Prof. Javier Esparza Philipp Czerner Technical University of Munich Chair for Foundations of Software Reliability

Automata and Formal Languages

Winter Term 2023/24 - Exercise Sheet 2

Exercise 2.1.

Consider the regular expression $r = (a + ab)^*$.

- (a) Convert r into an equivalent NFA- ε A.
- (b) Convert A into an equivalent NFA B. (It is not necessary to use algorithm $NFA \varepsilon to NFA$)
- (c) Convert B into an equivalent DFA C.
- (d) By inspecting B, give an equivalent minimal DFA D. (No algorithm needed).
- (e) Convert D into an equivalent regular expression r'.
- (f) Prove formally that L(r) = L(r').

Solution.

(a)

Iter.	Automaton obtained	Rule applied
1	$\rightarrow p \xrightarrow{(a+ab)^*} q$	Initial automaton from reg. expr.
2	$\xrightarrow{a + ab} (Q) \xrightarrow{\varepsilon} (Q) \xrightarrow{\varepsilon} (P) \xrightarrow{\varepsilon} $	$\begin{array}{c} p & \xrightarrow{r^*} q \\ & & \downarrow \\ & & \downarrow \\ p & \xrightarrow{\varepsilon} & \stackrel{r}{\bigcirc} & \xrightarrow{\varepsilon} q \end{array}$
3	$\xrightarrow{p} \xrightarrow{\varepsilon} \stackrel{a}{\underset{ab}{\overset{a}{}} \xrightarrow{\varepsilon} \stackrel{a}{\underset{b}{}} \xrightarrow{\varepsilon} \stackrel{a}{\underset{ab}{}} \xrightarrow{\varepsilon} \xrightarrow{} \phantom{$	$\begin{array}{c} p & \xrightarrow{r_1 + r_2} q \\ & & & \\ & & & \\ & & & \\ \hline p & & & \\ & & & \\ \hline p & & & & \\ & & & & \\ & & & & \\ \hline p & & & & \\ & & & & \\ & & & & \\ & & & &$

(b)

Remove ε -transitions. Remove states non reachable from initial state.

(d) States $\{p\}$ and $\{q,r\}$ have the exact same behaviours, so we can merge them. Indeed, both states are final and $\delta(\{p\}, \sigma) = \delta(\{q,r\}), \sigma)$ for every $\sigma \in \{a, b\}$. We obtain:

(e)

(c)

(f) Let us first show that $a(a + ba)^i = (a + ab)^i a$ for every $i \in \mathbb{N}$. We proceed by induction on *i*. If i = 0, then the claim trivially holds. Let i > 0. Assume the claims holds at i - 1. We have

$$a(a + ba)^{i} = a(a + ba)^{i-1}(a + ba)$$

= $(a + ab)^{i-1}a(a + ba)$ (by induction hypothesis)
= $(a + ab)^{i-1}(aa + aba)$ (by distributivity)
= $(a + ab)^{i-1}(a + ab)a$ (by distributivity)
= $(a + ab)^{i}a$.

This implies that

$$a(a+ba)^* = (a+ab)^*a.$$
 (1)

We may now prove the equivalence of the two regular expressions:

$$\varepsilon + a(a + ba)^*(\varepsilon + b) = \varepsilon + (a + ab)^*a(\varepsilon + b) \qquad (by (1))$$
$$= \varepsilon + (a + ab)^*(a + ab) \qquad (by distributivity)$$
$$= \varepsilon + (a + ab)^+$$
$$= (a + ab)^*.$$

Exercise 2.2.

Prove or disprove the following.

- (a) If L_1 and $L_1 \cup L_2$ are regular, then L_2 is regular.
- (b) If L_1 and $L_1 \cap L_2$ are regular, then L_2 is regular.
- (c) If L_1 and L_1L_2 are regular, then L_2 is regular.
- (d) If L^* is regular, then L is regular.

