Philipp Czerner

Automata and Formal Languages
 Winter Term 2023/24 - Exercise Sheet 1

Exercise 1.1.

Give a regular expression and an NFA for the language of all words over $\Sigma=\{a, b\} \ldots$
(a) ... beginning and ending with a.
(b) ...such that the third letter from the right is a b.
(c) ... that can be obtained from babbab by deleting letters.
(d) ... with no occurrences of the subword bba.
(e) \ldots with at most one occurrence of the subword $b b a$.

Solution. We write Σ for $(a+b)$ and Σ^{*} for $(a+b)^{*}$.
(a) $a+\left(a \Sigma^{*} a\right)$

(b) $\Sigma^{*} b \Sigma \Sigma$

(c) $(b+\epsilon)(a+\epsilon)(b+\epsilon)(b+\epsilon)(a+\epsilon)(b+\epsilon)$

One possible NFA for the language is the following. Note that every state of this NFA is initial and accepting. There are 7 states, labelled by $0,1,2,3,4,5$ and 6. From 0 , upon reading a b, we can go to any state strictly bigger than 0 ; From 1 , upon reading an a, we can go to any state strictly bigger than 1 , and so on.

(d) $(a+b a)^{*} b^{*}$

(e) $\left((a+b a)^{*} b^{*}\right)+\left((a+b a)^{*} b^{*}(b b a)(a+b a)^{*} b^{*}\right)$

Exercise 1.2.

Let A, B and C be three languages.
(a) Prove that if $A \subseteq B C$ then $A^{*} \subseteq\left(B^{*}+C^{*}\right)^{*}$. Is the converse true?
(b) Prove that the languages of $\left((a+b a)^{*}+b^{*}\right)^{*}$ and $(a+b)^{*}$ are the same.

Solution.

(a) Suppose $A \subseteq B C$. First, we show that $A^{*} \subseteq(B C)^{*}$. Indeed, if $w \in A^{*}$, then w can be decomposed as $w_{1} w_{2} \ldots w_{n}$ for some number n such that each $w_{i} \in A$. Since $A \subseteq B C$, it follows that each $w_{i} \in B C$ and so $w \in(B C)^{*}$.
Now, we show that $(B C)^{*} \subseteq\left(B^{*}+C^{*}\right)^{*}$. If $w \in(B C)^{*}$ then w can be decomposed as $w_{1} w_{2} \ldots w_{n}$ for some number n such that each $w_{i} \in B C$. Since each $w_{i} \in B C$, it follows that each w_{i} can be further decomposed as $u_{i} v_{i}$ where $u_{i} \in B$ and $v_{i} \in C$. Hence $w=u_{1} v_{1} u_{2} v_{2} \ldots u_{n} v_{n}$ and since each $u_{i}, v_{i} \in B+C \subseteq B^{*}+C^{*}$, it follows that $w \in\left(B^{*}+C^{*}\right)^{*}$.
(b) Let $U=(a+b), V=(a+b a)^{*}$ and $W=b^{*}$. We then have that $U \subseteq V W$ and so by the previous subpart, we have that $U^{*} \subseteq\left(V^{*}+W^{*}\right)^{*}$. Since $V^{*}=V$ and $W^{*}=W$, it follows that $(a+b)^{*} \subseteq\left((a+b a)^{*}+b^{*}\right)^{*}$. Further, since $(a+b)^{*}$ is the set of all words over $\{a, b\}$, we have that $\left((a+b a)^{*}+b^{*}\right)^{*} \subseteq(a+b)^{*}$. The desired claim then follows.

Exercise 1.3.

Consider the language $L \subseteq\{a, b\}^{*}$ given by the regular expression $a^{*} b(b a)^{*} a$.
(a) Give an NFA that accepts L.
(b) Give a DFA that accepts L.

Solution.

(a) NFA accepting L

(b) DFA accepting L

Exercise 1.4.

Let $\Sigma=\{a, b\}$ and let $\Sigma^{*}=(a+b)^{*}$. Suppose $w=a_{1} a_{2} \ldots a_{n}$ where each $a_{i} \in \Sigma$. Then the upward closure of a word w is defined as the set

$$
\uparrow w=\left\{u_{1} a_{1} u_{2} a_{2} \ldots u_{n} a_{n} u_{n+1}: u_{1}, u_{2}, \ldots, u_{n+1} \in \Sigma^{*}\right\}
$$

The upward closure of a language L is defined as the set $\uparrow L=\cup_{w \in L} \uparrow w$.
(a) Give an algorithm that takes as input a regular expression r and outputs a regular expression $\uparrow r$ such that $\mathcal{L}(\uparrow r)=\uparrow(\mathcal{L}(r))$.
(b) Give an algorithm that takes as input an NFA A and outputs an NFA B with exactly the same number of states as A such that $\mathcal{L}(B)=\uparrow \mathcal{L}(A)$.

