
Petri Nets
Lecture Notes

Prof. Javier Esparza

April 25, 2022

2

Contents

3

4

Part I

Petri Nets: Syntax, Semantics,
Models

5

Chapter 1

Basic definitions

1.1 Preliminaries

Numbers

N, Z, Q and R denote the natural, integer, rational, and real numbers.

Relations

Let X be a set and R ⊆ X × X a relation. R∗ denotes the transitive and
reflexive closure of R.

R−1 is the inverse of R, that is, the relation defined by

(x, y) ∈ R−1 ⇔ (y, x) ∈ R .

7

Sequences

A finite sequence over a set A is a mapping σ : {1, . . . , n} → A, denoted
by the string a1a2 . . . an, where ai = σ(i) for every 1 ≤ i ≤ n, or the
mapping ε : ∅ → A, the empty sequence.

The length of σ is n and the length of ε is 0.

An infinite sequence is a mapping σ : IN→ A. We write σ = a1a2a3

The concatenation of two finite sequences or of a finite and an infinite se-
quence is defined as usual.

Given a finite sequence σ, we denote by σω the infinite concatenation σσσ

σ is a prefix of τ if σ = τ or σσ′ = τ for some sequence σ′.

The alphabet of a sequence σ is the set of elements of A occurring in σ.

Given a sequence σ over A and B ⊆ A, the projection or restriction σ|B is
the result of removing all occurrences of elements a ∈ A \B in σ.

8

Vectors and matrices

Let A = {a1, . . . , an} be a finite set and let K be one of N,Z,Q,R.

We represent a mapping X : A → K by the vector (X(a1), . . . , X(an)).
We identify the mapping X and its vector representation.

Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be vectors.

The (scalar) product X · Y is the number x1y1 + . . . + xnyn (we do not
distinguish between row and column vectors!).

We write X ≥ Y to denote x1 ≥ y1 ∧ . . . ∧ xn ≥ yn, and X > Y to denote
x1 > y1 ∧ . . . ∧ xn > yn.

Let B = {b1, . . . , bm} be a finite set. A mapping C : A × B → K is
represented by the n×m matrix


C(a1, b1) C(a1, b2) · · · C(a1, bm)
C(a2, b1) C(a2, b2) · · · C(a2, bm)
· · · · · · · · · · · ·

C(an, b1) C(an, b2) · · · C(an, bm)


We also write C = (cij)i=1,...,n,j=1,...,m, where cij = C(ai, bj).

Let X = (x1, . . . , xm) be a vector and let C be a n×m matrix.

The product C ·X is the vector Y = (y1, . . . , yn) given by

y(i) = ci1x1 + . . .+ cimxm

For X = (x1, . . . , xn) the product X · C is the vector Y = (y1, . . . , ym)
given by

y(i) = c1ix1 + . . .+ cnixn

9

Complexity Classes

Time and space

A program is deterministic if it only has one possible computation for each
input.

A program is nondeterministic if it may execute different computations for
the same input.

A program (deterministic or not) runs in f(n)-time for a function f : N→ N
if for every input of length n (measured in bits) every computation takes at
most f(n) time.

Let C be a set of functions N → N (for example, C can be the set of all
polynomial functions).

A program runs in C-time if it runs in f(n) time for some function f(n) of
C. Often we speak of a “polynomial-time program” or “exponential-time”
program, meaning a program that runs in time f(n) for some polynomial
resp. exponential function f(n).

A program needs f(n)-memory or f(n)-space for a function f : N → N
if it uses at most f(n) bits of memory for every input of length n. The
f(n) bits do not include the memory needed to store the input. We speak of
“polynomial-space” or “exponential-space” programs.

10

Problems

A problem consists of a universe U of possible inputs, and a predicate P on
U assigning to each u ∈ U a value P (u) ∈ {0, 1}. For example, U can be
the set of all finite graphs, and P (u) the predicate with P (u) = 1 iff u has
a cycle.