Solution. All of these claims are false. Let $\Sigma = \{a\}$. Note that since there are an uncountable number of languages over Σ which contain the words ϵ and a, but only a countable number of DFAs, it follows that there must be a non-regular language L' such that $\epsilon, a \in L'$.

- (a) Let $L_1 = \Sigma^*$ and $L_2 = L'$. Since $L_1 \cup L_2 = \Sigma^*$, the claim is false.
- (b) Let $L_1 = \emptyset$ and $L_2 = L'$. Since $L_1 \cap L_2 = \emptyset$, the claim is false.
- (c) Let $L_1 = \Sigma^*$ and $L_2 = L'$. Since $\epsilon \in L'$, it follows that $L_1L_2 = \Sigma^*$ and so the claim is false.
- (d) Let L = L'. Since $a \in L'$, it follows that $L^* = \Sigma^*$ and so the claim is false.

Exercise 2.3.

Recall that a nondeterministic automaton A accepts a word w if at least one of the runs of A on w is accepting. This is sometimes called the *existential* accepting condition. Consider the variant in which A accepts w if all runs of A on w are accepting (in particular, if A has no run on w then it accepts w). This is called the *universal* accepting condition and such automata will be referred to as a co-NFA.

Intuitively, we can visualize a co-NFA as executing all runs in parallel. After reading a word w, the automaton is simultaneously in all states reached by all runs labelled by w, and accepts if all those states are accepting.

- (a) Suppose A_1 and A_2 are two co-NFA which accept languages L_1 and L_2 respectively. Let n_1 and n_2 be the number of states of A_1 and A_2 respectively. Show that there is a co-NFA *B* over $n_1 + n_2$ states which accepts $L_1 \cap L_2$.
- (b) Give an algorithm that transforms a co-NFA into a DFA recognizing the same language. This shows that automata with universal accepting condition recognize the regular languages.

Let $\Sigma = \{a, b\}$. Given a word $w = a_1 a_2 \dots a_n$ where each $a_i \in \Sigma$, let $w^R = a_n a_{n-1} \dots a_1$ denote the *reverse* of w. For any $n \in \mathbb{N}$, consider the language $L_n := \{ww^R \in \Sigma^{2n} \mid w \in \Sigma^n\}$.

- (c) Give a co-NFA with $O(n^2)$ states that recognizes L_n .
- (d) Prove that every NFA (and hence also every DFA) recognizing L_n has at least 2^n states.

Solution.

- (a) Let $A_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$ be the given two co-NFAs. Let *B* be the co-NFA given by $B = (Q_1 \cup Q_2, \Sigma, \delta_1 \cup \delta_2, I_1 \cup I_2, F_1 \cup F_2)$. Notice that if $|Q_1| = n_1$ and $|Q_2| = n_2$, then the number of states of *B* is $n_1 + n_2$. Further, note that ρ is a run of *B* on a word *w* if and only if ρ is either a run of A_1 on *w* or ρ is a run of A_2 on *w*. It follows that all runs of *B* on a word *w* are accepting if and only if all runs of A_1 and A_2 on *w* are accepting. Hence, *B* accepts $L_1 \cap L_2$.
- (b) Let $A = (Q, \Sigma, \delta, Q_0, F)$ be a co-NFA. We do the same powerset construction that we do for NFAs to get a DFA $B = (Q, \Sigma, \Delta, q_0, \mathcal{F})$ except we now set $\mathcal{F} = \{Q' \in Q : Q' \subseteq F\}$. All the other elements are defined in exactly the same way as is done for the powerset construction.
- (c) For any $n \in \mathbb{N}$ and any $1 \leq i \leq n$, let

 $L_n^i := \{ w : w \in \Sigma^{2n}, \text{ the } i^{th} \text{ letter of } w \text{ and the } (2n-i+1)^{th} \text{ letter of } w \text{ are the same } \}$

Notice that $L_n = \bigcap_{1 \le i \le n} L_n^i$. By a), it follows that if we give a co-NFA of size O(n) for each L_n^i , then we have a co-NFA of size $O(n^2)$ for L_n .

