
Prof. Javier Esparza Technical University of Munich
Philipp Czerner Chair for Foundations of Software Reliability

Automata and Formal Languages
Winter Term 2023/24 – Exercise Sheet 7

Exercise 7.1.
Let val : {0, 1}∗ → N be the function that associates to every word w ∈ {0, 1}∗ the
number val(w) represented by w in the least significant bit first encoding.

(a) Give a transducer that doubles numbers, i.e. a transducer accepting

L1 = {[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = 2 · val(x)} .

(b) Give an algorithm that takes k ∈ N as input, and that produces a transducer Ak

accepting

Lk =
{

[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = 2k · val(x)
}

.

Hint: use (a) and consider operations seen in class.
(c) Give a transducer for the addition of two numbers, i.e. a transducer accepting

{[x, y, z] ∈ ({0, 1} × {0, 1} × {0, 1})∗ | val(z) = val(x) + val(y)} .

(d) For every k ∈ N>0, let

Xk = {[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = k · val(x)} .

Sketch an algorithm that takes as input transducers A and B, accepting respec-
tively Xa and Xb for some a, b ∈ N>0, and that produces a transducer C accepting
Xa+b.

(e) Let k ∈ N>0. Using (b) and (d), how can you build a transducer accepting Xk?
(f) Show that the following language has infinitely many residuals, and hence that it

is not regular: {
[x, y] ∈ ({0, 1} × {0, 1})∗ | val(y) = val(x)2

}
.

Solution.
(a) Let [x1x2 · · ·xn, y1y2 · · · yn] ∈ ({0, 1} × {0, 1})n where n ≥ 2. Multiplying a binary

number by two shifts its bits and adds a zero. For example, the word[
10110
01011

]

belongs to the language since it encodes [13, 26]. Thus, we have val(y) = 2 · val(x)
if and only if y1 = 0, xn = 0, and yi = xi−1 for every 1 < i ≤ n. From this
observation, we construct a transducer that

• tests whether the first bit of y is 0,

https://www7.in.tum.de/~esparza/
https://www.tum.de/
https://nicze.de/philipp/
https://www.cs.cit.tum.de/en/tcs/main/
https://www.cs.cit.tum.de/en/tcs/lehre/wintersemester-2023-2024/automaten-und-formale-sprachen/

• tests whether y is consistent with x, by keeping the last bit of x in memory,
• accepts [x, y] if the last bit of x is 0.

Note that words [ε, ε] and [0, 0] both encode the numerical values [0, 0]. Therefore,
they should also be accepted since 2 · 0 = 0. We obtain the following transducer:

0

1

[
0
0

]

[
1
0

]

[
0
0

]

[
1
0

][
0
1

]

[
1
1

]
[hard] The initial state can be merged with state 0 as they have the same outgoing
transitions.

(b) We construct A0 as the following transducer accepting {[x, y] ∈ ({0, 1}× {0, 1})∗ :
y = x}:

[
0
0

]
,
[

1
1

]
Let A1 be the transducer obtained in (a). For every k > 1, we define Ak =
Join(Ak−1, A1). A simple inductions show that L(Ak) = Lk for every k ∈ N.

(c) We construct a transducer that computes the addition by keeping the current carry
bit. Consider some tuple [x, y, z] ∈ {0, 1}3 and a carry bit r. Adding x, y and r
leads to the bit

z = (x + y + r) mod 2. (1)

Moreover, it yields a new carry bit r′ such that r′ = 1 if x + y + r > 1 and r′ = 0
otherwise. The following table identifies the new carry bit r′ of the tuples that
satisfy (1): 0

0
0

0

0
1

0

1
0

0

1
1

1

0
0

1

0
1

1

1
0

1

1
1

r = 0 0 x x 0 x 0 1 x
r = 1 x 0 1 x 1 x x 1

We construct our transducer from the above table:

q0

q1

[
1
1
0

] [
0
0
1

]

[
0
0
0

]
,

[
0
1
1

]
,

[
1
0
1

]

[
0
1
0

]
,

[
1
0
0

]
,

[
1
1
1

]

(d) We construct a transducer C that, intuitively, feeds its input to both A and B, and
then feed the respective outputs of A and B to a transducer performing addition.
More formally, let A = (QA, {0, 1}, δA, q0A, FA), B = (QB, {0, 1}, δB, q0B, FB), and
let D = (QD, {0, 1}, δD, q0D, FD) be the transducer for addition obtained in (c).
We define C as C = (QC , {0, 1}, δC , q0C , FC) where

• QC = QA ×QB ×QD,
• q0C = (q0A, q0B, q0D),
• FC = FA × FB × FD,

and

δC((p, p′, p′′), [x, z]) = {(q, q′, q′′) : ∃y, y′ ∈ {0, 1}

s.t. p
[x,y]−−→A q, p′ [x,y′]−−−→B q′ and p′′ [y,y′,z]−−−−→D q′′}.

