
Prof. Javier Esparza Technical University of Munich
Philipp Czerner Chair for Foundations of Software Reliability

Automata and Formal Languages
Winter Term 2023/24 – Exercise Sheet 6

Exercise 6.1.
(a) Build the automata Bp and Cp for the word pattern p = mammamia.
(b) How many transitions are taken when reading t = mami in Bp and Cp?
(c) Let n > 0. Find a text t ∈ {a, b}∗ and a word pattern p ∈ {a, b}n such that testing

whether p occurs in t takes n transitions in Bp and 2n − 1 transitions in Cp.
Solution.

(a) Ap :

0 1 2 3 4 5 6 7 8

a, i, m

m a m m a m i a

Bp :

0 0, 1 0, 2 0, 1, 3 0, 1, 4 0, 2, 5 0, 1, 3, 6 0, 7 0, 8

a, i

m a

m

i

m

a, i

m

a

i

a

m

i

m

a, i

i

a

m

a

i

m

a, i

m

Cp :

https://www7.in.tum.de/~esparza/
https://www.tum.de/
https://nicze.de/philipp/
https://www.cs.cit.tum.de/en/tcs/main/
https://www.cs.cit.tum.de/en/tcs/lehre/wintersemester-2023-2024/automaten-und-formale-sprachen/


0 1 2 3 4 5 6 7 8

a, i; R

m; R a; R

i, m; S

m; R

a, i; S

m; R

a, i; S

a; R

i, m; S

m; R

a, i; S

i; R

a, m; S

a; R

i, m; S

a, i, m; S

(b) Four transitions taken in Bp: {0} m−→ {0, 1} a−→ {0, 2} m−→ {0, 1, 3} i−→ {0}.

Six transitions taken in Cp: 0 m−→ 1 a−→ 2 m−→ 3 i−→ 1 i−→ 0 i−→ 0.
(c) t = an−1b and p = an. The automata Bp and Cp are as follows:

Bp:

0 0, 1 0, 1, 2 0, 1, ..., n
a a a

b

b

b

b

a

Cp:

0 1 2 n − 1 n
a; R a; R a; R

b; R

b; S b; S a, b; S

a; R

The runs over t on Bp and Cp are respectively:

{0} a−→ {0, 1} a−→ {0, 1, 2} a−→ · · · a−→ {0, 1, ..., n − 1} b−→ {0} ,

and
0 a−→ 1 a−→ 2 a−→ · · · a−→ (n − 1) b−→ (n − 2) b−→ (n − 3) b−→ · · · b−→ 0 .

Exercise 6.2.
In order to make pattern-matching robust to typos we want to include also “similar”
words in our results. For this we consider words with a small Levenshtein-distance
(edit-distance) “similar”.

We transform a word w to a new word w′ using the following operations (with ai, b ∈
Σ):



• replace (R): a1 . . . ai−1aiai+1 . . . al → a1 . . . ai−1bai+1 . . . al

• delete (D): a1 . . . ai−1aiai+1 . . . al → a1 . . . ai−1εai+1 . . . al

• insert (I): a1 . . . ai−1aiai+1 . . . al → a1 . . . ai−1aibai+1 . . . al

The Levenshtein-distance (denoted ∆(w, w′)) of w and w′ is the minimal number of
operations (R,D,I) needed to transform w into w′. We denote with ∆L,i = {w ∈ Σ∗ |
∃w′ ∈ L. ∆(w′, w) ≤ i} the language of all words with edit-distance at most i to some
word of L.

(a) Compute ∆(become, bekommen) and ∆(become, werden).
(b) Let p be the pattern ABBA. Construct an NFA-ϵ locating the pattern or variations

of it with edit-distance 1.
(c) Prove the following statement: If L is a regular language, then ∆L,n is a regular

language.
Solution.

(a) ∆(become, bekommen) = 3, ∆(become, werden) = 5.
(b) We use the automaton Ap for pattern p = ABBA and duplicate it carefully in

order to allow up to one “mistake”.

q0 q1 q2 q3 q4

p0 p1 p2 p3 p4

A, B

A B B A

A B B A

A, B A, B A, B A, B A, B
ε, B ε, A ε, A ε, B

(c) Let M = (Q, Σ, δ, q0, F ) be a DFA for L. We obtain an NFA-ϵ N for ∆L,n by
adding n “error-levels”. Formally:

N = (Q × [0, n], Σ, δ′, (q0, 0), F × [0, n])

with

δ′ = {((q, i), a, (p, i)) | q, p ∈ Q ∧ i ≤ n ∧ a ∈ Σ ∧ δ(q, a) = p} no change
∪ {((q, i), ε, (p, i + 1)) | q, p ∈ Q ∧ i < n ∧ (∃a ∈ Σ. δ(q, a) = p)} delete
∪ {((q, i), a, (q, i + 1)) | q ∈ Q ∧ i < n ∧ a ∈ Σ} insert
∪ {((q, i), b, (p, i + 1)) | q, p ∈ Q ∧ i < n ∧ (∃a ∈ Σ \ {b}. δ(q, a) = p)} replace

Let us prove that ∆L,n = L(N).

