Automata and Formal Languages
 Winter Term 2023/24 - Exercise Sheet 10

Exercise 10.1.

Consider automata with the set of states $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$ and the acceptance conditions $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ given by the following table:

	$\left\{q_{0}\right\}$	$\left\{q_{1}\right\}$	$\left\{q_{2}\right\}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{2}\right\}$	$\left\{q_{1}, q_{2}\right\}$	$\left\{q_{0}, q_{1}, q_{2}\right\}$
α_{1}	1	0	0	1	1	0	1
α_{2}	0	1	0	1	0	0	0
α_{3}	1	1	0	1	0	0	0
α_{4}	0	0	0	0	0	0	1

(a) For each of the conditions determine if they are Büchi, co-Büchi, Rabin, Muller.
(b) Can it happen that an accepting condition is neither Büchi nor co-Büchi nor Rabin nor Muller? If yes, give an example of such a condition.
(c) Consider the following semi-automaton and acceptance conditions $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$. What are the languages accepted by the obtained automata?

Solution.
(a) α_{1} is a Büchi condition with $F=\left\{q_{0}\right\}$
α_{2} is a Rabin condition with the set of Rabin pairs $\left\{\left\langle\left\{q_{1}\right\},\left\{q_{2}\right\}\right\rangle\right\}$
α_{3} is a co-Büchi condition with $F=\left\{q_{2}\right\}$
α_{4} is a Muller condition with the Muller set $\left\{\left\{q_{0}, q_{1}, q_{2}\right\}\right\}$
(b) No. If a condition is neither Büchi nor co-Büchi nor Rabin, then it must be Muller. A Muller condition is an arbitrary condition.
(c) L_{1} is defined by the expression a^{ω}
L_{2} is defined by $a^{*}\left(b c^{*}\right)^{*} b^{\omega}$
L_{3} is the union of L_{1} and L_{2}
L_{4} is the empty set, as we cannot have a run in which all 3 states are visited infinitely often.

Exercise 10.2.

Let language $L=\left\{w \in\{a, b\}^{\omega}: w\right.$ contains finitely many $\left.a\right\}$
(a) Give a deterministic Rabin automaton for L.
(b) Give an NBA for L and try to "determinize" it by using the NFA to DFA powerset construction. What is the language accepted by the resulting DBA?
(c) What ω-language is accepted by the following Muller automaton with acceptance condition $\left\{\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\}\right\}$? And with acceptance condition $\left\{\left\{q_{0}, q_{1}\right\},\left\{q_{1}, q_{2}\right\},\left\{q_{2}, q_{0}\right\}\right\}$?

Solution.
(a) The following DRA, with acceptance condition $\left\{\left\langle\left\{q_{1}\right\},\left\{q_{0}\right\}\right\rangle\right\}$, i.e., a run is accepting iff it visits q_{1} infinitely often and q_{0} finitely often, recognizes L :

(b) This NBA accepts L :

The powerset construction yields the DBA below. It recognizes the language $\{w$: w contains infinitely many b$\}$, which is different from $(a+b)^{*} b^{\omega}$:

(c) With the first acceptance condition the language is $\Sigma^{*}\left(a^{\omega}+b^{\omega}+c^{\omega}\right)$. With the second, the automaton does not accept any word. Indeed, every run that visits both q_{0} and q_{1} infinitely often must also visit q_{2} infinitely often, and the same holds for q_{1} and q_{2}, and for q_{2} and q_{0}.

Exercise 10.3.

Let $L_{1}=(a b)^{\omega}$ and let L_{2} be the language of all words over $\{a, b\}$ containing infinitely many a and infinitely many b.
(a) Exhibit three different DBAs with three states recognizing L_{1}.
(b) Exhibit six different DBAs with three states recognizing L_{2}.
(c) Show that no DBA with at most two states recognizes L_{1} or L_{2}.

Solution.

(a) We obtain three DBAs for L_{1} from the one below by making either q_{0}, q_{1} or both accepting:

(b) Here are two different DBAs for L_{2}. We obtain two further DBAs from each of these automata by making either q_{1} or q_{2} the initial state.

(c) A DBA with a single state either accepts the empty language or $(a+b)^{\omega}$ and so no single-state DBA can accept L_{1} or L_{2}. Suppose B is a two-state DBA with states p and q which accepts the language L_{1}. Let p be the initial state of B.

If q is not reachable from p by means of any transition, then the language accepted by B is either the empty language or $(a+b)^{\omega}$. Hence, we can assume that either $p \xrightarrow{a} q$ or $p \xrightarrow{b} q$. Without loss of generality, we can assume that $p \xrightarrow{a} q$. Notice that either $q \xrightarrow{a} q$ or $q \xrightarrow{a} p$. In either case, it is clear that if q is a final state then a^{ω} will be accepted by B, leading to a contradiction as $a^{\omega} \notin L_{1}$. Hence, q is not a final state and so p must be a final state.
Notice that if $p \xrightarrow{b} p$ then b^{ω} will be accepted by B, once again leading to a contradiction. Hence we have $p \xrightarrow{a} q$ and $p \xrightarrow{b} q$. Because of this and because of the fact that p is the only final state, it must be the case that either $q \xrightarrow{a} p$ or $q \xrightarrow{b} p$. In the former case, a^{ω} is accepted by B and in the latter case b^{ω} is accepted by B, both leading to a contradiction.
It follows that no two-state DBA can accept L_{1}. If we replace L_{1} with L_{2} in the above argument, then we can also show that no two-state DBA can accept L_{2} as well.

