Automata and Formal Languages
 Winter Term 2023/24 - Exercise Sheet 3

Exercise 3.1.

Analyse the residuals of the following languages. If there are finitely many of them, determine them; otherwise prove that there are infinitely many of them.
(a) $(a+b b c)^{*}$ over $\Sigma=\{a, b, c\}$,
(b) $(a a)^{*}$ over $\Sigma=\{a, b\}$,
(c) $\left\{a^{n} b^{n+1} \mid n \geq 0\right\}$ over $\Sigma=\{a, b\}$,
(d) $\left\{a^{2^{n}} \mid n \geq 0\right\}$ over $\Sigma=\{a\}$.

Solution.

(a) For $(a+b b c)^{*}$. We give the residuals as regular expressions: $(a+b b c)^{*}$ (residual with respect to $a) ; b c(a+b b c)^{*}($ residual with respect to $b) ; c(a+b b c)^{*}$ (residual with respect to $b b$); \emptyset (residual with respect to c). All other residuals are equal to one of these four.
(b) For $(a a)^{*}$. We give the residuals as regular expressions: $(a a)^{*}$ (residual of ε); $a(a a)^{*}$ (residual of a); (residual of b). All other residuals are equal to one of these three.
(c) For $\left\{a^{n} b^{n+1} \mid n \geq 0\right\}$. Note that for any $0 \leq i<j, a^{i} b^{i+1}$ belongs to the language, but $a^{j} b^{i+1}$ does not belong to the language. This implies that a^{i} and a^{j} have different residuals and so there are infinitely many residuals.
(d) For $\left\{a^{2^{n}} \mid n \geq 0\right\}$. Note that for any $0 \leq i<j, a^{2^{i}} a^{2^{i}}$ belongs to the language because $2^{i}+2^{i}=2^{i+1}$, but $a^{2^{i}} a^{2^{j}}$ does not belong to the language because $2^{j}<$ $2^{i}+2^{j}<2^{j}+2^{j}=2^{j+1}$. This implies that $a^{2^{i}}$ and $a^{2^{j}}$ have different residuals and so there are infinitely many residuals.

Exercise 3.2.

Let A and B be respectively the following DFAs:

(a) Compute the language partitions of A and B.
(b) Construct the quotients of A and B with respect to their language partitions.
(c) Give regular expressions for $L(A)$ and $L(B)$.

Solution.

(a) (1)

Iter.	Block to split	Splitter	New partition
0	-	-	$\{C, F, I\},\{A, B, D, E, G, H\}$
1	$\{A, B, D, E, G, H\}$	$(b,\{A, B, D, E, G, H\})$	$\{C, F, I\},\{B, E, H\},\{A, D, G\}$
3	none, partition is stable	-	-

The language partition is $P_{\ell}=\{\{A, D, G\},\{B, E, H\},\{C, F, I\}\}$.
(2) The minimal automaton is given below:

(3) $\Sigma^{2}\left(a \Sigma^{2}+b \Sigma\right)^{*}$
(b) (1)

Iter.	Block to split	Splitter	New partition
0	-	-	$\left\{q_{0}, q_{3}\right\},\left\{q_{1}, q_{2}, q_{4}\right\}$
1	$\left\{q_{1}, q_{2}, q_{4}\right\}$	$\left(b,\left\{q_{1}, q_{2}, q_{4}\right\}\right)$	$\left\{q_{0}, q_{3}\right\},\left\{q_{1}\right\},\left\{q_{2}, q_{4}\right\}$
2	$\left\{q_{2}, q_{4}\right\}$	$\left(a,\left\{q_{0}, q_{3}\right\}\right)$	$\left\{q_{0}, q_{3}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{4}\right\}$
3	none, partition is stable	-	-

The language partition is $P_{\ell}=\left\{\left\{q_{0}, q_{3}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{4}\right\}\right\}$.
(2) The minimal automaton is given below:

(3) $(a a+b b)^{*}$ or $\left((a a)^{*}(b b)^{*}\right)^{*}$.

Exercise 3.3.

Given $n \in \mathbb{N}$, let $\operatorname{MSBF}(n)$ be the set of most-significant-bit-first encodings of n, i.e., the words that start with an arbitrary number of leading zeros, followed by n written in binary. For example:

$$
\operatorname{MSBF}(3)=0^{*} 11 \quad \text { and } \quad \operatorname{MSBF}(9)=0^{*} 1001 \quad \operatorname{MSBF}(0)=0^{*}
$$

Similarly, let $\operatorname{LSBF}(n)$ denote the set of least-significant-bit-first encodings of n, i.e., the set containing for each word $w \in \operatorname{MSBF}(n)$ its reverse. For example:

$$
\operatorname{LSBF}(6)=0110^{*} \quad \text { and } \quad \operatorname{LSBF}(0)=0^{*}
$$

For any $n \geq 2$, let $M_{n}=\left\{w \in\{0,1\}^{*} \mid w \in \operatorname{MSBF}(k)\right.$ and k is a multiple of $\left.n\right\}$ and $L_{n}=\left\{w \in\{0,1\}^{*} \mid w \in \operatorname{LSBF}(k)\right.$ and k is a multiple of $\left.n\right\}$.