A deterministic program solves a problem (U, P) if it terminates for every
input u ∈ U and returns P (u).

A nondeterministic program solves a problem (U, P) if for every u ∈ U :

• if P (u) = 1 then at least one computation of the program returns 1;
and

• if P (u) = 0 then every computation of the program returns 0.

Observe: if the program returns 1 then we know P (u) = 1, otherwise we
do not know anything.

11

Time and space classes

• P is the class of problems that can be solved by polynomial-time de-
terministic programs.

• NP is the class of problems that can be solved by polynomial-time
nondeterministic programs.

• PSPACE is the class of problems that can be solved by polynomial-
space deterministic programs.

• NPSPACE is the class of problems that can be solved by polynomial-
space nondeterministic programs.

• EXPTIME is the class of problems that can be solved by exponential-
time deterministic programs.

• EXPSPACE is the class of problems that can be solved by exponential-
space deterministic programs.

We have : P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE.

It is widely believed that all these inclusions are strict. However, all we
know for sure is the (rather trivial facts) P ⊂ EXPTIME and PSPACE ⊂
EXPSPACE. We also know

Theorem 1.1.1 [Savitch’s theorem]

NPSPACE = PSPACE

12

Reductions, hardness and completeness

A problem Π1 = (U1, P1) can be polynomially reduced to Π2 = (U2, P2) if
there is a function f : U1 → U2 satisfying the following two properties:

• for every u1 ∈ U1: P1(u1) = 1 iff P2(f(u1)), and

• there is a polynomial-time deterministic program that computes f .

For all the complexity classes above, if Π1 can be reduced to Π2 and Π2

belongs to the class, then so does Π1.

A problem is hard for a complexity class if all problems in the class can be
reduced to it.

A problem is complete for a class if it is hard for the class, and belongs to
the class.

13

1.2 Syntax

Definition 1.2.1 (Net, preset, postset)
A net N = (S, T, F) consists of a finite set S of places (represented by
circles), a finite set T of transitions disjoint from S (squares), and a flow
relation (arrows) F ⊆ (S × T) ∪ (T × S).

The places and transitions of N are called elements or nodes. The elements
of F are called arcs.

Given x ∈ S ∪ T , the set •x = {y | (y, x) ∈ F} is the preset of x and
x• = {y | (x, y) ∈ F} is the postset of x. For X ⊆ S ∪ T we denote
•X =

⋃
x∈X

•x and X• =
⋃
x∈X

x•.

Example. Let N = (S, T, F) be the net with S = {s1, . . . , s6}, T =
{t1, . . . , t4}, and

S = {s1, . . . , s6}
T = {t1, . . . , t4}
F = {(s1, t1), (t1, s2), (s2, t2), (t2, s1),

(s3, t2), (t2, s4), (s4, t3), (t3, s3),
(s5, t3), (t3, s6), (s6, t4), (t4, s5)}

t2t1 t3 t4

s1 s3 s5

s2 s4 s6

14

Definition 1.2.2 (Subnet)
N ′ = (S ′, T ′, F ′) is a subnet of N = (S, T, F) if

• S ′ ⊆ S,

• T ′ ⊆ T , and

• F ′ = F∩((S ′×T ′)∪(T ′×S ′)) (not F ′ ⊆ F∩((S ′×T ′)∪(T ′×S ′))).

t2t1 t3 t4

s1 s3 s5

s2 s4 s6

Subnets Non−subnets

t3 t2 t3

t2

s1

s4s4

t2

s3s3

s1

t1t1

15

Definition 1.2.3 (Path, circuit)
A path of a net N = (S, T, F) is a finite, nonempty sequence x1 . . . xn of
nodes of N such that (x1, x2), . . . , (xn−1, xn) ∈ F .

We say that a path x1 . . . xn leads from x1 to xn.

