Prof. Javier Esparza Philipp Czerner

Automata and Formal Languages

Winter Term 2023/24 - Exercise Sheet 9

Exercise 9.1.

Let $\Sigma := \{a, b\}$. Construct the following MSO(Σ) formulae.

- (a) $Pos_a(X)$: X contains exactly the positions with an a.
- (b) Between (X, Y): between every two elements of X there is an element of Y.
- (c) Without (X, Y, Z): $Z = X \setminus Y$.
- (d) Min(X, x), Max(X, x): x is the minimum/maximum of X.
- (e) EvenSize(X): |X| is even.
- (f) φ with $L(\varphi) = \{ w \in \Sigma^* : |w|_a, |w|_b \text{ even} \}.$

Exercise 9.2.

Consider the logic PureMSO(Σ) with syntax

$$\varphi := X \subseteq Q_a \mid X < Y \mid X \subseteq Y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists X. \ \varphi$$

Notice that formulas of PureMSO(Σ) do not contain first-order variables. The satisfaction relation of PureMSO(Σ) is given by:

with the rest as for $MSO(\Sigma)$.

Prove that $MSO(\Sigma)$ and $PureMSO(\Sigma)$ have the same expressive power for sentences. That is, show that for every sentence ϕ of $MSO(\Sigma)$ there is an equivalent sentence ψ of $PureMSO(\Sigma)$, and vice versa.

Exercise 9.3.

Let $r \ge 0$ and $n \ge 1$. Give a Presburger formula φ such that

$$(x,y) \in \operatorname{Sol}(\varphi)$$
 iff $x > y$ and $x - y \equiv r \pmod{n}$

Give an automaton that accepts the solutions of φ for r = 1 and n = 2. (It is not necessary to use the algorithm from the lecture to construct this automaton.)