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Exercise 4.1.
Let A and B be respectively the following NFAs:

q0

q1 q2

q3 q4

q5

a, b

a

a

a

b

a

b

ba

b

a

a, b
a

b

q0

q1 q2

q3 q4

q5
b

b

c

c

a, b, c

a

a

b

a, b, c

a

(a) Compute the coarsest stable refinements (CSR) of A and B.
(b) Construct the quotients of A and B with respect to their CSRs.
(c) Show that

L(A) = {w ∈ {a, b}∗ : w contains an occurrence of the subword ab}
L(B) = {w ∈ {a, b, c}∗ : w starts with bc and ends with a}

(d) Are the automata obtained in (b) minimal?
Solution.

(1) (a)
Iter. Block to split Splitter New partition

0 — — {q0, q1, q2, q3, q4}, {q5}
1 {q0, q1, q2, q3, q4} (b, {q5}) {q0}, {q1, q2, q3, q4}, {q5}
2 none, partition is stable — —

The CSR is P = {{q0}, {q1, q2, q3, q4}, {q5}}.
(b)
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(c) The automaton A and the automaton obtained from (b) accept the same
language. Notice that in the automaton from (b), there is an accepting run
for a word w which visits the final state exactly once if and only if w ∈ Σ∗ab.
Since there are self-loops at the final state for both a and b, it follows that
the language of this automaton is Σ∗abΣ∗.

(d) Yes. By (c), the language accepted by A is Σ∗abΣ∗. An NFA with one
state can only accept ∅, {ε}, a∗, b∗ and {a, b}∗. Suppose there exists an NFA
A′ = ({q0, q1}, {a, b}, δ, Q0, F ) accepting L(A). Without loss of generality, we
may assume that q0 is initial. A′ must respect the following properties:

• q0 ̸∈ F , since ε ̸∈ L(A),
• q1 ∈ F , since L(A) ̸= ∅,
• q1 ̸∈ Q0, since ε ̸∈ L(A),
• δ(q0, a) is non-empty, otherwise it is impossible to accept ab. Further,

q1 /∈ δ(q0, a), otherwise it is possible to accept a. Hence, δ(q0, a) = {q0}.
• q1 ∈ δ(q0, b), otherwise it is impossible to accept ab.

This implies that A′ accepts b, yet b ̸∈ L(A). Therefore, no NFA with two
states can accept L(A).

(2) (a)

Iter. Block to split Splitter New partition
0 — — {q0, q1, q2, q3, q4}, {q5}
1 {q0, q1, q2, q3, q4} (a, {q5}) {q0, q1, q3}, {q2, q4}, {q5}
2 {q2, q4} (b, {q0, q1, q3}) {q0, q1, q3}, {q2}, {q4}, {q5}
3 {q0, q1, q3} (c, {q4}) {q0, q1}, {q3}, {q2}, {q4}, {q5}
4 {q0, q1} (c, {q2}) {q0}, {q1}, {q3}, {q2}, {q4}, {q5}

The CSR is P = {{q0}, {q1}, {q2}, {q3}, {q4}, {q5}}.
(b) The automaton remains unchanged.
(c) ⊇) Suppose w starts with bc and ends with a. If w = w1w2...wn, then

q0, q1, ..., q2, ...︸ ︷︷ ︸
n−3 times

, q5 is a valid accepting run for w.

⊆) Let w ∈ L(B). Note that every outgoing edge from q0 is labelled by a b
and goes to either q1 or q3 and every outgoing edge from both q1 and q3 is
labelled by a c. It follows that any path from q0 to q5 must involve reading
a bc at the beginning. Further, all the incoming edges to q5 are labelled by
an a. It follows that any path from q0 to q5 must involve reading an a at the



end. Since w ∈ L(B), it then follows that w must begin with bc and end with
a.

(d) No. The following NFA with four states accepts the same language.
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Exercise 4.2.
Let Σ = {a, b}. For any n ∈ N, let Ln := {wwR : w ∈ Σn}, where wR is the reverse of w,
e.g. (abc)R = cba. It is known that every NFA (and hence also every DFA) recognizing
Ln must have at least 2n states. We refine this bound here for DFAs.

(a) Construct A2, the minimal DFA for L2.
(b) What are the residuals of L2? Assign them to the states of the DFA you gave for

(a).
(c) Give a construction for a DFA that accepts Ln.
(d) How many states does the minimal DFA for Ln contain, for n ≥ 2?

Solution.
(a) The trap state is omitted for the sake of readability:
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(b) We have L2 = {aaaa, abba, baab, bbbb}. We compute the residuals Lw for all words
w by increasing length of w.