(e) Let ℓ = ⌈log2(k)⌉. There exist c0, c1, ..., cℓ ∈ {0, 1} such that k = c0 · 20 + c1 · 21 +
... + cℓ · 2ℓ. Let I = {0 ≤ i ≤ ℓ : ci = 1}. Note that k = ∑

i∈I 2i. Therefore,
we may use transducer Ai from (b) for each i ∈ I, and combine these transducers
using (d).

(f) For every n ∈ N>0, let

un =
[
0n1
0n0

]
and vn =

[
0n−10
0n−11

]
.

Let i, j ∈ N>0 be such that i ̸= j. We claim that Lui ̸= Luj . We have

uivi =
[
0i10i

02i1

]
and ujvi =

[
0j10i

0i+j1

]
.

Therefore, uivi encodes [2i, 22i], and uivj encodes [2j , 2i+j]. We observe that uivi

belongs to the language since 22i = (2i)2. However, ujvi does not belong to the
language since 2i+j ̸= 22j = (2j)2.

Exercise 7.2.
Let L1 = {bba, aba, bbb} and L2 = {aba, abb}.

(a) Give an algorithm for the following operation:

Input: A fixed-length language L ⊆ Σk described explicitly as a set of words.
Output: State q of the master automaton over Σ such that L(q) = L.

(b) Use the previous algorithm to build the states of the master automaton for L1 and
L2.

(c) Compute the state of the master automaton representing L1 ∪ L2.
(d) Identify the kernels ⟨L1⟩, ⟨L2⟩, and ⟨L1 ∪ L2⟩.

Solution. (a)

Input: A fixed-length language L ⊆ Σk described explicitely by a set of words.
Output: State q of the master automaton over Σ such that L(q) = L.

1 add-lang(L):
2 if L = ∅ then
3 return q∅
4 else if L = {ε} then
5 return qε

6 else
7 for ai ∈ Σ do
8 Lai ← {u | aiu ∈ L}
9 si ← add-lang(Lai)

10 return make(s1, s2, ..., sn)

(b) Executing add-lang(L1) yields the following computation tree:

add-lang({bba, aba, bbb})

make(add-lang({ba}), add-lang({ba, bb}))

make(add-lang(∅), add-lang({a})) make(add-lang(∅), add-lang({a, b}))

make(add-lang({ε}), add-lang(∅)) make(add-lang({ε}), add-lang({ε}))q∅

q∅qε

q∅

qε qε

2

3

4

5

6

The table obtained after the execution is as follows:

Ident. a-succ b-succ
2 qε q∅
3 q∅ 2
4 qε qε

5 q∅ 4
6 3 5

Executing add-lang(L2) yields the following computation tree:

add-lang({aba, abb})

make(add-lang({ba, bb}), add-lang(∅))

make(add-lang(∅), add-lang({a, b}))

make(add-lang({ε}), add-lang({ε}))

q∅

q∅

qε qε

4

5

7

The table obtained after the execution is as follows:

Ident. a-succ b-succ
7 5 q∅
4 qε qε

5 q∅ 4

The resulting master automaton fragment is:

qε q∅

24

35

76

L1
L2

a, b

a, b

b

a

a, b

b

a

b

a

ab a

b

(c) Let us first adapt the algorithm for intersection to obtain an algorithm for union:

Input: States p and q of same length of the master automaton.
Output: State r of the master automaton such that L(r) = L(p) ∪ L(q).

1 union(p, q):
2 if G(p, q) is not empty then
3 return G(p, q)
4 else if p = q∅ and q = q∅ then
5 return q∅
6 else if p = qε or q = qε then
7 return qε

8 else
9 for ai ∈ Σ do

10 si ← union(pai , qai)
11 G(p, q)← make(s1, s2, ..., sn)
12 return G(p, q)

Executing union(6, 7) yields the following computation tree:

union(6, 7)

make(union(3, 5), union(5, q∅))

make(union(q∅, q∅), union(2, 4)) make(union(q∅, q∅), union(4, q∅))

make(union(qε, qε), union(q∅, qε)) make(union(qε, q∅), union(qε, q∅))q∅

qε qε

q∅

qε qε

4

5

4

5

8

The table obtained after the execution is as follows:

Ident. a-succ b-succ
8 5 5
5 q∅ 4
4 qε qε

The new fragment of the master automaton is:

qε q∅

24

35

76

10

L1
L2

L1 ∪ L2

a, b

a, b

b

a

a, b

b

a

b

a

ab b

a

a, b

[hard] Note that union could be slightly improved by returning q whenever p = q, and
by updating G(q, p) at the same time as G(p, q).

(d) The kernels are:

⟨L1⟩ = L1,

⟨L2⟩ = L2,

⟨L1 ∪ L2⟩ = {ba, bb}.

