Prof. Javier Esparza Technical University of Munich
Philipp Czerner Chair for Foundations of Software Reliability

Automata and Formal Languages
Winter Term 2023/24 — Exercise Sheet 2

Exercise 2.1.

Consider the regular expression r = (a + ab)™.

(a) Convert r into an equivalent NFA-¢ A.

(b) Convert A into an equivalent NFA B. (It is not necessary to use algorithm NFActoNFA)

(

(d
(e) Convert D into an equivalent regular expression r’.
(f) Prove formally that L(r) = L(r').

Solution.

(a)

Iter.| Automaton obtained Rule applied

1 _>@ (a+ab) Initial automaton from reg. expr.
OO

a+ ab i

)

c¢) Convert B into an equivalent DFA C.
) By inspecting B, give an equivalent minimal DFA D. (No algorithm needed).
)

O-=b-@
@ T+ 7o @
$

https://www7.in.tum.de/~esparza/
https://www.tum.de/
https://nicze.de/philipp/
https://www.cs.cit.tum.de/en/tcs/main/
https://www.cs.cit.tum.de/en/tcs/lehre/wintersemester-2023-2024/automaten-und-formale-sprachen/

O——O

1 §
a b
71 71
0 ® O
(b)
Iter.| Automaton obtained Rule applied
O——0O0———0
g
1 e o
O O O
g
where 0 € ¥ U {e}
Initial states that can reach a final
2 state through e-transitions are made

final.

Remove e-transitions.
Remove states non reachable from
initial state.

(d) States {p} and {g,r} have the exact same behaviours, so we can merge them.
Indeed, both states are final and §({p}, o) = d({¢,r}),0) for every o € {a,b}. We

obtain:
“ Q0
/\
-0 0
b
(e)
Iter.| Automaton obtained Rule applied
a
Py A
€ €
1 _)@ @_/@ @ Add single initial and final
b states.
€

N P O
- i O——@
: O——O
@ ba@
@\b>@
a—l(—lba

*

a(a + ba)" (e +b)
ﬁ@\g/@

€

_)@€+a(a+ba)*(€+b)@

@ 1+ 72 @

e +a(a+ba)* (e +b)

Extract regular expression from
the unique transition.

(f) Let us first show that a(a + ba)' = (a + ab)a for every i € N. We proceed by
induction on i. If ¢ = 0, then the claim trivially holds. Let ¢ > 0. Assume the
claims holds at ¢ — 1. We have

ala +ba)’ = a(a + ba) " (a + ba)

= (a+ ab)" 'a(a + ba) (by induction hypothesis)
= (a + ab)"(aa + aba) (by distributivity)
= (a4 ab)" Ya + ab)a (by distributivity)
= (a + ab)'a.
This implies that
a(a+ba)* = (a+ ab)*a. (1)

We may now prove the equivalence of the two regular expressions:

e+ala+ba)*(e+b) =c+ (a+ab)a(e +b) (by (1))
=¢e+ (a+ab)"(a+ ab) (by distributivity)
=c+ (a+ab)™
= (a+ ab)™. O

Exercise 2.2.

Prove or disprove the following.
(
(

(¢) If Ly and Ly Lo are regular, then Ly is regular.

a) If Ly and L; U Lo are regular, then Lo is regular.
b) If Ly and Ly N Ly are regular, then Ly is regular.
c

(d) If L* is regular, then L is regular.

Solution. All of these claims are false. Let ¥ = {a}. Note that since there are an
uncountable number of languages over ¥ which contain the words € and a, but only a
countable number of DFAs, it follows that there must be a non-regular language L’ such
that €,a € L.

(a) Let L1 = ¥* and Ly = L. Since Ly U Ly = ¥*, the claim is false.

(b) Let L1 =0 and Ly = L'. Since Ly N Ly = (), the claim is false.

(c) Let Ly = ¥* and Ly = L'. Since € € L/, it follows that L1 Ly = ¥* and so the claim

is false.

(d) Let L =L'. Since a € L', it follows that L* = ¥* and so the claim is false.

Exercise 2.3.

Recall that a nondeterministic automaton A accepts a word w if at least one of the runs
of A on w is accepting. This is sometimes called the existential accepting condition.
Consider the variant in which A accepts w if all runs of A on w are accepting (in
particular, if A has no run on w then it accepts w). This is called the universal accepting
condition and such automata will be referred to as a co-NFA.

Intuitively, we can visualize a co-NFA as executing all runs in parallel. After reading
a word w, the automaton is simultaneously in all states reached by all runs labelled by
w, and accepts if all those states are accepting.

(a) Suppose A; and Ag are two co-NFA which accept languages L1 and Lg respectively.
Let n1 and ny be the number of states of A1 and As respectively. Show that there
is a co-NFA B over ni + n9 states which accepts Ly N Ls.

