
Prof. Javier Esparza Technical University of Munich
Philipp Czerner Chair for Foundations of Software Reliability

Automata and Formal Languages
Winter Term 2023/24 – Exercise Sheet 8

Exercise 8.1.
(a) Give a recursive algorithm for the following operation:

Input: States p and q of the master automaton.
Output: State r of the master automaton such that L(r) = L(p) · L(q).

Observe that the languages L(p) and L(q) can have different lengths. Try to reduce
the problem for p, q to the problem for pa, q.

(b) Give a recursive algorithm for the following operation:
Input: A state q of the master automaton.
Output: State r of the master automaton such that L(r) = L(q)R

where R is the reverse operator.
(c) A coding over an alphabet Σ is a function h : Σ 7→ Σ. A coding h can naturally be

extended to a function over words, i.e., h(ε) = ε and h(w) = h(w1)h(w2) · · ·h(wn)
for every w ∈ Σn. Give an algorithm for the following operation:

Input: A state q of the master automaton and a coding h.
Output: State r of the master automaton such that L(r) = {h(w) : w ∈ L(q)}.

Can you make your algorithm more efficient when h is a permutation?
Solution.

(a) Let L and L′ be fixed-length languages. The following holds:

L · L′ =


∅ if L = ∅,
L′ if L = {ε},⋃
a∈Σ
{a} · La · L′ otherwise.

These identities give rise to the algorithm on the next page, where we added an
extra case for q = qε and q = q∅ because the operation make is not defined for q∅:

(b) Let L be a fixed-length language. The following holds:

LR =


∅ if L = ∅,
{ε} if L = {ε},⋃
a∈Σ

(La)R · {a} otherwise.

These identities give rise to the following algorithm:
[hard] Note that Lines 11 and 12 are introduced in order to represent the lan-
guage {ai} in Line 13 as a state make(s1, s2, ..., sn) of the master automaton. This
can be avoided by using the algorithm from Exercise 8.1, namely the state that
represents {ai} is add-lang({ai}). Thus, Lines 11-13 can be replaced just by
r ← concat(reverse(qai), add-lang({ai}))

https://www7.in.tum.de/~esparza/
https://www.tum.de/
https://nicze.de/philipp/
https://www.cs.cit.tum.de/en/tcs/main/
https://www.cs.cit.tum.de/en/tcs/lehre/wintersemester-2023-2024/automaten-und-formale-sprachen/

Input: States p and q of the master automaton.
Output: State r of the master automaton such that L(r) = L(p) · L(q).

1 concat(p, q):
2 if G(p, q) is not empty then
3 return G(p, q)
4 else if p = q∅ then
5 return q∅
6 else if p = qε then
7 return q
8 else if q = q∅ then
9 return q∅

10 else if q = qε then
11 return p
12 else
13 for ai ∈ Σ do
14 si ← concat(pai , q)
15 G(p, q)← make(s1, s2, ..., sn)
16 return G(p, q)

Input: A state q of the master automaton.
Output: State r of the master automaton such that L(r) = L(q)R.

1 reverse(q):
2 if G(q) is not empty then
3 return G(q)
4 else if q = q∅ then
5 return q∅
6 else if q = qε then
7 return qε

8 else
9 p← q∅

10 for ai ∈ Σ do
11 si ← qε

12 sj ← q∅ for every i ̸= j
13 r ← concat(reverse(qai), make(s1, s2, ..., sn))
14 p← union(p, r)
15 G(q)← p
16 return G(q)

(c) Let L be a fixed-length language and let h be a coding. The following holds:

h(L) =


∅ if L = ∅,
{ε} if L = {ε},⋃
a∈Σ

h(a) · h(La) otherwise.

These identities give rise to the following algorithm:

Input: A state q of the master automaton and a coding h.
Output: State r of the master automaton such that L(r) = {h(w) : w ∈ L(q)}.

