
Prof. Javier Esparza Technical University of Munich
Philipp Czerner Chair for Foundations of Software Reliability

Automata and Formal Languages
Winter Term 2023/24 – Exercise Sheet 5

Exercise 5.1.
Consider the following NFAs A, B and C:

p0

p1

q0

q1 q2

q3 r0

r1 r2

r3

a

a b

a

b
b

b

a

a

a, b

a

b a

b

a, b

a

b

a
a

b

a

b

(a) Use algorithm UnivNFA to determine whether L(B) = {a, b}∗ and L(C) = {a, b}∗.
(b) For D ∈ {B, C}, if L(D) ̸= {a, b}∗, use algorithm InclNFA to determine whether

L(A) ⊆ L(D).
Solution.

(a) The trace of the execution for NFA B is as follows:
Iter. Q W

0 ∅ {{q0}}

1 {{q0}} {{q1, q2}}

2 {{q0}, {q1, q2}} {{q2, q3}}

3 {{q0}, {q1, q2}, {q2, q3}} {{q3}}

At the fourth iteration, the algorithm encounters state {q3} which is non final, and
hence it returns false. Therefore, L(B) ̸= {a, b}∗.
The trace of the execution for NFA C is as follows:

https://www7.in.tum.de/~esparza/
https://www.tum.de/
https://nicze.de/philipp/
https://www.cs.cit.tum.de/en/tcs/main/
https://www.cs.cit.tum.de/en/tcs/lehre/wintersemester-2023-2024/automaten-und-formale-sprachen/

Iter. Q W

0 ∅ {{r0, r1}}

1 {{r0, r1}} {{r0, r2, r3}, {r1, r2}}

2 {{r0, r1}, {r0, r2, r3}} {{r1, r2}}

3 {{r0, r1}, {r0, r2, r3}, {r1, r2}} {{r0}, {r2}}

3 {{r0, r1}, {r0, r2, r3}, {r1, r2}, {r0}} {{r2}}

3 {{r0, r1}, {r0, r2, r3}, {r1, r2}, {r0}, {r2}} ∅
At the fifth iteration, W becomes empty and hence the algorithm returns true.
Therefore L(C) = {a, b}∗.

(b) The trace of the algorithm for A and B is as follows:
Iter. Q W

0 ∅ {[p0, {q0}]}

1 {[p0, {q0}]} {[p1, {q0}]}

2 {[p0, {q0}], [p1, {q0}]} {[p0, {q1, q2}]}

3 {[p0, {q0}], [p1, {q0}], [p0, {q1, q2}]} ∅
At the third iteration, W becomes empty and hence the algorithm returns true.
Therefore L(A) ⊆ L(B).

Exercise 5.2.
Let A = (Q, Σ, δ, q0, F) be a DFA. For any S ⊆ Q, a word w ∈ Σ∗ is said to be a
synchronizing word for S in A if reading w from any state of S leads to a common
state, i.e., if there exists q ∈ Q such that for every p ∈ S, p

w−→ q. We now define the
synchronizing word problem defined as follows:

Given: DFA A and a subset S of the states of A
Decide: If there exists a synchronizing word for S in A

(a) Given states p, q ∈ Q, design a polynomial time algorithm for testing if there is a
synchronizing word for {p, q} in A.

(b) Let A = (Q, Σ, δ, q0, F) be a DFA. Show that there is a synchronizing word for Q
in A if and only if for every p, q ∈ Q, there is a synchronizing word for {p, q} in A.

By (a) and (b), we can conclude that there is a polynomial time algorithm for the special
case of the synchronizing word problem where the subset S is the set of all states of A.
However, for the general case, we have the following result.

(c) [hard] Show that the synchronizing word problem is PSPACE-hard. You may as-
sume that the following problem, called the DFA intersection problem is PSPACE-
hard:

Given: DFAs A1, A2, ..., An all over a common alphabet Σ
Decide: If there exists a word w such that w ∈

⋂
1≤i≤n

L(Ai)

Solution.
(a) By definition, w is a synchronizing word for {p, q} in A if and only if there is a state

r such that r = δ(p, w) = δ(q, w). Consider the following algorithm: For every
state r ∈ Q, we construct two DFAs Ap

r = (Q, Σ, δ, p, r) and Aq
r = (Q, Σ, δ, q, r).

