
Prof. Javier Esparza Technical University of Munich
Philipp Czerner Chair for Foundations of Software Reliability

Automata and Formal Languages
Winter Term 2023/24 – Exercise Sheet 2

Exercise 2.1.
Consider the regular expression r = (a + ab)∗.

(a) Convert r into an equivalent NFA-ε A.
(b) Convert A into an equivalent NFA B. (It is not necessary to use algorithm NFAεtoNFA)
(c) Convert B into an equivalent DFA C.
(d) By inspecting B, give an equivalent minimal DFA D. (No algorithm needed).
(e) Convert D into an equivalent regular expression r′.
(f) Prove formally that L(r) = L(r′).

Solution.
(a)

Iter. Automaton obtained Rule applied

1 p q
(a + ab)∗

Initial automaton from reg. expr.

2
p q rε

a + ab

ε

p q

⇝

p q

r∗

ε ε

r

3 p q rε

a

ab

ε

p q

⇝

p q

r1 + r2

r1

r2

https://www7.in.tum.de/~esparza/
https://www.tum.de/
https://nicze.de/philipp/
https://www.cs.cit.tum.de/en/tcs/main/
https://www.cs.cit.tum.de/en/tcs/lehre/wintersemester-2023-2024/automaten-und-formale-sprachen/

4

p q r

s

ε

a

a b

ε
p q

⇝

p q

r1 r2

r1 r1

(b)

Iter. Automaton obtained Rule applied

1
p q r

s

a, ε

a

a b

a, ε

a b

a, ε

⇝

σ ε

σ ε

σ

⇝

ε σ

ε σ

σ

where σ ∈ Σ ∪ {ε}

2
p q r

s

a, ε

a

a b

a, ε

a b

a, ε

Initial states that can reach a final
state through ε-transitions are made
final.

3
p q r

s

a

a

a b

a

a b

a

Remove ε-transitions.
Remove states non reachable from
initial state.

(c)

p q, r, s q, ra

a

b

a

(d) States {p} and {q, r} have the exact same behaviours, so we can merge them.
Indeed, both states are final and δ({p}, σ) = δ({q, r}), σ) for every σ ∈ {a, b}. We
obtain:

a

b

a

(e)

Iter. Automaton obtained Rule applied

1
i p q f

a

b

a
ε ε

ε

Add single initial and final
states.

2

i q f

a

ba

a ε

b

ε

p

i q

q f⇝
i q

i f

q
q

q
f

ε

b

a

ε

a

ε

ba

b

3 i q f

a + ba

a ε + b

ε

p q

⇝

p q

r1

r2

r1 + r2

4
i f

a(a + ba)∗(ε + b)

ε

qi f

⇝

i f

a

a + ba

ε + b

a(a + ba)∗(ε + b)

5 i f
ε + a(a + ba)∗(ε + b)

p q

⇝

p q

r1

r2

r1 + r2

6 ε + a(a + ba)∗(ε + b) Extract regular expression from
the unique transition.

(f) Let us first show that a(a + ba)i = (a + ab)ia for every i ∈ N. We proceed by
induction on i. If i = 0, then the claim trivially holds. Let i > 0. Assume the
claims holds at i − 1. We have

a(a + ba)i = a(a + ba)i−1(a + ba)

= (a + ab)i−1a(a + ba) (by induction hypothesis)

= (a + ab)i−1(aa + aba) (by distributivity)

= (a + ab)i−1(a + ab)a (by distributivity)

= (a + ab)ia.

This implies that

a(a + ba)∗ = (a + ab)∗a. (1)

We may now prove the equivalence of the two regular expressions:

ε + a(a + ba)∗(ε + b) = ε + (a + ab)∗a(ε + b) (by (1))
= ε + (a + ab)∗(a + ab) (by distributivity)
= ε + (a + ab)+

= (a + ab)∗.

Exercise 2.2.
Prove or disprove the following.

(a) If L1 and L1 ∪ L2 are regular, then L2 is regular.
(b) If L1 and L1 ∩ L2 are regular, then L2 is regular.
(c) If L1 and L1L2 are regular, then L2 is regular.
(d) If L∗ is regular, then L is regular.

Solution. All of these claims are false. Let Σ = {a}. Note that since there are an
uncountable number of languages over Σ which contain the words ϵ and a, but only a
countable number of DFAs, it follows that there must be a non-regular language L′ such
that ϵ, a ∈ L′.

(a) Let L1 = Σ∗ and L2 = L′. Since L1 ∪ L2 = Σ∗, the claim is false.
(b) Let L1 = ∅ and L2 = L′. Since L1 ∩ L2 = ∅, the claim is false.
(c) Let L1 = Σ∗ and L2 = L′. Since ϵ ∈ L′, it follows that L1L2 = Σ∗ and so the claim

is false.
(d) Let L = L′. Since a ∈ L′, it follows that L∗ = Σ∗ and so the claim is false.

Exercise 2.3.
Recall that a nondeterministic automaton A accepts a word w if at least one of the runs
of A on w is accepting. This is sometimes called the existential accepting condition.
Consider the variant in which A accepts w if all runs of A on w are accepting (in
particular, if A has no run on w then it accepts w). This is called the universal accepting
condition and such automata will be referred to as a co-NFA.

Intuitively, we can visualize a co-NFA as executing all runs in parallel. After reading
a word w, the automaton is simultaneously in all states reached by all runs labelled by
w, and accepts if all those states are accepting.

(a) Suppose A1 and A2 are two co-NFA which accept languages L1 and L2 respectively.
Let n1 and n2 be the number of states of A1 and A2 respectively. Show that there
is a co-NFA B over n1 + n2 states which accepts L1 ∩ L2.

