Prof. Javier Esparza Technical University of Munich
Philipp Czerner Chair for Foundations of Software Reliability

Automata and Formal Languages
Winter Term 2023/24 — Exercise Sheet 8

Exercise 8.1.

(a) Give a recursive algorithm for the following operation:

INPUT: States p and ¢ of the master automaton.
OuTpPUT: State r of the master automaton such that L(r) = L(p) - L(q).

Observe that the languages L(p) and L(g) can have different lengths. Try to reduce
the problem for p, ¢ to the problem for p®, q.
(b) Give a recursive algorithm for the following operation:

INPUT: A state ¢ of the master automaton.

OUTPUT: State r of the master automaton such that L(r) = L(q)¥
where R is the reverse operator.

(¢) A coding over an alphabet ¥ is a function h: ¥ +— . A coding h can naturally be
extended to a function over words, i.e., h(e) = € and h(w) = h(wi)h(wsz) - - - h(wy)
for every w € ¥". Give an algorithm for the following operation:

INPUT: A state g of the master automaton and a coding h.
OuTpPUT: State r of the master automaton such that L(r) = {h(w) : w € L(q)}.

Can you make your algorithm more efficient when A is a permutation?

Exercise 8.2.
Let ¥ = {request, answer, working, idle}.
(1) Build a regular expression and an automaton recognizing all words with the prop-
erty Pj: for every occurrence of request there is a later occurrence of answer.

(2) Build an automaton recognizing all words with the property Ps: there is an occur-
rence of answer before which only working and request occur.

(3) Using automata theoretic constructions, prove that all words accepted by the au-
tomaton A below satisfy P;, and give a regular expression for all words accepted
by the automaton A that violate Ps.

by
answer
— - 5

Suppose there are n processes being executed concurrently. Each process has a critical
section and a non critical section. At any time, at most one process should be in
its critical section. In order to respect this mutual exclusion property, the processes
communicate through a channel ¢. Channel ¢ is a queue that can store up to m messages.

Exercise 8.3.


https://www7.in.tum.de/~esparza/
https://www.tum.de/
https://nicze.de/philipp/
https://www.cs.cit.tum.de/en/tcs/main/
https://www.cs.cit.tum.de/en/tcs/lehre/wintersemester-2023-2024/automaten-und-formale-sprachen/

A process can send a message x to the channel with the instruction ¢ ! x. A process can
also consume the first message of the channel with the instruction ¢ 7 . If the channel is
full when executing ¢ ! x, then the process blocks and waits until it can send z. When a
process executes ¢ 7 x, it blocks and waits until the first message of the channel becomes

xX.

Consider the following algorithm. Process 7 declares its intention of entering its critical
section by sending ¢ to the channel, and then enters it when the first message of the
channel becomes i:

1
2
3
4
5
6

process (i) :
while true do
cli
c?1
/* critical section */
/* non critical section */

(a) Sketch an automaton that models a channel of size m > 0 where messages are

drawn from some finite alphabet X.

(b) Model the above algorithm, with n = 2 and m = 1, as a network of automata.

There should be three automata: one for the channel, one for process(0) and one
for process(1).

(c) Construct the asynchronous product of the network obtained in (b).

(d) Use the automaton obtained in (c) to show that the above algorithm violates

mutual exclusion, i.e. the two processes can be in their critical sections at the
same time.

(e) Design an algorithm that makes use of a channel to achieve mutual exclusion for

two processes (n = 2). You may choose m as you wish.

) Model your algorithm from (e) as a network of automata.

) Construct the asynchronous product of the network obtained in (f).

(h) Use the automaton obtained in (g) to show that your algorithm achieves mutual

exclusion.