We now construct a co-NFA of size O(n) for each L_n^i , as given by the following illustration.

First, the automaton has a sequence of states $q_0, q_1, ..., q_{i-1}$ with transitions $q_j \xrightarrow{a,b} q_{j+1}$ for every $0 \leq j \leq i-2$. Intuitively, these states are simply used to count the number of letters read so far. Hence, upon reaching q_j for any $j \leq i-1$, we know that we have read j letters. From here, the automaton has two transitions $q_{i-1} \xrightarrow{a} q_i^a$ and $q_{i-1} \xrightarrow{b} q_i^b$. Intuitively, these two transitions help us remember the i^{th} letter of the word.

Then, we have a collection of states $q_{i+1}^a, q_{i+2}^a, \dots, q_{2n-i}^a$ and $q_{i+1}^b, q_{i+2}^b, \dots, q_{2n-i}^b$ along with the transitions, $q_j^a \xrightarrow{a,b} q_{j+1}^a$ and $q_j^b \xrightarrow{a,b} q_{j+1}^b$ for every $i \leq j \leq 2n - i - 1$. Intuitively, these states are simply used to count the number of letters starting from the i^{th} letter, while simultaneously remembering the i^{th} letter. Hence, upon reaching q_j^a (resp. q_j^b) for any $j \leq 2n - i$, we know that we have read j letters and that the i^{th} letter that we read was an a (resp. a b). From here, we have two transitions $q_{2n-i}^a \xrightarrow{a} q_{2n-i+1}$ and $q_{2n-i}^b \xrightarrow{b} q_{2n-i+1}$. Intuitively, these two transitions force that the $(2n - i + 1)^{th}$ letter that we read is the same as the i^{th} letter that we read before.

Finally, we have a sequence of states $q_{2n-i+1}, q_{2n-i+2}, \dots, q_{2n}$ with transitions $q_j \xrightarrow{a,b} q_{j+1}$ for every $2n - i + 1 \leq j \leq 2n$. Once again, these states are simply used to count the number of letters read and we can show that if we reach q_j for any $j \leq 2n$, then we have read j letters. We then set the only final state to be q_{2n} .

(d) Suppose A is some NFA which recognizes L_n . For every $ww^R \in \Sigma^{2n}$, A has at least one accepting run on ww^R . Let q_w be the state reached by this run after reading the prefix w (If there are multiple such runs, pick any one of them). We claim that if $w \neq w'$, then $q_w \neq q_{w'}$. Notice that this claim implies that there are at least 2^n states in A and so it simply suffices to prove this claim.

Suppose $q_w = q_{w'}$ for some pair $w \neq w'$. Hence, after reading w' the automaton A can reach q_w . By definition of q_w , we know that there is a run on the word w^R starting from q_w and ending in a final state. This implies that the automaton accepts $w'w^R$, because first the automaton can reach q_w by reading w' and then from q_w it can reach a final state by reading w^R . But $w'w^R \notin L_n$, contradicting the fact that A recognizes L_n .

Puzzle exercise 2.4.

Let $\Sigma := \{a, b\}$. We say that a regular expression r is *ellellone*, if r is of the form st, s^* , $x, \epsilon, \emptyset, as + bt$, or $as + bt + \epsilon$, where s, t are ellellone REs and $x \in \Sigma$.

For example, $(a + b)^*$ and $ab + b(ab + b\emptyset + \epsilon)^*$ are ellellone, but $(aa + ab)^*$ and $a + b(ab + (ba)^* + \epsilon)$ are not.

Prove that there is a regular language L, s.t. no ellellone RE r with L(r) = L exists.

Hint: Consider the language L of words that contain an even number of a or an even number of b.