Prof. Javier Esparza Philipp Czerner

Automata and Formal Languages

Winter Term 2023/24 - Exercise Sheet 9

Exercise 9.1.

Let $\Sigma := \{a, b\}$. Construct the following MSO(Σ) formulae.

- (a) $Pos_a(X)$: X contains exactly the positions with an a.
- (b) Between (X, Y): between every two elements of X there is an element of Y.
- (c) Without (X, Y, Z): $Z = X \setminus Y$.
- (d) Min(X, x), Max(X, x): x is the minimum/maximum of X.
- (e) EvenSize(X): |X| is even.

(f) φ with $L(\varphi) = \{ w \in \Sigma^* : |w|_a, |w|_b \text{ even} \}.$

Solution.

- (a) $\operatorname{Pos}_a(X) = \forall x (x \in X \leftrightarrow Q_a(x))$
- (b) Between $(X, Y) = \forall x \forall y (x \in X \land y \in X \to \exists z (z \in Y \land x < z \land z < y))$
- (c) Without $(X, Y, Z) = \forall x (x \in Z \leftrightarrow (x \in X \land \neg (x \in Y)))$
- (d) $\operatorname{Min}(X, x) = x \in X \land \forall y (y \in X \to (x = y \lor x < y))$, for Max replace < with >.

(e) EvenSize(X) =
$$\exists Y \exists Z$$
 (Without(X, Y, Z) \land Between(Y, Z) \land Between(Z, Y)
 $\land \exists x \exists y (\operatorname{Min}(X, x) \land \operatorname{Min}(Y, x) \land \operatorname{Max}(X, y) \land \operatorname{Max}(Z, y)))$

(f)
$$\varphi = \exists X \exists Y (\operatorname{Pos}_a(X) \land \operatorname{Pos}_b(Y) \land \operatorname{EvenSize}(X) \land \operatorname{EvenSize}(Y))$$

Exercise 9.2.

Consider the logic PureMSO(Σ) with syntax

$$\varphi := X \subseteq Q_a \mid X < Y \mid X \subseteq Y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists X. \varphi$$

Notice that formulas of PureMSO(Σ) do not contain first-order variables. The satisfaction relation of PureMSO(Σ) is given by:

 $\begin{array}{lll} (w,\mathcal{J}) &\models X \subseteq Q_a & \text{iff} & w[p] = a \text{ for every } p \in \mathcal{J}(X) \\ (w,\mathcal{J}) &\models X < Y & \text{iff} & p < p' \text{ for every } p \in \mathcal{J}(X), \, p' \in \mathcal{J}(Y) \\ (w,\mathcal{J}) &\models X \subseteq Y & \text{iff} & p \in \mathcal{J}(Y) \text{ for every } p \in \mathcal{J}(X) \end{array}$

with the rest as for $MSO(\Sigma)$.

Prove that $MSO(\Sigma)$ and $PureMSO(\Sigma)$ have the same expressive power for sentences. That is, show that for every sentence ϕ of $MSO(\Sigma)$ there is an equivalent sentence ψ of $PureMSO(\Sigma)$, and vice versa.

Solution. Given a sentence ψ of PureMSO(Σ), let ϕ be the sentence of MSO(Σ) obtained by replacing every subformula of ψ of the form

$$\begin{split} X &\subseteq Y \quad \text{by} \quad \forall x \ (x \in X \to x \in Y) \\ X &\subseteq Q_a \quad \text{by} \quad \forall x \ (x \in X \to Q_a(x)) \\ X &< Y \quad \text{by} \quad \forall x \ \forall y \ (x \in X \land y \in Y) \to x < y \end{split}$$

Clearly, ϕ and ψ are equivalent. For the other direction, let

$$\operatorname{empty}(X) := \forall Y X \subseteq Y$$

and

$$\operatorname{sing}(X) := \neg \operatorname{empty}(X) \land \forall Y (Y \subseteq X) \to (\operatorname{empty}(Y) \lor Y = X).$$

Intuitively, empty(X) is true iff X is the empty set and sing(X) is true iff X is a set of size one.

Let ϕ be a sentence of MSO(Σ). Assume without loss of generality that for every firstorder variable x the second-order variable X does not appear in ϕ (if necessary, rename second-order variables appropriately). Let ψ be the sentence of PureMSO(Σ) obtained by replacing every subformula of ϕ of the form

$$\begin{array}{lll} \exists x \ \psi' & \text{by} & \exists X \left(\text{sing}(X) \land \psi'[X/x] \right) \\ & \text{where} \ \psi'[X/x] \text{ is the result of substituting } X \ \text{for } x \ \text{in } \psi' \\ Q_a(x) & \text{by} & X \subseteq Q_a \\ x < y & \text{by} & X < Y \\ x \in Y & \text{by} & X \subseteq Y \end{array}$$

Clearly, ϕ and ψ are equivalent.

Exercise 9.3.

Let $r \ge 0$ and $n \ge 1$. Give a Presburger formula φ such that

$$(x,y) \in \operatorname{Sol}(\varphi)$$
 iff $x > y$ and $x - y \equiv r \pmod{n}$

Give an automaton that accepts the solutions of φ for r = 1 and n = 2. (It is not necessary to use the algorithm from the lecture to construct this automaton.)

Solution. Let $0 \le r' < n$ such that $r' \equiv r \pmod{n}$. Since n and r are fixed constants, r' is also a fixed constant. Further, since n is a constant, we can multiply a variable by n via iterated addition. The required formula is then given by:

$$\varphi(x,y) := (x > y) \land \exists a \ (x = y + n \cdot a + r').$$

Let $k \in \mathbb{N}$ and $x, y \in \Sigma^k$ be LSBF encodings of some naturals. First note that $\operatorname{val}(x) - \operatorname{val}(y) \equiv 1 \pmod{2}$ iff $\operatorname{val}(x)$ and $\operatorname{val}(y)$ are such that one is odd and the other one is even. Thus, the first bit of x and y should be different. Moreover, $\operatorname{val}(x) > \operatorname{val}(y)$ iff there exists $\ell \in \{1, \ldots, k\}$ such that $x_\ell = 1, y_\ell = 0$, and $x_i \geq y_i$ for every $\ell < i \leq k$. These observations yield the following automaton:

