Exercise 2.1.

Consider the regular expression \(r = (a + ab)^* \).

(a) Convert \(r \) into an equivalent NFA-\(\epsilon \) \(A \).

(b) Convert \(A \) into an equivalent NFA \(B \). (It is not necessary to use algorithm \(NFA_{\epsilon} toNFA \))

(c) Convert \(B \) into an equivalent DFA \(C \).

(d) By inspecting \(B \), give an equivalent minimal DFA \(D \). (No algorithm needed).

(e) Convert \(D \) into an equivalent regular expression \(r' \).

(f) Prove formally that \(L(r) = L(r') \).

Solution.

(a)

<table>
<thead>
<tr>
<th>Iter.</th>
<th>Automaton obtained</th>
<th>Rule applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(p \xrightarrow{(a + ab)^*} q)</td>
<td>Initial automaton from reg. expr.</td>
</tr>
<tr>
<td>2</td>
<td>(p \xrightarrow{\varepsilon} q \xrightarrow{\varepsilon} r)</td>
<td>(p \xrightarrow{\varepsilon} q)</td>
</tr>
<tr>
<td>3</td>
<td>(p \xrightarrow{\varepsilon} q \xrightarrow{\varepsilon} r)</td>
<td>(p \xrightarrow{r_1 + r_2} q)</td>
</tr>
</tbody>
</table>
(b)

<table>
<thead>
<tr>
<th>Iter.</th>
<th>Automaton obtained</th>
<th>Rule applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>where $\sigma \in \Sigma \cup {\varepsilon}$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initial states that can reach a final state through ε-transitions are made final.
Remove ε-transitions.
Remove states non reachable from initial state.

(c) States \(\{p\} \) and \(\{q, r\} \) have the exact same behaviours, so we can merge them. Indeed, both states are final and \(\delta(\{p\}, \sigma) = \delta(\{q, r\}, \sigma) \) for every \(\sigma \in \{a, b\} \). We obtain:

(e) Iter. Automaton obtained Rule applied

<table>
<thead>
<tr>
<th>Iter.</th>
<th>Automaton obtained</th>
<th>Rule applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Add single initial and final states.</td>
</tr>
<tr>
<td>2</td>
<td>$i \xrightarrow{a} q \xrightarrow{b} ba \xrightarrow{\varepsilon} f$</td>
<td>$i \xrightarrow{\varepsilon} p \xrightarrow{a} q \xrightarrow{b} \varepsilon \xrightarrow{f}$</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>$i \xrightarrow{a} q \xrightarrow{\varepsilon + b} f$</td>
<td>$i \xrightarrow{a + ba} p \xrightarrow{r_1 + r_2} q$</td>
</tr>
<tr>
<td>4</td>
<td>$i \xrightarrow{\varepsilon} f$</td>
<td>$i \xrightarrow{a} q \xrightarrow{\varepsilon + b} f$</td>
</tr>
<tr>
<td>5</td>
<td>$i \xrightarrow{\varepsilon + a(a + ba)^*(\varepsilon + b)} f$</td>
<td>$i \xrightarrow{a + ba} p \xrightarrow{r_1 + r_2} q$</td>
</tr>
<tr>
<td>6</td>
<td>$\varepsilon + a(a + ba)^*(\varepsilon + b)$</td>
<td>Extract regular expression from the unique transition.</td>
</tr>
</tbody>
</table>
Let us first show that \(a(a + ba)^i = (a + ab)^i a \) for every \(i \in \mathbb{N} \). We proceed by induction on \(i \). If \(i = 0 \), then the claim trivially holds. Let \(i > 0 \). Assume the claims holds at \(i - 1 \). We have
\[
\begin{align*}
a(a + ba)^i &= a(a + ba)^{i-1}(a + ba) \\
&= (a + ab)^{i-1}a(a + ba) \quad \text{(by induction hypothesis)} \\
&= (a + ab)^{i-1}(aa + aba) \quad \text{(by distributivity)} \\
&= (a + ab)^{i-1}(a + ab)a \quad \text{(by distributivity)} \\
&= (a + ab)^i a.
\end{align*}
\]
This implies that
\[
a(a + ba)^* = (a + ab)^* a. \tag{1}
\]
We may now prove the equivalence of the two regular expressions:
\[
\begin{align*}
\varepsilon + a(a + ba)^*(\varepsilon + b) &= \varepsilon + (a + ab)^*a(\varepsilon + b) \quad \text{(by (1))} \\
&= \varepsilon + (a + ab)^*(a + ab) \quad \text{(by distributivity)} \\
&= \varepsilon + (a + ab)^+ \\
&= (a + ab)^*.
\end{align*}
\]

Exercise 2.2.
Prove or disprove the following.