A path is a circuit if (xn, x1) ∈ F and (xi = xj) ⇒ i = j for every
1 ≤ i, j ≤ n.

N is connected if (x, y) ∈ (F ∪ F−1)∗ for every x, y ∈ S ∪ T .

N is strongly connected if (x, y) ∈ F ∗ for every x, y ∈ S ∪ T .

Proposition 1.2.4 Let N = (S, T, F) be a net.

(1) N is connected iff there are no two subnets (S1, T1, F1) and (S2, T2, F2)
of N such that

• S1 ∪ T1 6= ∅, S2 ∪ T2 6= ∅;
• S1 ∪ S2 = S, T1 ∪ T2 = T , F1 ∪ F2 = F ;

• S1 ∩ S2 = ∅, T1 ∩ T2 = ∅.

(2) A connected net is strongly connected iff for every (x, y) ∈ F there is
a path leading from y to x.

16

1.3 Semantics

Definition 1.3.1 (Markings)
Let N = (S, T, F) be a net. A marking of N is a mapping M : S → IN.

Given R ⊆ S we write M(R) =
∑
s∈R

M(s).

A place s is marked at M if M(s) > 0.

A set of places R is marked at M if M(R) > 0, that is, if at least one place
of R is marked at M .

Instead of mappings S → IN sometimes we use vectors. For this we fix
a total order on the places of N . With this convention we can represent a
marking M : S → IN as a vector of dimension |S|.
Markings are graphically represented by drawing black dots (“tokens”) on
the places.

Consider the net

t2t1 t3 t4

s1 s3 s5

s2 s4 s6

Let M be the marking given by

M(s1) = M(s4) = M(s5) = 1 M(s2) = M(s3) = M(s6) = 0

We denote this marking by the vector (1, 0, 0, 1, 1, 0).

17

Definition 1.3.2 (Firing rule, dead markings)
A transition is enabled at a marking M if M(s) ≥ 1 for every place s ∈ •t.
If t is enabled, then it can occur or fire, leading from M to the marking M ′

(denoted M t−→M ′) given by:

M ′(s) =


M(s)− 1 if s ∈ •t \ t•
M(s) + 1 if s ∈ t• \ •t
M(s) otherwise

A marking is dead if it does not enable any transition.

Example 1.3.3 Consider the net

t2t1 t3 t4

s1 s3 s5

s2 s4 s6

Let M be the marking (1, 0, 0, 1, 1, 0).

The marking enables t1 and t3, because •t1 = {s1} and •t3 = {s4, s5}.
Transition t2 is not enabled, because M(s2) = 0.

Transition t4 is not enabled, because M(s6) = 0.

We have

(1, 0, 0, 1, 1, 0)
t1−→ (0, 1, 0, 1, 1, 0)

(1, 0, 0, 1, 1, 0)
t3−→ (1, 0, 1, 0, 0, 1)

18

Definition 1.3.4 (Firing sequence, reachable marking)
Let N = (S, T, F) be a net and let M be a marking of N .

A finite sequence σ = t1 . . . tn is enabled at a marking M if there are mark-
ings M1,M2, . . . ,Mn such that M t1−→ M1

t2−→ M2
t3−→ . . .

tn−→ Mn. We
write M σ−→Mn.

The empty sequence ε is enabled at any marking and we have M ε−→M .

If M σ−→ M ′ for some markings M,M ′ and some sequence σ, then we
write M ∗−→M ′ and say that M ′ is reachable from M .

An infinite sequence σ = t1t2 . . . is enabled at a marking if there are mark-
ings M1,M2, . . . such that M t1−→M1

t2−→M2 −→ . . .

Example 1.3.5 Consider the net

t2t1 t3 t4

s1 s3 s5

s2 s4 s6

We have

(1, 0, 0, 1, 1, 0)
t1−−→ (0, 1, 0, 1, 1, 0)

↓ t3
(0, 1, 1, 0, 0, 1)

t2−−→(1, 0, 0, 1, 0, 1)
t4−−→(1, 0, 0, 1, 1, 0)

So M enables t1 t3 t2 t4 and the infinite sequence (t1 t3 t2 t4)
ω.

