<u>Petri nets — Exercise sheet 8</u>

Solution published on 21.07.2020

Exercise 8.1

Recall that a Petri net N is *well-formed* if there is a marking M_0 such that (N, M_0) is live and bounded. Consider the following proposition (full proof given in Proposition 5.4 of "Free Choice Petri Nets" by J. Desel and J. Esparza):

Proposition 1. Let N be a well-formed free-choice net and R be a minimial siphon of N. Then

- (1) R is a trap of N.
- (2) The subnet generated by $(R, {}^{\bullet}R)$ is an S-component of N.

Use the above proposition, as well as Commoner's Liveness Theorem and Hack's Boundedness Theorem, to prove or disprove the following:

- 1. A bounded free-choice system (N, M_0) is live iff every minimal siphon of N is a trap marked at M_0 .
- 2. A live free-choice system (N, M_0) is bounded iff every minimal siphon of N is a trap marked at M_0 .

Exercise 8.2

Let (\mathcal{N}, M_0) be a bounded and strongly connected free-choice system which is deadlock-free, where $\mathcal{N} = (P, T, F)$. For every $M \in \mathbb{N}^P$, let d(M) be the number of transitions dead at M. Let $K \in \mathbb{N}^P$ be such that $d(K) = \max\{d(M) : M_0 \xrightarrow{*} M\}$.

- (a) Let $u \in T$ be a transition not dead at K. Show that there exists an infinite firing sequence $\sigma \in T^{\omega}$ enabled at K and containing infinitely many occurrences of u. Hint: Use the fact that d(K) is maximal.
- (b) Let $u, v \in T$ be such that u is not dead at K and $v \in (u^{\bullet})^{\bullet}$. Show that v is not dead at K. *Hint:* Use (a).
- (c) Show that there exists a path $\gamma \in (T \cup P)^*$ of \mathcal{N} such that γ contains all transitions of T and γ starts with a transition enabled at K.
- (d) Use (b) and (c) to show that d(K) = 0, and hence that (\mathcal{N}, M_0) is live.

Exercise 8.3

Recall the rank theorem from the lecture:

Theorem 5.3.16. A free-choice system (N, M_0) is live and bounded iff

- 1. N has a positive S-invariant.
- 2. N has a positive T-invariant.

- 3. The rank of the incidence matrix N is equal to c-1, where c is the number of clusters of N.
- 4. Every proper siphon of N is marked under M_0 .

We want to show that all hypotheses of the theorem are necessary, by giving four counter-examples where each hypothesis save one holds on each counter-example.

More precisely, give four free-choice systems $(N_1, M_1), (N_2, M_2), (N_3, M_3), (N_4, M_4)$ such that

- (a) conditions 2,3,4 hold on (N_1, M_1) , but N_1 has no positive S-invariant;
- (b) conditions 1,3,4 hold on (N_2, M_2) , but N_2 has no positive T-invariant;
- (c) conditions 1,2,4 hold on (N_3, M_3) , but the rank of N_3 is not equal to the number of clusters of N_3 ; and
- (d) conditions 1,2,3 hold on (N_4, M_4) , but some siphon of N_4 is not marked under M_4 .

Note that none of these systems can be both live and bounded. Which property is violated on each system?

Solution 8.1

1. (\Rightarrow) Let (N, M_0) be a live and bounded free-choice system. Then N is well-formed, and by Proposition ??, every minimal siphon of N is a trap. By Commoner's Liveness Theorem, every minimal siphon contains a trap marked at M_0 , therefore every minimal siphon of N is also a trap marked at M_0 .

(\Leftarrow) Let (N, M_0) be a bounded free-choice system where every minimal siphon of N is a trap marked at M_0 . Then every minimal siphon contains a trap marked at M_0 , and by Commoner's Liveness Theorem, the system is live.

2. The (\Rightarrow) direction holds as in 1, however the other direction does not. Even though we can infer with Proposition 6.3.1 that every minimal siphon generates an S-component of N, we can not show that every place belongs to a minimal siphon and therefore to an S-component, which would be necessary for Hack's Boundedness Theorem.

