Automata and Formal Languages

Winter Term 2023/24 - Exercise Sheet 3

Exercise 3.1.

Analyse the residuals of the following languages. If there are finitely many of them, determine them; otherwise prove that there are infinitely many of them.
(a) $(a+b b c)^{*}$ over $\Sigma=\{a, b, c\}$,
(b) $(a a)^{*}$ over $\Sigma=\{a, b\}$,
(c) $\left\{a^{n} b^{n+1} \mid n \geq 0\right\}$ over $\Sigma=\{a, b\}$,
(d) $\left\{a^{2^{n}} \mid n \geq 0\right\}$ over $\Sigma=\{a\}$.

Exercise 3.2.

Let A and B be respectively the following DFAs:

(a) Compute the language partitions of A and B.
(b) Construct the quotients of A and B with respect to their language partitions.
(c) Give regular expressions for $L(A)$ and $L(B)$.

Exercise 3.3.

Given $n \in \mathbb{N}$, let $\operatorname{MSBF}(n)$ be the set of most-significant-bit-first encodings of n, i.e., the words that start with an arbitrary number of leading zeros, followed by n written in binary. For example:

$$
\operatorname{MSBF}(3)=0^{*} 11 \quad \text { and } \quad \operatorname{MSBF}(9)=0^{*} 1001 \quad \operatorname{MSBF}(0)=0^{*}
$$

Similarly, let $\operatorname{LSBF}(n)$ denote the set of least-significant-bit-first encodings of n, i.e., the set containing for each word $w \in \operatorname{MSBF}(n)$ its reverse. For example:

$$
\operatorname{LSBF}(6)=0110^{*} \quad \text { and } \quad \operatorname{LSBF}(0)=0^{*}
$$

For any $n \geq 2$, let $M_{n}=\left\{w \in\{0,1\}^{*} \mid w \in \operatorname{MSBF}(k)\right.$ and k is a multiple of $\left.n\right\}$ and $L_{n}=\left\{w \in\{0,1\}^{*} \mid w \in \operatorname{LSBF}(k)\right.$ and k is a multiple of $\left.n\right\}$.

In the following, let $p>2$ be any prime number.
(a) Prove that M_{p} and L_{p} have at least p many residuals.
(b) Give the minimal DFA A_{p} (with p states) for the language M_{p}.
(c) Prove that the NFA obtained by reversing the transitions of A_{p} and swapping the initial and final states is a DFA. Conclude that the minimal DFA for L_{p} has p states.