19

Exercises in AutomataTutor

This script contains training excercises in AutomataTutor. They can be
found in boxes like the one below this paragraph. To access them click
on the excercise name (in blue). The symbols before the excercise tell you
what how difficult an exercise is and what its main type is.

Difficulty Symbol

Standard �
Harder �
Challenging �

Type Symbol

Construction �
Algorithm execution 2
Proof �
Find a ... ü

Training Exercises in Automata Tutor:

• � ü All ones: Find a firing sequence that puts one token in every
place.

• � ü Shortest Firing Sequence: Try to find a firing sequence with as
little steps as possible that puts a token in a certain place.

• � ü Longest Firing Sequence: Try to find a firing sequence with as
many steps as possible.

20

https://automata-tutor.model.in.tum.de/linked/index/71442cb151be7a0d
https://automata-tutor.model.in.tum.de/linked/index/689be1424940dc6d
https://automata-tutor.model.in.tum.de/linked/index/6d48a7a278c6b11f

The Monotonicity Lemma

Proposition 1.3.6 A (finite or infinite) sequence σ is enabled at M iff every
finite prefix of σ is enabled at M .

Lemma 1.3.7 [Monotonicity lemma]
Let M and L be two markings of a net.

(1) If M σ−→ M ′ for a finite sequence σ, then (M + L)
σ−→ (M ′ + L)

for every marking L.

(2) If M σ−→ for an infinite sequence σ, then (M + L)
σ−→ for every

marking L.

Proof. (1): by induction on the length of σ.
Basis: σ = ε. ε is enabled at any marking.
Step: Let σ = τt (t transition) such that M τ−→M ′′ t−→M ′.

By induction hypothesis (M + L)
τ−→ (M ′′ + L).

From the firing rule and M ′′ t−→M ′ we get (M ′′ + L)
t−→ (M ′ + L).

So (M + L)
τt−→ (M ′ + L).

(2): We show that every finite prefix of σ is enabled at M + L. The re-
sult then follows from Proposition ??.

By Proposition ??, every finite prefix of σ is enabled at M .

That is, for every finite prefix τ of σ there is a marking M ′ such that M τ−→
M ′.

By (1) we get (M + L)
τ−→ (M ′ + L), and we are done. �

21

Petri nets and reachability graph

Definition 1.3.8 (Petri nets)
A Petri net, net system, or just a system is a pair (N,M0) where N is a
connected net N = (S, T, F) with nonempty sets of places and transitions,
and an initial marking M0 : S → IN.

A marking M is reachable in (N,M0) or a reachable marking of (N,M0) if
M0

∗−→M .

Definition 1.3.9 (Reachability graph)
The reachability graph G of a Petri net (N,M0) where N = (S, T, F) is the
directed, labeled graph satisfying:

• The nodes of G are the reachable markings of (N,M0).

• The edges of G are labeled with transitions from T .

• There is an edge from M to M ′ labeled by t iff M t−→M , that is, iff
M enables t and the firing of t leads from M to M ′.

22

Algorithm for computing the reachability graph

REACHABILITY-GRAPH((S, T, F,M0))
1 (V,E, v0) := ({M0}, ∅,M0);
2 Work := {M0};
3 while Work 6= ∅
4 do select M from Work ;
5 Work := Work \ {M};
6 for t ∈ enabled(M)
7 do M ′ := fire(M, t);
8 if M ′ /∈ V
9 then V := V ∪ {M ′}

10 Work := Work ∪ {M ′};
11 E := E ∪ {(M, t,M ′)};
12 return (V,E, v0)

The algorithm uses two functions:

• enabled(M): returns the set of transitions enabled at M .