Solution.

(a) We define $\uparrow r$ by induction on the regular expression r :

- If $r=\emptyset$, then we set $\uparrow r=\emptyset$
- If $r=\epsilon$, then we set $\uparrow r=\Sigma^{*}$
- If $r=x$ for some $x \in\{a, b\}$, then we set $\uparrow r=\Sigma^{*} x \Sigma^{*}$
- If $r=r_{1}+r_{2}$ for some r_{1} and r_{2}, then we set $\uparrow r=\left(\uparrow r_{1}\right)+\left(\uparrow r_{2}\right)$
- If $r=r_{1} r_{2}$ for some r_{1} and r_{2}, then we set $\uparrow r=\left(\uparrow r_{1}\right)\left(\uparrow r_{2}\right)$
- If $r=\left(r_{1}\right)^{*}$ for some r_{1}, then we set $\uparrow r=\Sigma^{*}$. Note that if $r=\left(r_{1}\right)^{*}$ for some r_{1}, then $\epsilon \in \mathcal{L}(r)$ and so $\uparrow \mathcal{L}(r)$ must contain every word.
(b) Let A be an NFA recognizing a language L. We construct the NFA B from A as follows: Corresponding to every state q of A and every letter $x \in\{a, b\}$, we add a self-loop transition (q, x, q). These new transitions will be referred to as special transitions. We now claim that $\mathcal{L}(B)=\uparrow L$.

Suppose $w \in \uparrow L$. Hence, $w=u_{1} a_{1} u_{2} a_{2} \ldots u_{n} a_{n} u_{n+1}$ for some words u_{1}, \ldots, u_{n+1} and letters a_{1}, \ldots, a_{n} such that $w^{\prime}:=a_{1} a_{2} \ldots a_{n} \in L$. Hence, there is an accepting run $\rho:=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} q_{2} \ldots q_{n-1} \xrightarrow{a_{n}} q_{n}$ of A on the word w^{\prime}. Now, notice that $q_{0} \xrightarrow{u_{1}} q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{u_{2}} q_{1} \xrightarrow{a_{2}} q_{1} \ldots q_{n-1} \xrightarrow{a_{n}} q_{n} \xrightarrow{u_{n+1}} q_{n}$ is an accepting run of B on the word w. (Here $q_{i} \xrightarrow{u_{i+1}} q_{i}$ denotes that starting from the state q_{i}, there is a run on the word u_{i+1} which ends at $\left.q_{i}\right)$. This implies that $w \in \mathcal{L}(B)$.
Suppose ρ is an accepting run of B on the word w. We now prove that $w \in \uparrow L$ by induction on the number of special transitions of ρ. If ρ has no special transitions, then ρ is also a run of A on w and so $w \in L \subseteq \uparrow L$. For the induction step, suppose ρ has $k+1$ special transitions for some $k \geq 0$. Let $w=w_{1} w_{2} \ldots w_{n}$ with each $w_{i} \in \Sigma$ and let $\rho=q_{0} \xrightarrow{w_{0}} q_{1} \xrightarrow{w_{1}} q_{2} \ldots q_{n-1} \xrightarrow{w_{n}} q_{n}$. Let $q_{i} \xrightarrow{w_{i+1}} q_{i+1}$ be the first special transition along ρ. Since this is a special transition, it must be the case that $q_{i}=q_{i+1}$. Let w^{\prime} be the word obtained from w by deleting the letter w_{i+1} at the $(i+1)^{t h}$ position and let ρ^{\prime} be the accepting run of B on w^{\prime} obtained from ρ by deleting the transition $q_{i} \xrightarrow{w_{i+1}} q_{i}$. Since ρ^{\prime} has only k special transitions, by induction hypothesis, $w^{\prime} \in \uparrow L$. Since w can be obtained from w^{\prime} by adding a letter, it follows that $w \in \uparrow L$ as well, thereby finishing the proof.