Exercise 10.4.

(a) Show that for every NCA there is an equivalent NBA.
(b) For the following NCA give an equivalent NBA, using the construction from (a):

Solution.

(a) Let $A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ be an NCA. We construct an NBA B which is equivalent to A. Observe that the co-Büchi accepting condition $\inf (\rho) \cap F=\emptyset$ is equivalent to $\inf (\rho) \subseteq Q \backslash F$. This condition holds iff ρ has an infinite suffix that only visits states of $Q \backslash F$. We design B in two stages. In the first one, we take two copies of A, that we call A_{0} and A_{1}, and put them side by side; A_{0} is a full copy, containing all states and transitions of A, and A_{1} is a partial copy, containing only the states of $Q \backslash F$ and the transitions between these states. We write $[q, 0]$ to denote the copy of a state $q \in Q$ in A_{0}, and $[q, 1]$ for the copy of a state $q \in Q \backslash F$ in A_{1}. In the second stage, we add some transitions that "jump" from A_{0} to A_{1} : for every transition $[q, 0] \xrightarrow{a}\left[q^{\prime}, 0\right]$ of A_{0} such that $q^{\prime} \in Q \backslash F$, we add a transition $[q, 0] \xrightarrow{a}\left[q^{\prime}, 1\right]$ that "jumps" to $\left[q^{\prime}, 1\right]$, the "twin state" of $\left[q^{\prime}, 0\right]$ in A_{1}. Note that $[q, 0] \xrightarrow{a}\left[q^{\prime}, 1\right]$ does not replace $[q, 0] \xrightarrow{a}\left[q^{\prime}, 0\right]$, it is an additional transition. As initial states of B, we choose the copy of Q_{0} in A_{0}, i.e., $\left\{[q, 0]: q \in Q_{0}\right\}$, and as accepting states all the states of A_{1}, i.e., $\{[q, 1]: q \in Q \backslash F\}$.
It remains to show that $L_{\omega}(A)=L_{\omega}(B)$.
$\subseteq)$ Let $w \in L_{\omega}(A)$. There is a run ρ of A on word w such that $\inf \rho \cap F=\emptyset$. It follows that $\rho=\rho_{0} \rho_{1}$, where ρ_{0} is a finite prefix of ρ, and ρ_{1} is an infinite suffix that only contains states of $Q \backslash F$. Let ρ^{\prime} be the run of B on w that simulates ρ_{0} on A_{0}, and then "jumps" to A_{1} and simulates ρ_{1} in A_{1}. Notice that ρ^{\prime} exists because ρ_{1} only visits states of $Q \backslash F$. Since all states of A_{1} are accepting, ρ^{\prime} is an accepting run of the NBA B, and so $w \in L_{\omega}(B)$.
Ə) Let $w \in L_{\omega}(B)$. There is an accepting run ρ of B on word w. Thus, ρ visits states of A_{1} infinitely often. Since a run of B that enters A_{1} can never return to A_{0} (there are no "back-jumps" from A_{1} to $\left.A_{0},\right) \rho$ has an infinite suffix ρ_{1} that only visits states of A_{1}, i.e., states $[q, 1]$ such that $q \in Q \backslash F$. Let ρ^{\prime} be the result of replacing $[q, 0]$ and $[q, 1]$ by q everywhere in ρ. Clearly, ρ^{\prime} is a run of A on w that only visits F finitely often. Thus, ρ^{\prime} is an accepting run of A, and $w \in L_{\omega}(A)$.
(b) The NCA below on the left is transformed into the NBA on the right:

Exercise 10.5.

Give a procedure that translates non-deterministic Rabin automata to non-deterministic Büchi automata.

Solution.

Given a Rabin automaton $A=\left(Q, \Sigma, Q_{0}, \delta,\left\{\left\langle F_{0}, G_{0}\right\rangle, \ldots,\left\langle F_{m-1}, G_{m-1}\right\rangle\right\}\right)$, it follows easily that $L_{\omega}(A)=\bigcup_{i=0}^{m-1} L_{\omega}\left(A_{i}\right)$ where each $A_{i}=\left(Q, \Sigma, Q_{0}, \delta,\left\{\left\langle F_{i}, G_{i}\right\rangle\right\}\right)$. So it suffices to translate each A_{i} into an NBA B_{i} and take the union of the B_{i} 's. For this, we use the same idea that we used for converting an NCA into an NBA (as shown in the previous exercise). To construct B_{i}, we take two copies of A_{i}, say A_{i}^{0} and A_{i}^{1}, where A_{i}^{0} is a full copy of A_{i} and A_{i}^{1} is a partial copy containing only the states of $Q \backslash G_{i}$ and the transitions between these states. We let $[q, i]$ denote the $i^{\text {th }}$ copy of the state q and for every transition $q \xrightarrow{a} q^{\prime}$ in A_{i} with $q^{\prime} \in Q \backslash G_{i}$, we add a transition $[q, 0] \xrightarrow{a}\left[q^{\prime}, 1\right]$ to B_{i}. We set the initial states to be $\left\{[q, 0], q \in Q_{0}\right\}$ and we set the final states to be $\left\{[q, 1]: q \in F_{i}\right\}$. Similar to the last exercise of the previous sheet, we can show that B_{i} accepts $L_{\omega}\left(A_{i}\right)$.