• fire(M, t): returns the marking M ′ such that M t−→M ′.

The set Work may be implemented

• as a stack, in which case the graph will be constructed in a depth-first
manner, or

• as a queue for breadth-first.

Training Exercise in AutomataTutor:
� 2 Construct Reachability Graph: Construct the complete reachability
graph of the given Petri net step-by-step.

23

https://automata-tutor.model.in.tum.de/linked/index/4ae9850926822802

24

Chapter 2

Modelling with Petri nets

25

2.1 A buffer of capacity n

We model a buffer with capacity for n items. For n = 3:

Cell−1−full Cell−2−full Cell−3−full

Cell−3−emptyCell−2−emptyCell−1−empty

s1 s5

t3t2t1

s6s4s2

t4

s3

The model consists of n cells, each of them with capacity for one item.

The addition of a new item is modeled by the firing of t1.

The firing of transition ti models moving the item in cell i− 1 to cell i.

Firing tn+1 models removing one item.

There are reachable markings at which transitions t1 and tn+1 can occur
independently of each other, that is, an item can be added while another one
is being removed.

Training Exercise in AutomataTutor:
�2 Construct Reachability Graph: Create a reachability graph for a buffer
of capacity 2.

26

https://automata-tutor.model.in.tum.de/linked/index/252c10b2efc091e6

Reachability graph of the buffer with capacity 3

(10 10)

10 10)

(10 10 10)

(01

01

10) (10 10

10

(10

(01 01 01)

(01 01)

01 01)

(01 01 01)

t2

t3

t1

t1
t4

t1

t2

t4

t3t4

t1

t4

By inspection of the reachability graph we can see that a number of proper-
ties hold.

27

Reachability graph of the buffer with capacity 3

(10 10)

10 10)

(10 10 10)

(01

01

10) (10 10

10

(10

(01 01 01)

(01 01)

01 01)

(01 01 01)

t2

t3

t1

t1
t4

t1

t2

t4

t3t4

t1

t4

Consistency: no cell is simultaneously empty and full (that is, no marking
puts tokens on si and si+1 for i = 1, 3, 5).

28

Reachability graph of the buffer with capacity 3

(10 10)

10 10)

(10 10 10)

(01

01

10) (10 10

10

(10

(01 01 01)

(01 01)

01 01)

(01 01 01)

t2

t3

t1

t1
t4

t1

t2

t4

t3t4

t1

t4

1-boundedness: every reachable marking puts at most one token in a given
place.

29

Reachability graph of the buffer with capacity 3

(10 10)

10 10)

(10 10 10)

(01

01

10) (10 10

10

(10

(01 01 01)

(01 01)

01 01)

(01 01 01)

t2

t3

t1

t1
t4

t1

t2

t4

t3t4

t1

t4

Deadlock freedom: every reachable marking has at least one successor
marking.
Even more: every cell can always be filled and emptied again (every transi-
tion can occur again).

30

Reachability graph of the buffer with capacity 3

(10 10)

10 10)

(10 10 10)

(01

01

10) (10 10

10

(10

(01 01 01)

(01 01)

01 01)

(01 01 01)

t2

t3

t1

t1
t4

t1

t2

t4

t3t4

t1

t4

Capacity 3: the buffer has indeed capacity 3, that is, there is a reachable
marking that puts one token in s2, s4, s6.

31

Reachability graph of the buffer with capacity 3

(10 10)

10 10)

(10 10 10)

(01

01

10) (10 10

10

(10

(01 01 01)

(01 01)

01 01)

(01 01 01)

t2

t3

t1

t1
t4

t1

t2

t4

t3t4

t1

t4

Between any two reachable markings there is a path of length at most 6.

32

2.2 Train tracks

Four cities are connected by unidirectional train tracks building a circle.
Two trains circulate on the tracks.

We model the four tracks by places s1, . . . , s4.