(a) If \(L_1 \) and \(L_1 \cup L_2 \) are regular, then \(L_2 \) is regular.
(b) If \(L_1 \) and \(L_1 \cap L_2 \) are regular, then \(L_2 \) is regular.
(c) If \(L_1 \) and \(L_1 L_2 \) are regular, then \(L_2 \) is regular.
(d) If \(L^* \) is regular, then \(L \) is regular.

Solution. All of these claims are false. Let \(\Sigma = \{a\} \). Note that since there are an uncountable number of languages over \(\Sigma \) which contain the words \(\varepsilon \) and \(a \), but only a countable number of DFAs, it follows that there must be a non-regular language \(L' \) such that \(\varepsilon, a \in L' \).

(a) Let \(L_1 = \Sigma^* \) and \(L_2 = L' \). Since \(L_1 \cup L_2 = \Sigma^* \), the claim is false.
(b) Let \(L_1 = \emptyset \) and \(L_2 = L' \). Since \(L_1 \cap L_2 = \emptyset \), the claim is false.
(c) Let \(L_1 = \Sigma^* \) and \(L_2 = L' \). Since \(\varepsilon \in L' \), it follows that \(L_1 L_2 = \Sigma^* \) and so the claim is false.
(d) Let \(L = L' \). Since \(a \in \Sigma \), it follows that \(L^* = \Sigma^* \) and so the claim is false.
Exercise 2.3.

Recall that a nondeterministic automaton A accepts a word w if at least one of the runs of A on w is accepting. This is sometimes called the existential accepting condition. Consider the variant in which A accepts w if all runs of A on w are accepting (in particular, if A has no run on w then it accepts w). This is called the universal accepting condition and such automata will be referred to as a co-NFA.

Intuitively, we can visualize a co-NFA as executing all runs in parallel. After reading a word w, the automaton is simultaneously in all states reached by all runs labelled by w, and accepts if all those states are accepting.

(a) Suppose A_1 and A_2 are two co-NFA which accept languages L_1 and L_2 respectively. Let n_1 and n_2 be the number of states of A_1 and A_2 respectively. Show that there is a co-NFA B over $n_1 + n_2$ states which accepts $L_1 \cap L_2$.

(b) Give an algorithm that transforms a co-NFA into a DFA recognizing the same language. This shows that automata with universal accepting condition recognize the regular languages.

Let $\Sigma = \{a, b\}$. Given a word $w = a_1 a_2 ... a_n$ where each $a_i \in \Sigma$, let $w^R = a_n a_{n-1} ... a_1$ denote the reverse of w. For any $n \in \mathbb{N}$, consider the language $L_n := \{ww^R \in \Sigma^{2n} \mid w \in \Sigma^n\}$.

(c) Give a co-NFA with $O(n^2)$ states that recognizes L_n.

(d) Prove that every NFA (and hence also every DFA) recognizing L_n has at least 2^n states.

Solution.

(a) Let $A_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$ be the given two co-NFAs. Let B be the co-NFA given by $B = (Q_1 \cup Q_2, \Sigma, \delta_1 \cup \delta_2, I_1 \cup I_2, F_1 \cup F_2)$. Notice that if $|Q_1| = n_1$ and $|Q_2| = n_2$, then the number of states of B is $n_1 + n_2$. Further, note that if ρ is a run of B on a word w if and only if ρ is either a run of A_1 on w or ρ is a run of A_2 on w. It follows that all runs of B on a word w are accepting if and only if all runs of A_1 and A_2 on w are accepting. Hence, B accepts $L_1 \cap L_2$.

(b) Let $A = (Q, \Sigma, \delta, Q_0, F)$ be a co-NFA. We do the same powerset construction that we do for NFAs to get a DFA $B = (Q, \Sigma, \Delta, q_0, F)$ except we now set $F = \{Q' \in Q : Q' \subseteq F\}$. All the other elements are defined in exactly the same way as is done for the powerset construction.