Notice that w is a synchronizing word for {p, q} in A if and only if there exists a
state r such that w ∈ L(Ap

r) ∩ L(Aq
r). Hence, the polynomial time algorithm to

test if there is a synchronizing word for {p, q} in A is as follows: For each r ∈ Q,
construct the DFAs Ap

r and Aq
r and test if L(Ap

r) ∩ L(Aq
r) ̸= ∅ by means of the

pairing construction and the emptiness check for DFAs. If for at least one state
r, this test is true, then there is a synchronizing word for {p, q} in A; otherwise,
there is none.
To analyse the running time, note that we are doing at most |Q| pairing con-
structions and emptiness checks, each of which takes polynomial time. Hence, the
overall running time is also a polynomial in the size of the given input.

(b) (⇒) : Suppose w is a synchronizing word for Q in A. Let p, q ∈ Q. By definition
of a synchronizing word, δ(p, w) = δ(q, w). Hence, w is also a synchronizing word
for {p, q} in A.

(⇐) : Suppose for every p, q ∈ Q, there is a synchronizing word wp,q for the subset
{p, q}. We now construct a synchronizing word wS for every subset S ⊆ Q, by
induction on |S|, the size of S.
For the base case, note that if |S| = 1, then ϵ is a synchronizing word for S.
Assume that we have shown that whenever |S| ≤ i for some number i ≥ 1, there is a
synchronizing word for S. Suppose S is a subset such that |S| = i+1. Hence, |S| ≥
2 and let S = {p1, p2, ..., pi+1}. By assumption, there is a synchronizing word wp1,p2

for the subset {p1, p2}. Let S′ = {δ(p1, wp1,p2), δ(p2, wp1,p2), ..., δ(pi+1, wp1,p2)}.
Since wp1,p2 is a synchronizing word for {p1, p2}, it follows that |S′| ≤ i. By
induction hypothesis, there is a synchronizing word wS′ for the subset S′. It is
then easy to see that the word wp1,p2wS′ is a synchronizing word for S in A.
Hence, the induction step is complete.
It then follows that there is a synchronizing word for the set Q in A.

(c) We give a polynomial-time reduction from the DFA intersection problem to the
synchronizing word problem, which will prove that the latter is PSPACE-hard.
Let A1, A2, ..., An be n DFAs all over a commmon alphabet Σ such that each
Ai = (Qi, Σ, δi, qi

0, Fi). In polynomial time, we have to construct a DFA B and a
subset S of the states of B so that

S has a synchronizing word in B if and only if ⋂
1≤i≤n

L(Ai) ̸= ∅

Let us construct B = (QB, ΣB, δB, qB
0 , FB) and S as follows.

• The set QB will consist all the states of all the Ai’s and in addition, it will
have two new states p and t. More formally, Q = ⋃

1≤i≤n
Qi ∪ {p, t} where p

and t are two new states.
• The alphabet ΣB will be Σ ∪ {#} where # is a fresh letter not present in Σ.
• The transition function δB will behave in the following way:

– If q ∈ Qi for some i and a ∈ Σ, then δB(q, a) = δi(q, a). Intuitively, if q is
a state of some Ai and a is not #, then the transition function behaves
in exactly the same way as δi.

– If q ∈ Fi for some i, then δB(q, #) = p. Intuitively, upon reading a #
from some accepting state of some Ai, we move to p.

– If q ∈ Qi \ Fi for some i, then δB(q, #) = t. Intuitively, upon reading a
from some rejecting state of Ai, we move to t.

– If q ∈ {p, t} and a ∈ ΣB, then δB(q, a) = q. Intuitively, the states p and
t have a self-loop corresponding to any letter.

• We set qB
0 to be p and FB to be {p}.

• Finally we set S to be the subset of states given by {q1
0, q2

0, ..., qn
0 , p}.

Suppose w ∈
⋂

1≤i≤n
L(Ai). By construction, it then follows that w# is a synchro-

nizing word for S in B.