Exercise 7.3.
We define the language of a Boolean formula φ over variables x1, . . . , xn as:

L(φ) = {a1a2 · · · an ∈ {0, 1}n : the assignment x1 7→ a1, . . . , xn 7→ an satisfies φ}.

(a) Give a polynomial-time algorithm that takes as input a DFA A recognizing a
language of length n, and returns a Boolean formula φ such that L(φ) = L(A).

(b) Give an exponential-time algorithm that takes a Boolean formula φ as input, and
returns a DFA A recognizing L(φ).

Solution.
(a) The algorithm takes as input a state of the master automaton and the length of

the language it recognizes, and recursively constructs a formula as follows:

Input: state q recognizing a language of length n
Output: formula φq such that L(φq) = L(q)

1 DFAtoFormula(q, n):
2 if G(q) is not empty then
3 return G(q)
4 if q = q∅ then
5 return false
6 else if q = qϵ then
7 return true
8 else
9 φ0 ← DFAtoFormula(q0, n− 1)

10 φ1 ← DFAtoFormula(q1, n− 1)
11 φq ← (¬x1 ∧ φ0) ∨ (x1 ∧ φ1)
12 G(q)← φq

13 return G(q)

Observe that the parameter n is needed to identify the variable at line 11.
Our algorithm takes as input a table with the state identifiers and successors of
all the descendants of q (i.e., the fragment of the master automaton starting at
q). This is a polynomial time algorithm because we compute φq′ once for every
descendant q′ of q.
Note that this algorithm could be improved by adding an else that checks if q0 = q1

before the last else:

1 else if q0 = q1 then
2 φ← DFAtoFormula(q0, n− 1)
3 φq ← φ
4 G(q)← φq

5 return G(q)

(b) Given a formula φ over variables x1, . . . , xn, we write φ[xi/true] and φ[xi/false]
to denote the formulas obtained by replacing all occurrences of xi in φ by true and
false, respectively. We have that L(φ[x1/false]) = L(φ)0 and L(φ[x1/true]) =
L(φ)1. This yields the following algorithm:

Input: formula φ over variables x1, . . . , xn, total number of variables n, k
initially equal to 1

Output: state q such that L(φ) = L(q)
1 FormulatoDFA(φ, n, k):
2 if G(φ) is not empty then
3 return G(φ)
4 if φ = true then
5 return qε

6 else if φ = false then
7 return q∅
8 else
9 r0 ← FormulatoDFA(φ[xk/false], n, k + 1)

10 r1 ← FormulatoDFA(φ[xk/true], n, k + 1)
11 G(φ)← make(r0, r1)
12 return G(φ)

Puzzle exercise 7.4.
Let n ∈ N. Construct an NFA N = (Q, Σ, δ, Q0, F) with O(n) states, s.t. the shortest
word in Σ∗ \ L(N) has length at least 2n.

Notes: The puzzle exercises cover advanced material and are not directly relevant to
the exam. No model solutions will be provided. You can get feedback on your solution
by sending it to me (Zulip or mail), or coming to my office in person (MI 03.11.037).
Solution (tutors only). We choose Σ := {0, 1, #}. The goal is for N to accept the
language

Σ∗ \ {w0#...#wl : w0, ..., wl ∈ {0, 1}n, (wi)2 = i, l = 2n − 1}
where (w)2 denotes the value of w in least-significant bit first encoding. For example,
(0101)2 = 5. We first construct a DFA D for the language of the RE r := 0n(#(0 +
1)n)∗#1n. Consider the set of regular expressions

R :={0i(#(0 + 1)n)∗#1n : i ∈ {0, ..., n}}
∪ {(0 + 1)i(#(0 + 1)n)∗#1n + 1i : i ∈ {0, ..., n}}
∪ {(0 + 1)i(#(0 + 1)n)∗#1n : i ∈ {1, ..., n}}
∪ {∅}

https://zulip.in.tum.de/#narrow/dm/3245

Clearly, the languages generated by this set contain L(r) and are closed under taking
residual languages, so we can define D := (R, Σ, δ, r, {r ∈ R : ε ∈ L(r)}), with δ(r, a) :=
r′ for a ∈ Σ, where r′ ∈ R is some RE with L(r′) = L(r)a. Note that D has 3n ∈ O(n)
states.

We then construct an NFA N ′, which looks as follows:

1

0

1

0
#

0

1

1#

0

0, 1

Σ

Σn−1

Σn

1

0

Σ

Σ

The edges labelled with Σn and Σn−1 must be replaced by a sequence of states, so
this NFA has O(n) states in total. It accepts all words in the language {w0#...#wl :
w0, ..., wl ∈ {0, 1}n ∧ ∃i.(wi)2 ̸= (wi+1)2}.

Finally, we obtain N s.t. L(N) = L(D)∪L(N ′), which can be done by putting N ′ and
the complement of D “side-by-side”, so it has O(n) states as well.