In the following, let $p>2$ be any prime number.
(a) Prove that M_{p} and L_{p} have at least p many residuals.
(b) Give the minimal DFA A_{p} (with p states) for the language M_{p}.
(c) Prove that the NFA obtained by reversing the transitions of A_{p} and swapping the initial and final states is a DFA. Conclude that the minimal DFA for L_{p} has p states.

Solution.

(a) For a word $w \in\{0,1\}^{*}$, let $\operatorname{msbf}(w)$ denote the number n such that $w \in \operatorname{MSBF}(n)$. Similarly, let $\operatorname{lsbf}(w)$ denote the number n such that $w \in \operatorname{LSBF}(n)$. Note that the functions msbf and lsbf satisfy the following identities.

$$
\begin{align*}
& \operatorname{msbf}(u v)=2^{|v|} \cdot \operatorname{msbf}(u)+\operatorname{msbf}(v) \tag{1}\\
& \operatorname{lsbf}(u v)=\operatorname{lsbf}(u)+2^{|u|} \cdot \operatorname{lsbf}(v) \tag{2}
\end{align*}
$$

First, let us show that M_{p} has at least p many residuals. For every $0 \leq i<p$, let u_{i} be a word such that $\operatorname{msbf}\left(u_{i}\right)=i$ and $\left|u_{i}\right|=p-1$. Note that such an u_{i} exists since the smallest encoding of i has at most $p-1$ bits, and it can be extended to length $p-1$ by padding with zeros on the left. Let $0 \leq k<p$, and let $\ell=(p-i) \bmod p$. We have:

$$
\begin{array}{rlr}
\operatorname{msbf}\left(u_{k} u_{\ell}\right) & =2^{\left|u_{\ell}\right|} \cdot \operatorname{msbf}\left(u_{k}\right)+\operatorname{msbf}\left(u_{\ell}\right) & \quad \text { (by equation 1) } \tag{byequation1}\\
& =2^{p-1} \cdot k+((p-i) \bmod p) \\
& \equiv(k+(p-i)) \bmod p & \text { (by Fermat's little theorem) } \\
& \equiv k-i \bmod p &
\end{array}
$$

Let $0 \leq i<j<p$. We have $u_{i} u_{\ell} \in M_{p}$ since $\operatorname{msbf}\left(u_{i} u_{\ell}\right) \equiv i-i \bmod p \equiv 0 \bmod p$, but we have $u_{j} u_{\ell} \notin M_{p}$ since $\operatorname{msbf}\left(u_{j} u_{\ell}\right) \equiv j-i \bmod p \not \equiv 0 \bmod p$. Therefore, the u_{i}-residual and u_{j}-residual of M_{p} are distinct. It follows that M_{p} has at least p many residuals.
To show that L_{p} has at least p many residuals, we use the same technique, except that we now let u_{i} be a word such that $\operatorname{lsbf}(w)=i$ and $\left|u_{i}\right|=p-1$ and we use equation 2 instead of 1 .
(b) We now give a DFA A_{p} for M_{p} with p states. By the previous subproblem, A_{p} has to be the minimal DFA for $M_{p} . A_{p}$ is given by $A_{p}=\left(Q_{p},\{0,1\}, \delta_{p}, 0,\{0\}\right)$ where

$$
\begin{aligned}
Q_{p} & =\{0,1, \ldots, p-1\}, \\
\delta_{p}(q, b) & =(2 q+b) \bmod p \text { for every } q \in Q_{p} \text { and } b \in\{0,1\} .
\end{aligned}
$$

By using equation 1 and by induction on the length of w, we can show that $\delta_{p}(0, w)=q$ if and only if $\operatorname{msbf}(w) \equiv q \bmod p$. It will then follow that A_{p} recognizes M_{p}.
(c) Let $B_{p}=\left(Q_{p},\{0,1\}, \delta_{p}^{\prime}, 0,\{0\}\right)$ be the NFA obtained by reversing the transitions of A_{p} and then swapping its initial and final states. Note that $\delta_{p}^{\prime}(q, b)=\left\{q^{\prime}\right.$:
$\left.\delta_{p}\left(q^{\prime}, b\right)=q\right\}$. Hence, to show that B_{p} is a DFA, it is enough to show that for every $b \in\{0,1\}$, the function $\delta_{p}^{b}: q \mapsto \delta_{p}(q, b)$ is bijective.
First, for every $b \in\{0,1\}$, we will show that δ_{p}^{b} is injective. Fix a $b \in\{0,1\}$. Note that $\delta_{p}^{b}(q)=(2 q+b) \bmod p$. Suppose $2 q_{1}+b \equiv\left(2 q_{2}+b\right) \bmod p$ for some $q_{1}, q_{2} \in Q_{p}$. Then $2\left(q_{1}-q_{2}\right) \equiv 0 \bmod p$ and since $p>2$ is a prime, this would imply that $q_{1}=q_{2}$. Hence, the function δ_{p}^{b} is indeed injective.
Further, note that any injective function from a finite set to itself must also be a surjective function, i.e., the range of the function must be the entire finite set. It follows then that δ_{p}^{b} is bijective for every $b \in\{0,1\}$ and this concludes the proof.