Suppose w is a synchronizing word for S in B. By definition of w and by construc-
tion of B, it follows that

δB(q1
0, w) = δB(q2

0, w) = ... = δB(qn
0 , w) = δB(p, w) = p

Notice that to move from the state q1
0 to p, it is necessary to read a # at some

point. Hence, w must contain an occurrence of #. Split w as w′#w′′ so that w′

has no occurrences of #. For each i, let qi = δB(qi
0, w′). By construction of B, it

follows that for each i, qi ∈ Qi. Suppose for some i, qi /∈ Fi. It then follows that
δB(qi, #w′′) = t, which contradicts the fact that δB(qi

0, w#w′′) = p. Hence, qi ∈ Fi

for every i and this implies that w′ is a word which is accepted by all of the Ai’s.

Exercise 5.3.
Let Σ be a finite alphabet and let L ⊆ Σ∗ be a language accepted by an NFA A. Give
an NFA-ε for each of the following languages:

(a)
√

L = {w ∈ Σ∗ | ww ∈ L},
(b) [hard] Cyc(L) = {vu ∈ Σ∗ | uv ∈ L}.

Solution. Let A = (Q, Σ, δ, Q0, F) be an NFA that accepts L. Without loss of generality,
we can assume that Q0 = {q0} and F = {qf } for some states q0 and qf .

(a) To begin with we have the following observation:
w ∈

√
L if and only if there exists a state p ∈ Q such that p ∈ δ(q0, w)

and qf ∈ δ(p, w).
With this observation in mind, let us do the following construction: For every
state p ∈ Q, construct two NFAs A1

p, A2
p defined as A1

p = (Q, Σ, δ, q0, p) and A2
p =

(Q, Σ, δ, p, qf). Notice that we can now rephrase the above observation as:
w ∈

√
L if and only if there exists a state p ∈ Q such that w ∈ L(A1

p) ∩
L(A2

p).

Let B be any NFA for the language ∪p∈Q L(A1
p)∩L(A2

p). By the above observation,
it follows that B recognizes

√
L. Note that B can be obtained by pairing operations

on the NFAs from the set {Ai
p : p ∈ Q, i ∈ {1, 2}} and each element in this set

can be easily constructed from A. It follows then that we can explicitly construct
B from A.

(b) Once again we begin with an observation:
w = w1w2...wn ∈ Cyc(L) if and only if there exists 1 ≤ i ≤ n and p ∈ Q
such that qf ∈ δ(p, w1w2...wi) and p ∈ δ(q0, wi+1wi+2...wn).

Indeed, suppose for some word w, such an i and p exist. Then, notice that if we set
v = w1w2...wi and u = wi+1...wn, then uv ∈ L and so w = vu ∈ Cyc(L). On the
other hand if w ∈ Cyc(L), then there is a partition of w into some v = w1w2...wi

and u = wi+1...wn such that uv ∈ L. Since uv ∈ L, there must be an accepting
run of uv in A. Let p be the state reached after reading u along this run. It follows
then that p ∈ δ(q0, wi+1...wn) and qf ∈ δ(p, w1w2...wi).
With this observation, we can do the following: For every state p ∈ Q, construct
the two NFAs A1

p and A2
p as defined in the subproblem a). Now, notice that

w ∈ Cyc(L) if and only if there exists p ∈ Q such that w ∈ L(A2
p)L(A1

p),
i.e., w is in the concatenation of the languages of A2

p and A1
p for some p.

Let B be any NFA for the regular language ∪p∈Q L(A2
p)L(A1

p). By the above
observation, it follows that B recognizes Cyc(L). Note that given the NFAs A2

p

and A1
p, we can obtain an NFA-ϵ for their concatenation by simply adding an ϵ

transition from the final state of A2
p to the initial state of A1

p. By using additional
pairing operations, we can explicitly construct B from A.

Puzzle exercise 5.4.
Let M = (Q, Σ, δ, q0, F) denote a DFA. We introduce a new type of finite automaton,
which we call flipping DFAs. Syntactically, they are the same as DFAs, but they read
words differently: after reading a letter a ∈ Σ while in a state q, the automaton moves
to state q′ := δ(q, a) and then modifies δ by swapping the incoming transitions of states
q and q′ (i.e. every transition that previously pointed to q now points to q′ and vice
versa). It accepts if in a final state.

Prove or disprove that every language accepted by a flipping DFA is regular.
Notes: The puzzle exercises cover advanced material and are not directly relevant to

the exam. No model solutions will be provided. You can get feedback on your solution
by sending it to me (Zulip or mail), or coming to my office in person (MI 03.11.037).

https://zulip.in.tum.de/#narrow/dm/3245

