
Prof. Javier Esparza Technical University of Munich
Philipp Czerner Chair for Foundations of Software Reliability

Automata and Formal Languages
Winter Term 2023/24 – Exercise Sheet 1

Exercise 1.1.
Give a regular expression and an NFA for the language of all words over Σ = {a, b} . . .

(a) . . . beginning and ending with a.
(b) . . . such that the third letter from the right is a b.
(c) . . . that can be obtained from babbab by deleting letters.
(d) . . . with no occurrences of the subword bba.
(e) . . . with at most one occurrence of the subword bba.

Solution. We write Σ for (a + b) and Σ∗ for (a + b)∗.
(a) a + (aΣ∗a)

a

a

a, b

a

(b) Σ∗bΣΣ

a, b

b a, b a, b

(c) (b + ϵ)(a + ϵ)(b + ϵ)(b + ϵ)(a + ϵ)(b + ϵ)

One possible NFA for the language is the following. Note that every state of this
NFA is initial and accepting. There are 7 states, labelled by 0, 1, 2, 3, 4, 5 and 6.
From 0, upon reading a b, we can go to any state strictly bigger than 0; From 1,
upon reading an a, we can go to any state strictly bigger than 1, and so on.

https://www7.in.tum.de/~esparza/
https://www.tum.de/
https://nicze.de/philipp/
https://www.cs.cit.tum.de/en/tcs/main/
https://www.cs.cit.tum.de/en/tcs/lehre/wintersemester-2023-2024/automaten-und-formale-sprachen/


0 1 2 3 4 5 6b

b

b

b

b

b

a

a

a

a

a

b

b
b

b

b

b

b

a

a

b

(d) (a + ba)∗b∗

a

b

a

b

b

(e) ((a + ba)∗b∗) + ((a + ba)∗b∗(bba)(a + ba)∗b∗)

a

b

a

b

b

a

a

b

a

b

b

Exercise 1.2.
Let A, B and C be three languages.

(a) Prove that if A ⊆ BC then A∗ ⊆ (B∗ + C∗)∗. Is the converse true?
(b) Prove that the languages of ((a + ba)∗ + b∗)∗ and (a + b)∗ are the same.

Solution.
(a) Suppose A ⊆ BC. First, we show that A∗ ⊆ (BC)∗. Indeed, if w ∈ A∗, then w

can be decomposed as w1w2...wn for some number n such that each wi ∈ A. Since
A ⊆ BC, it follows that each wi ∈ BC and so w ∈ (BC)∗.
Now, we show that (BC)∗ ⊆ (B∗ +C∗)∗. If w ∈ (BC)∗ then w can be decomposed
as w1w2...wn for some number n such that each wi ∈ BC. Since each wi ∈ BC, it
follows that each wi can be further decomposed as uivi where ui ∈ B and vi ∈ C.
Hence w = u1v1u2v2...unvn and since each ui, vi ∈ B + C ⊆ B∗ + C∗, it follows
that w ∈ (B∗ + C∗)∗.

(b) Let U = (a + b), V = (a + ba)∗ and W = b∗. We then have that U ⊆ V W and
so by the previous subpart, we have that U∗ ⊆ (V ∗ + W ∗)∗. Since V ∗ = V and
W ∗ = W , it follows that (a + b)∗ ⊆ ((a + ba)∗ + b∗)∗. Further, since (a + b)∗ is the
set of all words over {a, b}, we have that ((a + ba)∗ + b∗)∗ ⊆ (a + b)∗. The desired
claim then follows.



Exercise 1.3.
Consider the language L ⊆ {a, b}∗ given by the regular expression a∗b(ba)∗a.

(a) Give an NFA that accepts L.
(b) Give a DFA that accepts L.

Solution.
(a) NFA accepting L

a

b b

a

a

(b) DFA accepting L

a

b b

a

a

b

a, b

a, b

Exercise 1.4.
Let Σ = {a, b} and let Σ∗ = (a + b)∗. Suppose w = a1a2...an where each ai ∈ Σ. Then
the upward closure of a word w is defined as the set

↑w = {u1a1u2a2...unanun+1 : u1, u2, ..., un+1 ∈ Σ∗}

The upward closure of a language L is defined as the set ↑L = ∪w∈L↑w.

(a) Give an algorithm that takes as input a regular expression r and outputs a regular
expression ↑r such that L(↑r) = ↑(L(r)).

(b) Give an algorithm that takes as input an NFA A and outputs an NFA B with
exactly the same number of states as A such that L(B) = ↑L(A).

Solution.
(a) We define ↑r by induction on the regular expression r:

• If r = ∅, then we set ↑r = ∅
• If r = ϵ, then we set ↑r = Σ∗

• If r = x for some x ∈ {a, b}, then we set ↑r = Σ∗xΣ∗

• If r = r1 + r2 for some r1 and r2, then we set ↑r = (↑r1) + (↑r2)
• If r = r1r2 for some r1 and r2, then we set ↑r = (↑r1)(↑r2)
• If r = (r1)∗ for some r1, then we set ↑r = Σ∗. Note that if r = (r1)∗ for some

r1, then ϵ ∈ L(r) and so ↑L(r) must contain every word.



(b) Let A be an NFA recognizing a language L. We construct the NFA B from A as
follows: Corresponding to every state q of A and every letter x ∈ {a, b}, we add
a self-loop transition (q, x, q). These new transitions will be referred to as special
transitions. We now claim that L(B) = ↑L.
Suppose w ∈ ↑L. Hence, w = u1a1u2a2...unanun+1 for some words u1, ..., un+1
and letters a1, ..., an such that w′ := a1a2...an ∈ L. Hence, there is an accepting
run ρ := q0

a1−→ q1
a2−→ q2...qn−1

an−→ qn of A on the word w′. Now, notice that
q0

u1−→ q0
a1−→ q1

u2−→ q1
a2−→ q1...qn−1

an−→ qn
un+1−−−→ qn is an accepting run of B on the

word w. (Here qi
ui+1−−−→ qi denotes that starting from the state qi, there is a run on

the word ui+1 which ends at qi). This implies that w ∈ L(B).
Suppose ρ is an accepting run of B on the word w. We now prove that w ∈ ↑L by
induction on the number of special transitions of ρ. If ρ has no special transitions,
then ρ is also a run of A on w and so w ∈ L ⊆ ↑L. For the induction step,
suppose ρ has k + 1 special transitions for some k ≥ 0. Let w = w1w2...wn with
each wi ∈ Σ and let ρ = q0

w0−→ q1
w1−→ q2...qn−1

wn−−→ qn. Let qi
wi+1−−−→ qi+1 be the

first special transition along ρ. Since this is a special transition, it must be the
case that qi = qi+1. Let w′ be the word obtained from w by deleting the letter
wi+1 at the (i + 1)th position and let ρ′ be the accepting run of B on w′ obtained
from ρ by deleting the transition qi

wi+1−−−→ qi. Since ρ′ has only k special transitions,
by induction hypothesis, w′ ∈ ↑L. Since w can be obtained from w′ by adding a
letter, it follows that w ∈ ↑L as well, thereby finishing the proof.