The following live free-choice system is a counterexample for this conjecture. It has no minimal siphons, therefore every minimal siphon is a trap marked at M_0 , however it is unbounded.

Solution 8.2

- (a) Since u is not dead at K, there exist $\sigma_1 \in T^*$ and $L_1 \in \mathbb{N}^P$ such that $K \xrightarrow{\sigma_1} L_1$ and u is enabled at L_1 . Let $L'_1 \in \mathbb{N}^P$ be such that $L_1 \xrightarrow{u} L'_1$. By maximality of d(K), we have $d(L'_1) \leq d(K)$. Moreover, every transition dead at K is also dead at L'_1 , and hence the transitions dead at K and L'_1 are the same. Therefore, u is not dead at L'_1 . This implies that there exist $\sigma_2 \in T^*$ and $L_2 \in \mathbb{N}^P$ such that $L'_1 \xrightarrow{\sigma_2} L_2$ and u is enabled at L_2 . By repeating this argument, we obtain an infinite firing sequence $\sigma = \sigma_1 u \sigma_2 u \cdots$ enabled at K and containing infinitely many occurrences of u.
- (b) By (a), there exists an infinite firing sequence $\sigma \in T^{\omega}$ which is enabled at K and such that σ contains infinitely many occurrences of u. Since $v \in (u^{\bullet})^{\bullet}$, there exists $p \in P$ such that $(u, p), (p, v) \in F$. Since (\mathcal{N}, M_0) is bounded and u produces a token in p, σ must contain infinitely many occurrences of a transition w such that $p \in {}^{\bullet}w$. Indeed, otherwise p would be unbounded. In particular, this implies that w is not dead at K. Since \mathcal{N} is free-choice, v is enabled at the same markings as w. Therefore, v is not dead at K.
- (c) Since (\mathcal{N}, M_0) is deadlock-free and K is reachable from M_0 , there exists a transition t enabled at K. Moreover, since \mathcal{N} is strongly connected, there exists a path starting in t that goes through all nodes of \mathcal{N} .
- (d) By (c), there exists a path γ that contains all transitions of \mathcal{N} and whose first transition is enabled at K. Let $\gamma = t_1 p_1 t_2 \cdots p_{n-1} t_n$. We claim that, for every $1 \leq i \leq n$, t_i is not dead at K. It follows from this claim that d(K) = 0, and hence, by maximality of d(K), that (\mathcal{N}, M_0) is live.

We prove the claim by induction on *i*. The base case follows immediately. Let i > 1 and assume that the claim holds for t_{i-1} . We have $(t_{i-1}, p_{i-1}), (p_{i-1}, t_i) \in F$. Therefore, $t_i \in (t_{i-1}^{\bullet})^{\bullet}$. By induction hypothesis, t_{i-1} is not dead at K and hence, by (b), t_i is also not dead.

Solution 8.3

In the following free-choice nets, the colours of the nodes indicate their cluster.

(a) Let (N_1, M_1) be

incidence matrix	positive S-inv	positive T-inv	rank=c-1	siphons
(1 - 1)		$(1 \ 1)$	1 = 2 - 1	Ø

If there were a positive S-invariant, then by Proposition 4.3.8 the system would be bounded. But this is not the case. The system (N_1, M_1) is live but unbounded.

(b) Let (N_2, N_2) be

Since ${}^{\bullet}p_1 = \emptyset$ and $p_1^{\bullet} = \{t_1\}$, all T-invariants J must be such that $J(t_1) = 0$ and so cannot be positive. The system (N_2, M_2) is bounded but not live.

(c) Let (N_3, M_3) be

incidence matrix	positive S-inv	positive T-inv	rank=c-1	siphons
$\begin{pmatrix} -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 \end{pmatrix}$	(1 1 1 1)		$3 \neq 3 - 1$	$\{p_3, p_4\}, \{p_1, p_2\}$

The system (N_3, M_3) is bounded but not live (we reach a deadlock by firing either t_2t_4 or t_3t_1). (d) Let (N_4, M_4) be

The system (N_4, M_4) is bounded but not live.