Automata and Formal Languages

Winter Term 2023/24 - Exercise Sheet 2

Exercise 2.1.

Consider the regular expression $r=(a+a b)^{*}$.
(a) Convert r into an equivalent NFA- εA.
(b) Convert A into an equivalent NFA B. (It is not necessary to use algorithm NFA\&toNFA)
(c) Convert B into an equivalent DFA C.
(d) By inspecting B, give an equivalent minimal DFA D. (No algorithm needed).
(e) Convert D into an equivalent regular expression r^{\prime}.
(f) Prove formally that $L(r)=L\left(r^{\prime}\right)$.

Exercise 2.2.

Prove or disprove the following.
(a) If L_{1} and $L_{1} \cup L_{2}$ are regular, then L_{2} is regular.
(b) If L_{1} and $L_{1} \cap L_{2}$ are regular, then L_{2} is regular.
(c) If L_{1} and $L_{1} L_{2}$ are regular, then L_{2} is regular.
(d) If L^{*} is regular, then L is regular.

Exercise 2.3.

Recall that a nondeterministic automaton A accepts a word w if at least one of the runs of A on w is accepting. This is sometimes called the existential accepting condition. Consider the variant in which A accepts w if all runs of A on w are accepting (in particular, if A has no run on w then it accepts w). This is called the universal accepting condition and such automata will be referred to as a co-NFA.

Intuitively, we can visualize a co-NFA as executing all runs in parallel. After reading a word w, the automaton is simultaneously in all states reached by all runs labelled by w, and accepts if all those states are accepting.
(a) Suppose A_{1} and A_{2} are two co-NFA which accept languages L_{1} and L_{2} respectively. Let n_{1} and n_{2} be the number of states of A_{1} and A_{2} respectively. Show that there is a co-NFA B over $n_{1}+n_{2}$ states which accepts $L_{1} \cap L_{2}$.
(b) Give an algorithm that transforms a co-NFA into a DFA recognizing the same language. This shows that automata with universal accepting condition recognize the regular languages.

Let $\Sigma=\{a, b\}$. Given a word $w=a_{1} a_{2} \ldots a_{n}$ where each $a_{i} \in \Sigma$, let $w^{R}=a_{n} a_{n-1} \ldots a_{1}$ denote the reverse of w. For any $n \in \mathbb{N}$, consider the language $L_{n}:=\left\{w w^{R} \in \Sigma^{2 n} \mid w \in\right.$ $\left.\Sigma^{n}\right\}$.
(c) Give a co-NFA with $O\left(n^{2}\right)$ states that recognizes L_{n}.
(d) Prove that every NFA (and hence also every DFA) recognizing L_{n} has at least 2^{n} states.

Puzzle exercise 2.4.

Let Σ denote an alphabet and let $L \subseteq\left(\Sigma^{3}\right)^{*}$ denote a regular language where the length of each word is a multiple of three. Prove or disprove that $L^{\prime}:=\left\{w_{1} \ldots w_{n} w_{2 n+1} \ldots w_{3 n}\right.$: $\left.w_{1} \ldots w_{3 n} \in L\right\}$ is regular.

Notes: The puzzle exercises cover advanced material and are not directly relevant to the exam. No model solutions will be provided. You can get feedback on your solution by sending it to me (Zulip or mail), or coming to my office in person (MI 03.11.037).