(c) For any $n \in \mathbb{N}$ and any $1 \leq i \leq n$, let

$$L_n^i := \{w : w \in \Sigma^{2n}, \text{ the } i^{th} \text{ letter of } w \text{ and the } (2n-i+1)^{th} \text{ letter of } w \text{ are the same} \}$$

Notice that $L_n = \bigcap_{1 \leq i \leq n} L_n^i$. By a), it follows that if we give a co-NFA of size $O(n)$ for each L_n^i, then we have a co-NFA of size $O(n^2)$ for L_n.

We now construct a co-NFA of size $O(n)$ for each L_n^i, as given by the following illustration.
First, the automaton has a sequence of states \(q_0, q_1, \ldots, q_{i-1} \) with transitions \(q_j \xrightarrow{a,b} q_{j+1} \) for every \(0 \leq j \leq i - 2 \). Intuitively, these states are simply used to count the number of letters read so far. Hence, upon reaching \(q_j \) for any \(j \leq i - 1 \), we know that we have read \(j \) letters. From here, the automaton has two transitions \(q_{i-1} \xrightarrow{a} q_i \) and \(q_{i-1} \xrightarrow{b} q_i \). Intuitively, these two transitions help us remember the \(i^{th} \) letter of the word.

Then, we have a collection of states \(q^a_{i+1}, q^b_{i+1}, \ldots, q^a_{2n-i}, q^b_{2n-i} \) along with the transitions, \(q^a_j \xrightarrow{a,b} q^{a}_{j+1} \) and \(q^b_j \xrightarrow{a,b} q^{b}_{j+1} \) for every \(i \leq j \leq 2n - i - 1 \). Intuitively, these states are simply used to count the number of letters starting from the \(i^{th} \) letter, while simultaneously remembering the \(i^{th} \) letter. Hence, upon reaching \(q^a_j \) (resp. \(q^b_j \)) for any \(j \leq 2n - i \), we know that we have read \(j \) letters and that the \(i^{th} \) letter that we read was an a (resp. a b). From here, we have two transitions \(q^a_{2n-i} \xrightarrow{a} q_{2n-i+1} \) and \(q^b_{2n-i} \xrightarrow{b} q_{2n-i+1} \). Intuitively, these two transitions force that the \((2n - i + 1)^{th} \) letter that we read is the same as the \(i^{th} \) letter that we read before.

Finally, we have a sequence of states \(q_{2n-i+1}, q_{2n-i+2}, \ldots, q_{2n} \) with transitions \(q_j \xrightarrow{a,b} q_{j+1} \) for every \(2n - i + 1 \leq j \leq 2n \). Once again, these states are simply used to count the number of letters read and we can show that if we reach \(q_j \) for any \(j \leq 2n \), then we have read \(j \) letters. We then set the only final state to be \(q_{2n} \).

(d) Suppose \(A \) is some NFA which recognizes \(L_n \). For every \(ww^R \in \Sigma^{2n} \), \(A \) has at least one accepting run on \(ww^R \). Let \(q_w \) be the state reached by this run after reading the prefix \(w \) (If there are multiple such runs, pick any one of them). We claim that if \(w \neq w' \), then \(q_w \neq q_{w'} \). Notice that this claim implies that there are at least \(2^n \) states in \(A \) and so it simply suffices to prove this claim.

Suppose \(q_w = q_{w'} \) for some pair \(w \neq w' \). Hence, after reading \(w' \) the automaton \(A \) can reach \(q_w \). By definition of \(q_w \), we know that there is a run on the word \(w^R \) starting from \(q_w \) and ending in a final state. This implies that the automaton accepts \(w'w^R \), because first the automaton can reach \(q_w \) by reading \(w' \) and then from \(q_w \) it can reach a final state by reading \(w^R \). But \(w'w^R \notin L_n \), contradicting the fact that \(A \) recognizes \(L_n \).

Puzzle exercise 2.4.

Let \(\Sigma := \{a, b\} \). We say that a regular expression \(r \) is elllone, if \(r \) is of the form \(st, s^*, x, \epsilon, \emptyset, as + bt \), or \(as + bt + \epsilon \), where \(s, t \) are elllone REs and \(x \in \Sigma \).

For example, \((a + b)^* \) and \(ab + b(ab + b \emptyset + \epsilon)^* \) are elllone, but \((aa + ab)^* \) and \(a + b(ab + (ba)^* + \epsilon) \) are not.

Prove that there is a regular language \(L \), s.t. no elllone RE \(r \) with \(L(r) = L \) exists.
Hint: Consider the language L of words that contain an even number of a or an even number of b.