automaton represents the set of states that
“owe" a visit to a state of odd rank. Formally, the transitions are the triples
[lr, O] a−→ [lr′, O′] such that lr

a−→ lr′ and O′ = {q′ ∈ δ(O, a)|lr′(q′) is even} if
O ̸= ∅, and O′ = {q′ ∈ Q|lr′(q′) is even} if O = ∅.
Finally the accepting states of the automaton are those with no “owing" states,
which represent the breakpoints i.e. a moment where we are sure that all runs on
w have seen an odd rank since the last breakpoint.
Specific to this example: The states of this automaton are triples (x, y, S), where
x is the rank of q0, y is the rank of q1, and S ⊆ {q0, q1} is the set of “owing”
states, that is, those that owe a visit to a state with an odd rank (since the last
breakpoint). Our hint suggests that x and y can be either 0 or 1, or ⊥ if the state
is not present. Without hint we would have to consider all possibilities, that is,
x, y ∈ {0, 1, 2, 3, 4} ∪ {⊥}.
The initial state has x set to be maximal possible, that is, 1 (because of the hint,
otherwise 4), as q0 is the initial state in the original automaton A. As q1 is not
initial in A, it is not initially present, and thus y is set to ⊥. No state is owing
a visit to an odd-rank-state, since we have only one present state q0 with an odd
rank 1. Thus the third component is ∅.
Transitions are created following the general explanation from above. For example,
there are two transitions from the initial state with letter b, that is [1, ⊥, ∅] b−→
[0, 0, {q0, q1}] and [1, ⊥, ∅] b−→ [1, 0, {q1}]. This is because by reading the letter b
from q0 with rank 1 (q1 is not present in [1, ⊥, ∅]), (i) we can reach q0 and assign
any rank not higher than the previous rank of q0, that is, either 0 or 1, and (ii) we
can reach q1 which will have to have an even rank since it is the accepting state of
A, and in our case the only option is 0. If we assign rank 0 to q0, then both states
q0 and q1 will have an even rank, so both of them will be the “owing states”, so
we will reach the state [0, 0, {q0, q1}]. If we assign rank 1 to q0, the only “owing
state” will be q1, so we will reach the state [1, 0, {q1}].
The recipe for calculating S′ in [x, y, S] c−→ [x′, y′, S′] is this: If S = ∅ then S′ is
the set of those states that have an even rank (after the transition); for example,
in [1, ⊥, ∅] b−→ [0, 0, {q0, q1}] both states have even rank 0 after reading b so both
are in S′. If S ̸= ∅ then S′ is the set of the states from S that have an even rank
(after the transition), for example, in [1, ⊥, {q1}] b−→ [0, 0, {q1}] both states have
even rank 0 after reading b, but since q0 was not in S, we have S′ = {q1}.
The accepting states are breakpoints, those with S = ∅.
[hard] It is enough to only consider the blue states (as the part (d) of this exercise
suggests), as any other state cannot reach a level in which there is an odd rank;
descendants of dag states with rank 0 can never be assigned an odd rank.

Exercise 11.4.
Show that for every DBA A with n states there is an NBA B with 2n states such that
B = A. Explain why your construction does not work for NBAs.
Solution. Observe that A rejects a word w iff its single run on w stops visiting accepting
states at some point. Hence, we construct an NBA B that reads a prefix as in A and
non deterministically decides to stop visiting accepting states by moving to a copy of A
without its accepting states.

More precisely, we assume that each letter can be read from each state of A, i.e. that
A is complete. If this is not the case, it suffices to add a rejecting sink state to A. The
NBA B consists of two copies of A. The first copy is exactly as A. The second copy is
as A but restricted to its non accepting states. We add transitions from the first copy
to the second one as follows. For each transition (p, a, q) of A, we add a transition that
reads letter a from state p of the first copy to state q of the second copy. All states of the
first copy are made non accepting and all states of the second copy are made accepting.
Note that B contains at most 2n states as desired.

Here is an example of the construction:

p q r s

A:
b

a

c

a

b

c

b

a, c

a, b, c

p q r s

B:

q s

b

a

c

a

b

a, b, c

c

b

a, c

a

c
b

a, b, c

c

b

a, c

c

b

a, b, c

This construction does not work on NBAs. Indeed, we have A = B = {aω} below:

p q

A:
a

a

a

p q

B:

p

a

a

a
a

a

a

