Automata and Formal Languages

Winter Term 2023/24 – Exercise Sheet 1

Exercise 1.1.

Give a regular expression and an NFA for the language of all words over $\Sigma = \{a, b\} \dots$

- (a) \ldots beginning and ending with a.
- (b) \dots such that the third letter from the right is a b.
- (c) ... that can be obtained from *babbab* by deleting letters.
- (d) ... with no occurrences of the subword bba.
- (e) ... with at most one occurrence of the subword *bba*.

Exercise 1.2.

Let A, B and C be three languages.

- (a) Prove that if $A \subseteq BC$ then $A^* \subseteq (B^* + C^*)^*$. Is the converse true?
- (b) Prove that the languages of $((a + ba)^* + b^*)^*$ and $(a + b)^*$ are the same.

Exercise 1.3.

Consider the language $L \subseteq \{a, b\}^*$ given by the regular expression $a^*b(ba)^*a$.

- (a) Give an NFA that accepts L.
- (b) Give a DFA that accepts L.

Exercise 1.4.

Let $\Sigma = \{a, b\}$ and let $\Sigma^* = (a + b)^*$. Suppose $w = a_1 a_2 \dots a_n$ where each $a_i \in \Sigma$. Then the *upward closure* of a word w is defined as the set

$$\uparrow w = \{u_1 a_1 u_2 a_2 \dots u_n a_n u_{n+1} : u_1, u_2, \dots, u_{n+1} \in \Sigma^*\}$$

The upward closure of a language L is defined as the set $\uparrow L = \bigcup_{w \in L} \uparrow w$.

- (a) Give an algorithm that takes as input a regular expression r and outputs a regular expression $\uparrow r$ such that $\mathcal{L}(\uparrow r) = \uparrow(\mathcal{L}(r))$.
- (b) Give an algorithm that takes as input an NFA A and outputs an NFA B with exactly the same number of states as A such that $\mathcal{L}(B) = \uparrow \mathcal{L}(A)$.