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Exercise 3.1.
Analyse the residuals of the following languages. If there are finitely many of them,
determine them; otherwise prove that there are infinitely many of them.

(a) (a + bbc)∗ over Σ = {a, b, c},
(b) (aa)∗ over Σ = {a, b},
(c) {anbn+1 | n ≥ 0} over Σ = {a, b},
(d) {a2n | n ≥ 0} over Σ = {a}.

Solution.

(a) For (a + bbc)∗. We give the residuals as regular expressions: (a + bbc)∗ (residual
with respect to a); bc(a + bbc)∗ (residual with respect to b); c(a + bbc)∗ (residual
with respect to bb); ∅ (residual with respect to c). All other residuals are equal to
one of these four.

(b) For (aa)∗. We give the residuals as regular expressions: (aa)∗ (residual of ε); a(aa)∗

(residual of a); ∅ (residual of b). All other residuals are equal to one of these three.
(c) For {anbn+1 | n ≥ 0}. Note that for any 0 ≤ i < j, aibi+1 belongs to the language,

but ajbi+1 does not belong to the language. This implies that ai and aj have
different residuals and so there are infinitely many residuals.

(d) For {a2n | n ≥ 0}. Note that for any 0 ≤ i < j, a2i
a2i belongs to the language

because 2i + 2i = 2i+1, but a2i
a2j does not belong to the language because 2j <

2i + 2j < 2j + 2j = 2j+1. This implies that a2i and a2j have different residuals and
so there are infinitely many residuals.

Exercise 3.2.
Let A and B be respectively the following DFAs:
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(a) Compute the language partitions of A and B.
(b) Construct the quotients of A and B with respect to their language partitions.
(c) Give regular expressions for L(A) and L(B).

Solution.
(a) (1)

Iter. Block to split Splitter New partition
0 — — {C, F, I}, {A, B, D, E, G, H}
1 {A, B, D, E, G, H} (b, {A, B, D, E, G, H}) {C, F, I}, {B, E, H}, {A, D, G}
3 none, partition is stable — —

The language partition is Pℓ = {{A, D, G}, {B, E, H}, {C, F, I}}.
(2) The minimal automaton is given below:



[A]Pℓ
[B]Pℓ

[C]Pℓ

a, b

a, bb

a

(3) Σ2(aΣ2 + bΣ)∗

(b) (1)
Iter. Block to split Splitter New partition

0 — — {q0, q3}, {q1, q2, q4}
1 {q1, q2, q4} (b, {q1, q2, q4}) {q0, q3}, {q1}, {q2, q4}
2 {q2, q4} (a, {q0, q3}) {q0, q3}, {q1}, {q2}, {q4}
3 none, partition is stable — —

The language partition is Pℓ = {{q0, q3}, {q1}, {q2}, {q4}}.
(2) The minimal automaton is given below:

[q0]Pℓ
[q1]Pℓ

[q2]Pℓ
[q4]Pℓ

b

b

aa a

b
a, b

(3) (aa + bb)∗ or ((aa)∗(bb)∗)∗.

Exercise 3.3.
Given n ∈ N, let MSBF(n) be the set of most-significant-bit-first encodings of n, i.e.,
the words that start with an arbitrary number of leading zeros, followed by n written in
binary. For example:

MSBF(3) = 0∗11 and MSBF(9) = 0∗1001 MSBF(0) = 0∗

Similarly, let LSBF(n) denote the set of least-significant-bit-first encodings of n, i.e., the
set containing for each word w ∈ MSBF(n) its reverse. For example:

LSBF(6) = 0110∗ and LSBF(0) = 0∗

For any n ≥ 2, let Mn = {w ∈ {0, 1}∗ | w ∈ MSBF(k) and k is a multiple of n} and
Ln = {w ∈ {0, 1}∗ | w ∈ LSBF(k) and k is a multiple of n}.

In the following, let p > 2 be any prime number.



(a) Prove that Mp and Lp have at least p many residuals.
(b) Give the minimal DFA Ap (with p states) for the language Mp.
(c) Prove that the NFA obtained by reversing the transitions of Ap and swapping the

initial and final states is a DFA. Conclude that the minimal DFA for Lp has p
states.

Solution.
(a) For a word w ∈ {0, 1}∗, let msbf(w) denote the number n such that w ∈ MSBF(n).

Similarly, let lsbf(w) denote the number n such that w ∈ LSBF(n). Note that the
functions msbf and lsbf satisfy the following identities.

msbf(uv) = 2|v| · msbf(u) + msbf(v) (1)

lsbf(uv) = lsbf(u) + 2|u| · lsbf(v) (2)

First, let us show that Mp has at least p many residuals. For every 0 ≤ i < p, let ui

be a word such that msbf(ui) = i and |ui| = p−1. Note that such an ui exists since
the smallest encoding of i has at most p − 1 bits, and it can be extended to length
p − 1 by padding with zeros on the left. Let 0 ≤ k < p, and let ℓ = (p − i) mod p.
We have:

msbf(ukuℓ) = 2|uℓ| · msbf(uk) + msbf(uℓ) (by equation 1)
= 2p−1 · k + ((p − i) mod p)
≡ (k + (p − i)) mod p (by Fermat’s little theorem)
≡ k − i mod p

Let 0 ≤ i < j < p. We have uiuℓ ∈ Mp since msbf(uiuℓ) ≡ i − i mod p ≡ 0 mod p,
but we have ujuℓ ̸∈ Mp since msbf(ujuℓ) ≡ j − i mod p ̸≡ 0 mod p. Therefore, the
ui-residual and uj-residual of Mp are distinct. It follows that Mp has at least p
many residuals.
To show that Lp has at least p many residuals, we use the same technique, except
that we now let ui be a word such that lsbf(w) = i and |ui| = p − 1 and we use
equation 2 instead of 1.

(b) We now give a DFA Ap for Mp with p states. By the previous subproblem, Ap has
to be the minimal DFA for Mp. Ap is given by Ap = (Qp, {0, 1}, δp, 0, {0}) where

Qp = {0, 1, . . . , p − 1},

δp(q, b) = (2q + b) mod p for every q ∈ Qp and b ∈ {0, 1}.

By using equation 1 and by induction on the length of w, we can show that
δp(0, w) = q if and only if msbf(w) ≡ q mod p. It will then follow that Ap recognizes
Mp.

(c) Let Bp = (Qp, {0, 1}, δ′
p, 0, {0}) be the NFA obtained by reversing the transitions

of Ap and then swapping its initial and final states. Note that δ′
p(q, b) = {q′ :



δp(q′, b) = q}. Hence, to show that Bp is a DFA, it is enough to show that for
every b ∈ {0, 1}, the function δb

p : q 7→ δp(q, b) is bijective.

First, for every b ∈ {0, 1}, we will show that δb
p is injective. Fix a b ∈ {0, 1}.

Note that δb
p(q) = (2q + b) mod p. Suppose 2q1 + b ≡ (2q2 + b) mod p for some

q1, q2 ∈ Qp. Then 2(q1 − q2) ≡ 0 mod p and since p > 2 is a prime, this would
imply that q1 = q2. Hence, the function δb

p is indeed injective.
Further, note that any injective function from a finite set to itself must also be a
surjective function, i.e., the range of the function must be the entire finite set. It
follows then that δb

p is bijective for every b ∈ {0, 1} and this concludes the proof.