(b) Give an algorithm that transforms a co-NFA into a DFA recognizing the same
language. This shows that automata with universal accepting condition recognize
the regular languages.

Let ¥ = {a,b}. Given a word w = ajas...a, where each a; € X, let w? = apa,_1...a1
denote the reverse of w. For any n € N, consider the language L, := {ww’ € 2" |w €
IS

(c) Give a co-NFA with O(n?) states that recognizes L.

(d) Prove that every NFA (and hence also every DFA) recognizing L, has at least 2"
states.

Solution.

(a) Let A; = (Q1,%,01, 11, F1) and As = (Q2, 3, 02, I2, F5) be the given two co-NFAs.
Let B be the co-NFA given by B = (Q1 U Q2,%,61 U da, [} U I, F1 U Fy). Notice
that if |@Q1| = n1 and |Q2| = na, then the number of states of B is nj +ngy. Further,
note that p is a run of B on a word w if and only if p is either a run of A; on w
or pis a run of A on w. It follows that all runs of B on a word w are accepting if
and only if all runs of A; and A, on w are accepting. Hence, B accepts Ly N Lo.

(b) Let A = (Q,%,0,Qo, F) be a co-NFA. We do the same powerset construction that
we do for NFAs to get a DFA B = (Q, %, A, qo, F) except we now set F = {Q’ €
Q: Q' C F}. All the other elements are defined in exactly the same way as is done
for the powerset construction.

(¢) For any n € N and any 1 < i < n, let
Li = {w:w € 2", the i' letter of w and the (2n—i+1)"" letter of w are the same }

Notice that L, = () Lf. By a), it follows that if we give a co-NFA of size O(n)
1<i<n

for each L!, then we have a co-NFA of size O(n?) for L,.

We now construct a co-NFA of size O(n) for each Lf,

as given by the following
illustration.

a,b a, b a, b
% H .. %
o/ $

a,b a,b a,b a,b
%%H DY H H .

b

/
a,b a,b a,b

First, the automaton has a sequence of states qo, q1, ..., ¢i—1 with transitions g; a—’b>
gj+1 for every 0 < j < i — 2. Intuitively, these states are simply used to count
the number of letters read so far. Hence, upon reaching ¢; for any j < i —1, we
know that we have read j letters. From here, the automaton has two transitions

Qi1 = ¢ and g;—1 LN qf . Intuitively, these two transitions help us remember the
it" letter of the word.

Then, we have a collection of states g%, 1,q% .., ¢%,_; and ¢? 1,42, ..., ¢5,_; along

with the transitions, ¢} a—7b> ¢4, and q;? a—’b> q?H for every ¢ < j < 2n —1i— 1.
Intuitively, these states are simply used to count the number of letters starting
from the " letter, while simultaneously remembering the i** letter. Hence, upon
reaching ¢ (resp. q?) for any 7 < 2n — ¢, we know that we have read j letters
and that the it" letter that we read was an a (resp. a b). From here, we have two

transitions ¢, ; — qan—i+1 and ¢, LN G2n—i+1. Intuitively, these two transitions
force that the (2n — 4 + 1) letter that we read is the same as the i*" letter that
we read before.

Finally, we have a sequence of states q2,,—i+1,@2n—i+2--., ¢2» With transitions g; a—’b>
gj+1 for every 2n — i+ 1 < j < 2n. Once again, these states are simply used
to count the number of letters read and we can show that if we reach ¢; for any
j < 2n, then we have read j letters. We then set the only final state to be goy.

Suppose A is some NFA which recognizes L,. For every ww’ € 2", A has at
least one accepting run on ww®. Let ¢, be the state reached by this run after
reading the prefix w (If there are multiple such runs, pick any one of them). We
claim that if w # w’, then ¢, # ¢.. Notice that this claim implies that there are
at least 2" states in A and so it simply suffices to prove this claim.

Suppose ¢, = ¢ for some pair w # w’. Hence, after reading w’ the automaton
A can reach ¢,. By definition of ¢,, we know that there is a run on the word
w’t starting from ¢, and ending in a final state. This implies that the automaton
accepts w'w®, because first the automaton can reach ¢, by reading w’ and then
from ¢, it can reach a final state by reading w®. But w'w’ ¢ L,, contradicting
the fact that A recognizes L.

Puzzle exercise 2.4.

Let ¥ := {a,b}. We say that a regular expression r is ellellone, if r is of the form st, s*,
x, €, 0, as + bt, or as + bt + €, where s,t are ellellone REs and x € X.

For example, (a + b)* and ab + b(ab + b)) + €)* are ellellone, but (aa + ab)* and
a+ b(ab+ (ba)* + €) are not.

Prove that there is a regular language L, s.t. no ellellone RE r with L(r) = L exists.

Hint: Consider the language L of words that contain an even number of a or an even
number of b.