1 coding(q, h):
2 if G(q) is not empty then
3 return G(q)
4 else if q = q∅ then
5 return q∅
6 else if q = qε then
7 return qε

8 else
9 p← q∅

10 for a ∈ Σ do
11 r ← coding(qa, h)
12 sh(a) ← r

13 sb ← q∅ for every b ̸= h(a)
14 p← union(p, make(s))
15 G(q)← p
16 return G(q)

The above algorithm makes use of union because the coding may be the same for
distinct letters, i.e. h(a) = h(b) for a ̸= b is possible. However, if the coding is
a permutation, then this is not possible, and thus each letter maps to a unique
residual. Therefore, the algorithm can be adapted as follows:

Input: A state q of the master automaton and a coding h which is a
permutation.

Output: State r of the master automaton such that L(r) = {h(w) : w ∈ L(q)}.
1 coding-permutation(q, h):
2 if G(q) is not empty then
3 return G(q)
4 else if q = q∅ then
5 return q∅
6 else if q = qε then
7 return qε

8 else
9 for a ∈ Σ do

10 sh(a) ← coding-permutation(qa, h)
11 G(q)← make(s)
12 return G(q)

Exercise 8.2.
Let Σ = {request, answer , working, idle}.

(1) Build a regular expression and an automaton recognizing all words with the prop-
erty P1: for every occurrence of request there is a later occurrence of answer .

(2) Build an automaton recognizing all words with the property P2: there is an occur-
rence of answer before which only working and request occur.

(3) Using automata theoretic constructions, prove that all words accepted by the au-
tomaton A below satisfy P1, and give a regular expression for all words accepted
by the automaton A that violate P2.

q0 q1

Σ

answer

Solution. (1) A possible regular expression is (Σ∗answer)∗(Σ\{request})∗. (Observe that
we must also describe the sequences containing no occurrence of request.) A minimal
DFA for the property is

s0 s1

Σ \ {request}

request

answer

Σ \ {answer}

(3) A minimal NFA for P2 is

r0 r1

{working, request}

answer

Σ

(4) Complementing the automaton for P1 we get

s0 s1

Σ \ {request}

request

answer

Σ \ {answer}

The intersection of A and the automaton for P1 is empty: indeed, we can only reach
a final state of A by executing request, while we can only reach a final state of the
automaton for P1 by executing answer . So we cannot simultaneously reach final states
in both.

For the second half, since the automaton for P2 is deterministic, we can complement
it by exchanging final and non-final states (and not forgetting that the trap state now
becomes an accepting state). We get:

r0 r1

r2

{working, request}

answer
idle

Σ

Σ

The intersection with A yields

{working, request}

idle answer

Σ

and the regular expression is (working + request)∗ idle Σ∗ answer .

Exercise 8.3.
Suppose there are n processes being executed concurrently. Each process has a critical
section and a non critical section. At any time, at most one process should be in
its critical section. In order to respect this mutual exclusion property, the processes
communicate through a channel c. Channel c is a queue that can store up to m messages.
A process can send a message x to the channel with the instruction c ! x. A process can
also consume the first message of the channel with the instruction c ? x. If the channel is
full when executing c ! x, then the process blocks and waits until it can send x. When a
process executes c ? x, it blocks and waits until the first message of the channel becomes
x.

Consider the following algorithm. Process i declares its intention of entering its critical
section by sending i to the channel, and then enters it when the first message of the
channel becomes i:

1 process(i):
2 while true do
3 c ! i
4 c ? i
5 /* critical section */
6 /* non critical section */

(a) Sketch an automaton that models a channel of size m > 0 where messages are
drawn from some finite alphabet Σ.

(b) Model the above algorithm, with n = 2 and m = 1, as a network of automata.
There should be three automata: one for the channel, one for process(0) and one
for process(1).

(c) Construct the asynchronous product of the network obtained in (b).
(d) Use the automaton obtained in (c) to show that the above algorithm violates

mutual exclusion, i.e. the two processes can be in their critical sections at the
same time.

(e) Design an algorithm that makes use of a channel to achieve mutual exclusion for
two processes (n = 2). You may choose m as you wish.

(f) Model your algorithm from (e) as a network of automata.
(g) Construct the asynchronous product of the network obtained in (f).
(h) Use the automaton obtained in (g) to show that your algorithm achieves mutual

exclusion.
Solution.

