Automata and Formal Languages
 Winter Term 2023/24 - Exercise Sheet 10

Exercise 10.1.

Consider automata with the set of states $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$ and the acceptance conditions $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ given by the following table:

	$\left\{q_{0}\right\}$	$\left\{q_{1}\right\}$	$\left\{q_{2}\right\}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{2}\right\}$	$\left\{q_{1}, q_{2}\right\}$	$\left\{q_{0}, q_{1}, q_{2}\right\}$
α_{1}	1	0	0	1	1	0	1
α_{2}	0	1	0	1	0	0	0
α_{3}	1	1	0	1	0	0	0
α_{4}	0	0	0	0	0	0	1

(a) For each of the conditions determine if they are Büchi, co-Büchi, Rabin, Muller.
(b) Can it happen that an accepting condition is neither Büchi nor co-Büchi nor Rabin nor Muller? If yes, give an example of such a condition.
(c) Consider the following automaton with acceptance conditions $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$. What are the languages accepted by the obtained automata?

Exercise 10.2.

Let language $L=\left\{w \in\{a, b\}^{\omega}: w\right.$ contains finitely many $\left.a\right\}$
(a) Give a deterministic Rabin automaton for L.
(b) Give an NBA for L and try to "determinize" it by using the NFA to DFA powerset construction. What is the language accepted by the resulting DBA?
(c) What ω-language is accepted by the following Muller automaton with acceptance condition $\left\{\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\}\right\}$? And with acceptance condition $\left\{\left\{q_{0}, q_{1}\right\},\left\{q_{1}, q_{2}\right\},\left\{q_{2}, q_{0}\right\}\right\}$?

Exercise 10.3.

Let $L_{1}=(a b)^{\omega}$ and let L_{2} be the language of all words over $\{a, b\}$ containing infinitely many a and infinitely many b.
(a) Exhibit three different DBAs with three states recognizing L_{1}.
(b) Exhibit six different DBAs with three states recognizing L_{2}.
(c) Show that no DBA with at most two states recognizes L_{1} or L_{2}.

Exercise 10.4.

(a) Show that for every NCA there is an equivalent NBA.
(b) For the following NCA give an equivalent NBA, using the construction from (a):

Exercise 10.5.

Give a procedure that translates non-deterministic Rabin automata to non-deterministic Büchi automata.