A token on si means that there is train in the i-th track.

t1

s2

t2t3

s4

t4

s1

s3

Our task is to ensure that it will never be the case that two trains occupy the
same track.

Training Exercise in AutomataTutor:
�2 Construct Reachability Graph: Create a reachability graph for the train
tracks.

33

https://automata-tutor.model.in.tum.de/linked/index/70998d6f37186383

The four control places l1, . . . , l4 guarantee that no reachable marking puts
more than one token on si.

t1

s2

t2t3

s4

t4

s1

l3

l1

s3

l4 l2

This property can be proven by means of the reachability graph. Since every
reachable marking puts at most one token on a place, we denote a marking
by the set of places marked by it.

s2 l3

s2 l3

s2 l3

l2 s3

l2 s3

s3 l2

t3

t4

t4

t3t1

t1

t2

t2

{l1 s4}

{l1 s4} {s1 l4}

{s1 l4}

{l1 l4} {s1 s4}

34

Another train-tracks problem

Now we have 8 cities connected in a circuit, and three trains use the tracks.

To increase safety, we have to guarantee that there always is at least one
empty track between any two trains.

35

Here is a solution.

36

2.3 Dining philosophers

Four philosophers sit around a round table. There are forks on the table, one
between each pair of philosophers. A philosopher needs both forks to eat.

4

1 2

3

Philosophers agree to this protocol: Initially they think; when they get hun-
gry, they first take the left fork, then take the right fork, and start eating;
when they ae full, they return both forks simultaneously, and go back to
thinking. Here is a Petri net model.

•

• •

•

• •

• •
fork

fork

fork fork

l1

r1

b1
thinking

eating

r2

l2

b2
eating

thinking

l3

r3

b3

thinking

eating

r4

l4

b4

eating

thinking

37

Two interesting questions about this system:

• Can the system reach a deadlock?

• After a philosopher picks the first fork, will he or she eventually eat?

Do they hold?

•

• •

•

• •

• •
fork

fork

fork fork

l1

r1

b1
thinking

eating

r2

l2

b2
eating

thinking

l3

r3

b3

thinking

eating

r4

l4

b4

eating

thinking

Training Exercise in AutomataTutor:
� ü Construct Reachability Graph: Answer the first question by looking
for a firing sequence where no philosopher can eat.

38

https://automata-tutor.model.in.tum.de/linked/index/94a489ab996ef51

2.4 A logical puzzle

A man is travelling with a wolf, a goat, and a cabbage. The four come to a
river that they must cross.

There is a boat available for crossing the river, but it can carry only the man
and at most one other object.

The wolf may eat the goat when the man is not around, and the goat may
eat the cabbage when unattended.

Can the man bring everyone across the river without endangering the goat
or the cabbage? And if so, how?

We model the system with a Petri net.

The puzzle mentions:

• objects: Man, wolf, goat, cabbage, boat. Both can be on either side
of the river.

Objects and their states are modeled by places.

(We can omit the boat, because it is always going to be on the same
side as the man.)

• actions: Crossing the river, wolf eats goat, goat eats cabbage.

Actions are modeled by transitions.

39

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

WL

ML

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WLR

MLR

CLR

GLR

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

WL

ML

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WRL

MRL

CRL

GRL

Man

Wolf

Goat

Cabbage

Left bank

CL

GL

Right bank

Wolf

Goat

Cabbage

Man
MR

WR

GR

CR

WL

ML

WGL WGR

CGL CGR

40

2.5 Peterson’s algorithm

A solution to the mutual exclusion problem for two processes.

var m1,m2 : {false, true}, init false
hold : {1, 2}, init1

while true do
p1: m1 := true
p2: hold := 1
p3: await(¬m2 ∨ hold = 2)
p4: (critical section)
p4: m1 := false

od

while true do
q1: m2 := true
q2: hold := 2
q3: await(¬m1 ∨ hold = 1)
q4: (critical section)
q4: m2 := false

od

Petri net model:

p1

p2

p3

p4

q1

q2

q3

q4

m1=f

m1=t

m2=f

m2=t

hold=1

hold=2

u6 u1

u3
u2

u4 u5

v6v1

v3
v2

v4v5

We show how to generate it.