(a) We construct an automaton AΣ,m that stores the content of the channel within its
states. For example, the automaton for Σ = {0, 1} and m = 2 is as follows:

□□

0□

1□

00

01

10

11

c ! 0

c ! 1

c ! 0

c ! 1

c ! 0

c ! 1

c ? 0

c ? 1

c ? 0

c ? 0

c ? 1

c ? 1

More formally, AΣ,m = (Q, Γ, δ, q0, F) is defined as:

Q = {w ∈ (Σ ∪□)m : (wi = □) =⇒ (wi+1 = □) for every 1 ≤ i < m},
Γ = {c ! σ : σ ∈ Σ} ∪ {c ? σ : σ ∈ Σ},
q0 = □m,

F = Q.

Let ℓ : Q→ {1, 2, . . . , m} be the function that associates to each state q the position
of the last letter of q which is not □. For example, ℓ(abb□□) = 3. The transitions
are formally defined as follows:

δ(q, c ! σ) =
{

q1q2 · · · qℓ(q)σ□
m−ℓ(q)−1 if ℓ(q) < m,

none otherwise,

δ(q, c ? σ) =
{

q2q3 · · · qm□ if q1 = σ,
none otherwise.

[hard] Note that AΣ,m grows exponentially since |Q| =
∑m

i=0 |Σ|i = (|Σ|m+1 −
1)/(|Σ| − 1).

(b) The automata for the channel, process(0) and process(1) are respectively:

□

0

1

c ! 0

c ! 1

c ? 0

c ? 1

r0 w0 c0 n0
c ! 0 c ? 0 c0

n0

r1 w1 c1 n1
c ! 1 c ? 1 c1

n1

(c)

r0, r1,□ w0, r1, 0 c0, r1,□ n0, r1,□

r0, w1, 1

r0, c1,□ w0, c1, 0 c0, c1,□ n0, c1,□

r0, n1,□ w0, n1, 0 c0, n1,□ n0, n1,□

c0, w1, 1 n0, w1, 1

c ! 0 c ? 0 c0

n0

c ! 1

c ? 1

c ! 0 c ? 0 c0

n0

c1

n1

c1 c1 c1

n1 n1 n1

c ! 0 c ? 0 c0

n0

c ! 1 c ! 1

c ? 1 c ? 1

c0

n0

(d) The algorithm violates mutual exclusion since state (c0, c1,□) is reachable in the
above automaton.

(e) We initialize a channel c of size one with message 1. When a process wants to
enter its critical section, it simply consumes 1 from the channel and sends it back
once it is done:

1 process():
2 while true do
3 /* non critical section */
4 c ? 1
5 /* critical section */
6 c ! 1

(f) The automata modeling the channel and the two processes are respectively:

1 □
c ! 1, c ! 1

c ? 1, c ? 1

n0 w0 c0 ℓ0
n0 c ? 1 c0

c ! 1

n1 w1 c1 ℓ1
n1 c ? 1 c1

c ! 1

[hard] Note that we have introduced the new letters c ! 1 and c ? 1. We could have
simply used letters c ! 1 and c ? 1. However, these new letters will be important
when considering the asynchronous product of the network. If the two automata
modeling the processes both used c ! 1 and c ? 1, then the asynchronous product
would force them to synchronize on these letters.

[hard] In class, we have seen an alternative solution: to simply swap line 4 and 5
of the processes described in #6.2. This also works. You can verify this solution
either manually or with Spin.

(g)

n0, n1, 1 w0, n1, 1 c0, n1,□ ℓ0, n1,□

n0, w1, 1

n0, c1,□

n0, ℓ1,□

w0, w1, 1 c0, w1,□ ℓ0, w1,□

w0, c1,□

w0, ℓ1,□

n0 c ? 1 c0

c ! 1

n1

c ? 1

c1

c ! 1

n0 c ? 1 c0

c ! 1
n1 n1 n1

c ? 1

n0

c1

c ! 1

n0

(h) None of the state of the above automaton is of the form (c0, c1, σ) where σ ∈ {□, 1}.
This implies that both processes cannot be in their critical sections at the same
time.