• |w| = 0: Lε = {aaaa, abba, baab, bbbb}.
• |w| = 1: La = {aaa, bba} and Lb = {aab, bbb}.
• |w| = 2: Laa = {aa}, Lab = {ba}, Lba = {ab} and Lbb = {bb}.
• |w| = 3: Laaa = {a} = Labb, and Lbaa = {b} = Lbbb.

• |w| ≥ 4: Lw =
{

{ε} if w ∈ Lk,

∅ otherwise.



(c) Notice that Lk+1 is simply aLka + bLkb for any k ≥ 2. Using this observation,
we generalize the construction given in (a) for k = 2, by induction on k. The
base case of k = 2 has been done already. Suppose we have already constructed
Ak = (Qk, {a, b, }, δk, qk

0 , qk
f ) with the property that it has exactly one initial state,

one final state and one trap state trapk (Note that A2 satisfies this property). We
now construct Ak+1 = (Qk+1, {a, b, }, δk+1, qk+1

0 , qk+1
f ) as follows:

The set of states Qk+1 is taken to be {qk+1
0 , qk+1

f , trapk+1}∪((Qk\{trapk})×{1, 2}),
where qk+1

0 , qk+1
f , trapk+1 are three fresh states. Intuitively we add a fresh initial

state, a fresh final state, a fresh trap state and take two copies of the states of Ak

while removing trapk.
The transition function δk+1 is defined as follows:

• δk+1(qk+1
0 , a) = (qk

0 , 1) and δk+1(qk+1
0 , b) = (qk

0 , 2). Intuitively, upon reading
an a (resp. b) from the initial state of Ak+1, we move to the initial state of
the first (resp. second) copy of Ak.

• δk+1(qk
f , a) = qk+1

f and δk+1(qk
f , b) = qk+1

f . Intuitively, upon reading an a
(resp. b) from the final state of the first (resp. second) copy of Ak+1, we move
to the final state of of Ak+1.

• δk+1((q, i), a) = p where p = (δk(q, a), i) if δk(q, a) ̸= trapk and otherwise
p = trapk+1. Intuitively, within a copy of Ak, we follow the transitions of Ak

and stay within that copy itself if the state that we are supposed to go to is
not the trap state of Ak. Otherwise, instead of going to the trap state of Ak,
we go to the trap state of Ak+1.

Assuming that Ak recognizes Lk, we can then show that Ak+1 recognizes Lk+1.
By induction, this will show that our construction is correct.

(d) Note that if f(k) is the number of states that Ak has, (where Ak is the DFA
defined in the previous subproblem), then f(2) = 11 and f(k + 1) = 2(f(k) − 1) +
3 = 2f(k) + 1. Solving this, we get f(k) = 3 · 2k − 1. We claim that Ak is a
minimal DFA, by induction on k. The base case of k = 2 is already done. For
the induction step, suppose p, q are two distinct states of Ak+1. We will show that
LAk+1(p) ̸= LAk+1(q).

Notice that the initial state qk+1
0 recognizes only strings of length 2k + 2 and the

final state qk+1
f recognizes only ϵ, whereas the other states of Ak+1 do not recognize

any of these strings. This implies that the languages of the initial and the final
states are different from the rest. Similarly, the language of the trap state is also
different from the rest.
Hence, we can assume that p = (p′, i) and q = (q′, j) for some p′, q′ ∈ Qk and some
i, j ∈ {1, 2}. If i ̸= j, then p and q belong to different copies of Ak. Let i = 1
and j = 2. Notice that LAk+1(p) = LAk

(p′)a and LAk+1(q) = LAk
(q′)b. Hence

LAk+1(p) ̸= LAk+1(q).
The only case left is when i = j. In this case notice that LAk+1(p) = LAk

(p′)c and
LAk+1(q) = LAk

(q′)c where c is either a or b, depending on whether i is 1 or 2. By
induction hypothesis, Ak is the minimal DFA for Lk and so LAk

(p′) and LAk
(q′)

are different. Hence LAk+1(p) ̸= LAk+1(q), thereby concluding the proof.



Exercise 4.3.
Consider the following DFAs A, B, C and D:
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(a) Use pairings to decide algorithmically whether L(A) ∩ L(B) ⊆ L(C).
(b) Use pairings to decide algorithmically whether L(D) ⊆ L(A) ∩ L(B).

Solution.
(a) We first build the pairing accepting L(A) ∩ L(B). Note that it is not necessary to

explore the implicit trap states of A and B as they cannot lead to final states in
the pairing. We obtain:

p0, q0 p1, q1 p1, q0
a

b

a, b

a

Now, we build the pairing accepting (L(A)∩L(B))\L(C), or equivalently (L(A)∩
L(B)) ∩ L(C), from the above automaton and C. Recall that the complement of
C is the following automaton:

r0 r1

b

a

a, b

Once again, it is not necessary to explore the implicit trap states of the automaton
for L(A)∩L(B). The following automaton is the pairing accepting (L(A)∩L(B))∩
L(C):

p0, q0, r0 p1, q1, r1 p1, q0, r1
a

b

a, b

a

Since the above automaton does not contain final states, its language is empty and
hence L(A) ∩ L(B) ⊆ L(C).