(b) Give an algorithm that transforms a co-NFA into a DFA recognizing the same
language. This shows that automata with universal accepting condition recognize
the regular languages.

Let Σ = {a, b}. Given a word w = a1a2...an where each ai ∈ Σ, let wR = anan−1...a1
denote the reverse of w. For any n ∈ N, consider the language Ln := {wwR ∈ Σ2n | w ∈
Σn}.

(c) Give a co-NFA with O(n2) states that recognizes Ln.
(d) Prove that every NFA (and hence also every DFA) recognizing Ln has at least 2n

states.
Solution.

(a) Let A1 = (Q1, Σ, δ1, I1, F1) and A2 = (Q2, Σ, δ2, I2, F2) be the given two co-NFAs.
Let B be the co-NFA given by B = (Q1 ∪ Q2, Σ, δ1 ∪ δ2, I1 ∪ I2, F1 ∪ F2). Notice
that if |Q1| = n1 and |Q2| = n2, then the number of states of B is n1 +n2. Further,
note that ρ is a run of B on a word w if and only if ρ is either a run of A1 on w
or ρ is a run of A2 on w. It follows that all runs of B on a word w are accepting if
and only if all runs of A1 and A2 on w are accepting. Hence, B accepts L1 ∩ L2.

(b) Let A = (Q, Σ, δ, Q0, F) be a co-NFA. We do the same powerset construction that
we do for NFAs to get a DFA B = (Q, Σ, ∆, q0, F) except we now set F = {Q′ ∈
Q : Q′ ⊆ F}. All the other elements are defined in exactly the same way as is done
for the powerset construction.

(c) For any n ∈ N and any 1 ≤ i ≤ n, let

Li
n := {w : w ∈ Σ2n, the ith letter of w and the (2n−i+1)th letter of w are the same }

Notice that Ln =
⋂

1≤i≤n
Li

n. By a), it follows that if we give a co-NFA of size O(n)

for each Li
n, then we have a co-NFA of size O(n2) for Ln.

We now construct a co-NFA of size O(n) for each Li
n, as given by the following

illustration.

q0 q1 · · · qi−1

qa
i

qb
i

qa
i+1

qb
i+1

· · ·

· · ·

qa
2n−i

qb
2n−i

q2n−i+1 · · · q2n
a, b a, b a, b

a

b

a, b

a, b

a, b

a, b

a, b

a, b

a

b

a, b a, b

First, the automaton has a sequence of states q0, q1, ..., qi−1 with transitions qj
a,b−−→

qj+1 for every 0 ≤ j ≤ i − 2. Intuitively, these states are simply used to count
the number of letters read so far. Hence, upon reaching qj for any j ≤ i − 1, we
know that we have read j letters. From here, the automaton has two transitions
qi−1

a−→ qa
i and qi−1

b−→ qb
i . Intuitively, these two transitions help us remember the

ith letter of the word.
Then, we have a collection of states qa

i+1, qa
i+2..., qa

2n−i and qb
i+1, qb

i+2, ..., qb
2n−i along

with the transitions, qa
j

a,b−−→ qa
j+1 and qb

j
a,b−−→ qb

j+1 for every i ≤ j ≤ 2n − i − 1.
Intuitively, these states are simply used to count the number of letters starting
from the ith letter, while simultaneously remembering the ith letter. Hence, upon
reaching qa

j (resp. qb
j) for any j ≤ 2n − i, we know that we have read j letters

and that the ith letter that we read was an a (resp. a b). From here, we have two
transitions qa

2n−i
a−→ q2n−i+1 and qb

2n−i
b−→ q2n−i+1. Intuitively, these two transitions

force that the (2n − i + 1)th letter that we read is the same as the ith letter that
we read before.
Finally, we have a sequence of states q2n−i+1, q2n−i+2..., q2n with transitions qj

a,b−−→
qj+1 for every 2n − i + 1 ≤ j ≤ 2n. Once again, these states are simply used
to count the number of letters read and we can show that if we reach qj for any
j ≤ 2n, then we have read j letters. We then set the only final state to be q2n.

(d) Suppose A is some NFA which recognizes Ln. For every wwR ∈ Σ2n, A has at
least one accepting run on wwR. Let qw be the state reached by this run after
reading the prefix w (If there are multiple such runs, pick any one of them). We
claim that if w ̸= w′, then qw ̸= qw′ . Notice that this claim implies that there are
at least 2n states in A and so it simply suffices to prove this claim.
Suppose qw = qw′ for some pair w ̸= w′. Hence, after reading w′ the automaton
A can reach qw. By definition of qw, we know that there is a run on the word
wR starting from qw and ending in a final state. This implies that the automaton
accepts w′wR, because first the automaton can reach qw by reading w′ and then
from qw it can reach a final state by reading wR. But w′wR /∈ Ln, contradicting
the fact that A recognizes Ln.

Puzzle exercise 2.4.
Let Σ := {a, b}. We say that a regular expression r is ellellone, if r is of the form st, s∗,
x, ϵ, ∅, as + bt, or as + bt + ϵ, where s, t are ellellone REs and x ∈ Σ.

For example, (a + b)∗ and ab + b(ab + b∅ + ϵ)∗ are ellellone, but (aa + ab)∗ and
a + b(ab + (ba)∗ + ϵ) are not.

Prove that there is a regular language L, s.t. no ellellone RE r with L(r) = L exists.

Hint: Consider the language L of words that contain an even number of a or an even
number of b.