∆L,n ⊆ L(N). If w ∈ ∆L,n, it means that there is w′ ∈ L such that ∆(w′, w) =
k ≤ n, or in other words, starting from the word w′, we can obtain w by
applying k “mistakes” (delete, insert, replace). As w′ ∈ L (accepted by M)
and as the 0-level of N is a copy of M , note that w′ has a run in N that
reaches a final state (qf , 0). By construction of the automaton N , there is a



run of the word w that follows the run of w′ where each "mistake" can be seen
as moving to the next error-level, using the corresponding transition from δ′

(delete, insert, replace) depending on a mistake. It is easy to see that if the
word w′ reaches a final state (qf , 0) in N , then w can reach (qf , k), and thus
w ∈ L(N).

L(N) ⊆ ∆L,n. If w ∈ L(N), this means there is a run of w in N that reaches a
final state (qf , k) ∈ F × [0, n]. Intuitively, for each transition of that run that
changes the level, we modify w so that it “stays in the same level”. Formally,
we check the nature of the transition that changes the level and modify w as
follows:
(i) If (p, i) a−→ (p, i + 1) is an insert edge, this occurrence of the letter a will
be removed from w.
(ii) If (p, i) a−→ (q, i + 1) is a replace edge, and there exists a (p, i) b−→ (q, i)
edge, for some letter b, then we replace this occurrence of a in w with b.
(iii) If (p, i) ϵ−→ (q, i+1) is a delete edge, and there exists a (p, i) a−→ (q, i) edge,
for some letter a, then we add the letter a at this place in w.
Denote the obtained word by w′. It is easy to see that w′ is obtained from w
by applying mistakes (delete, insert, replace) k times, as in the run of w there
are exactly k transitions that change the level. Therefore, ∆(w′, w) ≤ k ≤ n.
Moreover, it is easy to see that if w reaches (qf , k), then w′ reaches (qf , 0).
As the 0-level is a copy of M , then w′ ∈ L. To summarize, there exists w′ ∈ L
such that ∆(w′, w) ≤ n, that is, w ∈ ∆L,n.

Exercise 6.3.
Consider transducers whose transitions are labeled by elements of (Σ∪{ε})× (Σ∗ ∪{ε}).
Intuitively, each transition reads one or zero letter and writes a word of arbitrary length.
Such a transducer can be used to perform operations on strings, e.g. upon reading
"singing in the rain” it could write Singing In The Rain.

Sketch such ε-transducers for the following operations, each of which is informally
defined by means of three examples. For each example, when the transducer reads the
string on the left, it should write the string on the right. You may assume that the
alphabet Σ consists of {a, b, . . . , z, A, B, . . . , Z}, a whitespace symbol, and an end-of-line
symbol. Moreover, you may assume that every string ends with an end-of-line symbol
and contains no other occurrence of the end-of-line symbol.

(a)

Input Output
Automata and Formal Languages AFL
Technical University of Munich TUM
Max Planck Institute MPI

(b) For this exercise, Σ is extended with {, , .}.

Input Output
Ada Lovelace Lovelace, A.
Alan Turing Turing, A.
Donald Knuth Knuth, D.



(c) For this exercise, Σ is extended with {0, 1, . . . , 9, (, ), +}. We want to transform
phone-numbers into a normal form, where they are prefixed with a country code.

Input Output
004989273452 +49 89 273452
(00)4989273452 +49 89 273452
273452 +49 89 273452
2 7 3 4 5 2 +49 89 273452
498949 +49 89 498949
+49 89 498949 +49 89 498949

Solution.
(a)

[A, A], [B, B], . . . , [Z, Z]

[a, ε], [b, ε], . . . , [z, ε], [␣, ε]

[EOL, EOL]

(b)

...

A

Z

A′

...

Z ′

[A, ε]

[Z, ε]

[a, ε], [b, ε], . . . , [z, ε]

[a, ε], [b, ε], . . . , [z, ε]

[␣, ε]

[␣, ε]

[A, A], [B, B], . . . , [Z, Z]
[a, a], [b, b], . . . , [z, z]

[A, A], [B, B], . . . , [Z, Z]
[a, a], [b, b], . . . , [z, z]

[EOL, ,␣A.EOL]

[EOL, ,␣Z.EOL]

(c)



[(, ε] [0, ε] [0, ε]

[), ε]
[0, ε]

[0, ε]

[4, +4] [9, 9␣] [8, 8] [9, 9␣]

[0, 0], [1, 1], . . . , [9, 9], [␣, ε]

[EOL, EOL]

[1, +49␣89␣1], . . . , [9, +49␣89␣9]

[+, ε]

[␣, ε]