(b) This time we want to check whether L(D) \ (L(A) ∩ L(B)) is empty. That is, we
need to construct the pairing L(D) ∩ (L(A) ∩ L(B)). Thus, it is not necessary to
explore the implicit trap states of the automaton D, but it is necessary for A and



B, as their trap states may be part of final states in the pairing. First we obtain
the automaton accepting (L(A) ∩ L(B)):

p0, q0 p1, q1 p1, q0
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b
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Now, we build the pairing accepting L(D) ∩ (L(A) ∩ L(B)). We obtain:

s0, p0, q0 s1, t, q1
b

a, b

Since the above automaton contains a final state, it means that there is a word in
the language L(D) \ (L(A) ∩ L(B)), that is, there is a word accepted by D, but
not by A and B. For example, any word starting with a letter b. Therefore, it is
not true that L(D) ⊆ L(A) ∩ L(B).

Exercise 4.4.
In this exercise we consider four (AI-generated) proof attempts. For each proof attempt,
determine whether the proof is correct and mark the errors it contains (if any).

Claim 1. Let X denote a language. Then X∗ is regular.

Proof attempt. To prove that the Kleene closure (star) of a language X, denoted as X∗,1

is regular, we can use a straightforward approach. If X is any language, and we take its2

Kleene closure X∗, then X∗ is regular. This proof is based on the properties of regular3

languages and closure properties.4

• Basis: The basis for the proof lies in the definition of regular languages. The5

empty set ∅ and the set containing the empty string {ε} are both regular. Any6

single character from the alphabet, say {a}, is also regular.7

• Inductive Step: Now, we can use closure properties of regular languages to show8

that if X is regular, then X∗ is regular. The closure properties state that regular9

languages are closed under certain operations, including union, concatenation, and10

Kleene closure.11

– Union: If L1 and L2 are regular languages, then their union L1 ∪ L2 is also12

regular.13

– Concatenation: If L1 and L2 are regular languages, then their concatenation14

L1L2 is also regular.15

– Kleene Closure: If L is a regular language, then L∗ is also regular.16



Since X is any language, it can be empty or non-empty, finite or infinite, regular or17

non-regular. It doesn’t matter because X∗ is defined as the set of all possible strings18

that can be formed by concatenating zero or more strings from X.19

So, by the closure property of the Kleene closure operation, X∗ is regular.20

In summary, regardless of whether X is regular or not, the Kleene closure X∗ is always21

regular because regular languages are closed under the Kleene closure operation.22

Claim 2. Let X denote a language. Then X∗ is not regular in general. (In other words:
There exists an X s.t. X∗ is not regular.)

Proof attempt. To disprove that the Kleene closure (star) of a language X, denoted as1

X∗, is not necessarily regular, we can use a counterexample. There exist languages for2

which their Kleene closure is not regular. One classic example is the language L =3

{anbn : n ≥ 0}, which is well-known to be non-regular. Let’s show that L∗ is also4

non-regular:5

• Base Case: L contains the strings ε, ab, aabb, aaabbb, ....6

• Inductive Step: Now, let’s consider L∗, the Kleene closure of L. It consists of7

all possible strings that can be formed by concatenating zero or more strings from8

L. L∗ includes strings like ε, ab, aaabbb, aabbabbb, etc., which can have any number9

of ’a’s and ’b’s but must have an equal number of ’a’s and ’b’s. This is because L10

itself is the set of strings with an equal number of ’a’s and ’b’s.11

L∗ contains not only the strings in L but also strings that do not have an equal number12

of ’a’s and ’b’s, and this set of strings is not regular. For example, the string apbq, where13

p ̸= q, is not in L and is not regular. If you concatenate such strings in L∗, you will14

obtain non-regular strings.15

Therefore, L∗ is not regular because it contains non-regular strings. Since L∗ is a16

subset of X∗ (where X is any language), this demonstrates that X∗ is not necessarily17

regular.18

Claim 3. For a word w with length divisible by 3, let f(w) denote the word you obtain
by deleting the middle third. For example f(aba) = aa and f(abbabaaab) = abbaab. Let
L denote a regular language. Then f(L) is regular.

