Exercise 9.1.

Let $\Sigma := \{a, b\}$. Construct the following MSO(Σ) formulae.

(a) $\text{Pos}_a(X)$: X contains exactly the positions with an a.
(b) $\text{Between}(X, Y)$: between every two elements of X there is an element of Y.
(c) $\text{Without}(X, Y, Z)$: $Z = X \setminus Y$.
(d) $\text{Min}(X, x), \text{Max}(X, x)$: x is the minimum/maximum of X.
(e) $\text{EvenSize}(X)$: $|X|$ is even.
(f) φ with $L(\varphi) = \{w \in \Sigma^* : |w|_a, |w|_b \text{ even}\}$.

Exercise 9.2.

Consider the logic PureMSO(Σ) with syntax

$$\varphi := X \subseteq Q_a \mid X < Y \mid X \subseteq Y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists X. \varphi$$

Notice that formulas of PureMSO(Σ) do not contain first-order variables. The satisfaction relation of PureMSO(Σ) is given by:

- $(w, J) \models X \subseteq Q_a$ iff $w[p] = a$ for every $p \in J(X)$
- $(w, J) \models X < Y$ iff $p < p'$ for every $p \in J(X), p' \in J(Y)$
- $(w, J) \models X \subseteq Y$ iff $p \in J(Y)$ for every $p \in J(X)$

with the rest as for MSO(Σ).

Prove that MSO(Σ) and PureMSO(Σ) have the same expressive power for sentences. That is, show that for every sentence φ of MSO(Σ) there is an equivalent sentence ψ of PureMSO(Σ), and vice versa.

Exercise 9.3.

Let $r \geq 0$ and $n \geq 1$. Give a Presburger formula φ such that

$$(x, y) \in \text{Sol}(\varphi) \text{ iff } x > y \text{ and } x - y \equiv r \pmod{n}$$

Give an automaton that accepts the solutions of φ for $r = 1$ and $n = 2$. (It is not necessary to use the algorithm from the lecture to construct this automaton.)