Proof attempt. To prove that the language f(L) is regular for a given regular language L,1

we can construct a finite automaton that recognizes it. We can use the fact that regular2

languages are closed under certain operations, including the operation of deleting a3

contiguous portion of a string, as long as it is done consistently.4

Let’s define a finite automaton to recognize f(L). This automaton will have states5

that represent the possible “states” of the string as we process it.6

The automaton will work as follows:7

(a) Start in the initial state.8

(b) For each symbol in the input string, the automaton will transition to a new state.9

Initially, the automaton stores the characters in the first third of the string. As it10

reads more symbols, it continues to build the first third.11

(c) When it reaches the last third of the input string, it transitions to an accepting12

state, indicating that the entire first two-thirds of the string have been processed.13



(d) Any remaining characters in the last third of the input string are ignored, as they14

are not part of f(w).15

The automaton will have a state for each possible combination of characters in the16

first third of the string. Since L is regular, there is a finite number of such combinations,17

and the automaton can have a finite number of states.18

Since we can construct a finite automaton to recognize f(L), we can conclude that19

f(L) is regular. This is based on the closure property of regular languages under the20

operation of deleting a contiguous portion of a string while processing it.21

Claim 4. For a word w with length divisible by 3, let f(w) denote the word you obtain
by deleting the middle third. For example f(aba) = aa and f(abbabaaab) = abbaab. Let
L denote a regular language. Then f(L) is not regular in general.

Proof attempt. To disprove that the language f(L) is necessarily regular for a regular1

language L, we can provide a counterexample. We will show that there exists a regular2

language L for which f(L) is not regular.3

Consider the regular language L = {a3n : n ≥ 0}, which consists of strings composed4

of a multiple of 3 ’a’ symbols. This language is regular because it can be recognized by5

a simple finite automaton that checks for strings of the form a3n.6

Now, let’s look at the language f(L). This language contains words obtained by7

removing the middle third of strings in L. The middle third contains ’n’ ’a’ symbols.8

Therefore, f(L) consists of strings of the form a2n for n ≥ 0, which means it includes all9

strings with an even number of ’a’ symbols.10

However, the set of all strings with an even number of ’a’ symbols is not regular.11

This can be shown using the pumping lemma for regular languages. If you assume that12

f(L) is regular, then you would expect to be able to apply the pumping lemma to it,13

but it fails for such strings. You can’t divide these strings into substrings to satisfy the14

pumping lemma’s conditions because, after pumping, the number of ’a’s in the string15

will still be even, which violates the requirement for the language to be regular.16

Therefore, we’ve demonstrated that there exists a regular language L for which f(L)17

is not regular, which disproves the claim that f(L) is necessarily regular for all regular18

languages L.19

Solution. The four proofs above are all wrong.
(1) The first problem is starting an induction in line 5, without specifying what exactly

the parameters of the induction are. There is no mention of induction hypothesis,
and neither is it clear how one would go about proving Claim 1 with induction.
Overall, the whole induction in lines 5-16 is just a list of true statements, but they
are not connected to the actual statement the proof is trying to show.
There is also a minor mistake in line 7, it should read “any set containing a single
character from the alphabet is regular”.
Lines 17-19 simply restate that the claim is true, without providing justification.
In lines 20-22 there is the argument that the claim follows from regular languages
being closed under the Kleene start operation, which is nonsensical, as the closure
property applies only to regular languages.

(2) Again, the induction in line 6 lacks context. It is not clear how to use induction to
argue that a language is not regular. There is a small error in line 9 as aabbabbb /∈



L∗. In lines 10-11 the proof states that L is the set of strings with an equal number
of a and b, which is false; L is only a subset of that language. Additionally, it is
unclear in what sense this is an induction step.
Then in line 12 it is stated that L∗ contains words that have an unequal number
of a and b, which it does not. The statement in line 13 of “this set of strings is not
regular” is ambiguous, but assuming it applies to the language {w ∈ Σ∗ : |w|a ̸=
|w|b} it holds.
Then lines 13-15 state that particular words are not regular, which is nonsensical
(words cannot be irregular, only languages). This also invalidates the conclusion
in line 16. Finally, line 17 is obviously wrong as well, as L∗ ⊆ X∗ does not hold
for all X.

(3) Lines 2-4 are too vague (what does “consistently” mean) and lack justification. The
description in lines 7-15 is confused in multiple ways. Line 9 is imprecise. Line 10
assumes infinitely many states. Line 12 does not indicate how the automaton is
supposed to determine that it has reached the last third. Line 14 makes it seem
as though the last third is deleted, but it is supposed to be the middle third.
Lines 17-18 argue why it is possible to store the first third of the word using only
finitely many states, but the argument does not convince. The connection with a
language being regular is unclear. Lines 20-21 reference a closure property that
does not exist.

(4) Lines 5-6 argue in circular fashion. Apart from this, lines 1-10 are (surprisingly)
correctly reasoned. However, line 11 is wrong. Lines 14-16 do not provide justifi-
cation (and are also arguing a falsity).