41

Control places

var m1,m2 : {false, true}, init false
hold : {1, 2}, init1

while true do
p1: m1 := true
p2: hold := 1
p3: await(¬m2 ∨ hold = 2)
p4: (critical section)
p4: m1 := false

od

while true do
q1: m2 := true
q2: hold := 2
q3: await(¬m1 ∨ hold = 1)
q4: (critical section)
q4: m2 := false

od

p1

p2

p3

p4

q1

q2

q3

q4

42

Variable places

var m1,m2 : {false, true}, init false
hold : {1, 2}, init1

while true do
p1: m1 := true
p2: hold := 1
p3: await(¬m2 ∨ hold = 2)
p4: (critical section)
p4: m1 := false

od

while true do
q1: m2 := true
q2: hold := 2
q3: await(¬m1 ∨ hold = 1)
q4: (critical section)
q4: m2 := false

od

p1

p2

p3

p4

q1

q2

q3

q4

m1=f

m1=t

m2=f

m2=t

hold=1

hold=2

43

Modelling hold := 1

var m1,m2 : {false, true}, init false
hold : {1, 2}, init1

while true do
p1: m1 := true
p2: hold := 1
p3: await(¬m2 ∨ hold = 2)
p4: (critical section)
p4: m1 := false

od

while true do
q1: m2 := true
q2: hold := 2
q3: await(¬m1 ∨ hold = 1)
q4: (critical section)
q4: m2 := false

od

The execution of hold := 1 is modeled by two transitions, depending on
the previous value of hold .

p1

p2

p3

p4

q1

q2

q3

q4

m1=f

m1=t

m2=f

m2=t

hold=1

hold=2

u3
u2

44

Modelling await(¬m2 ∨ hold = 2)

var m1,m2 : {false, true}, init false
hold : {1, 2}, init1

while true do
p1: m1 := true
p2: hold := 1
p3: await(¬m2 ∨ hold = 2)
p4: (critical section)
p4: m1 := false

od

while true do
q1: m2 := true
q2: hold := 2
q3: await(¬m1 ∨ hold = 1)
q4: (critical section)
q4: m2 := false

od

Again two transitions, due to the disjunction in the guard.

p1

p2

p3

p4

q1

q2

q3

q4

m1=f

m1=t

m2=f

m2=t

hold=1

hold=2

u4 u5

45

Modelling m1 := true and m1 := false

var m1,m2 : {false, true}, init false
hold : {1, 2}, init1

while true do
p1: m1 := true
p2: hold := 1
p3: await(¬m2 ∨ hold = 2)
p4: (critical section)
p4: m1 := false

od

while true do
q1: m2 := true
q2: hold := 2
q3: await(¬m1 ∨ hold = 1)
q4: (critical section)
q4: m2 := false

od

In principle we would need two transitions for each of m1 := true, and
m1 := false, four in total, but we observe that two of them can never occur,
and remove them to simplify the picture.

p1

p2

p3

p4

q1

q2

q3

q4

m1=f

m1=t

m2=f

m2=t

hold=1

hold=2

u6 u1

46

2.6 The action/reaction protocol

Two agents must repeatedly exchange informations.

When an agent requests an information from the other one, it must wait for
an answer before proceeding.

Basic model:

idlel

waitl

donel

idler

waitr

doner

actionl

reactionl actionr

reactionr

The task is to design a protocol for the exchanges.

In particular, the protocol must guarantee that it is never the case that both
processes are waiting from an answer from the other one.

Training Exercise in AutomataTutor:
� ü Action/reaction protocol 1: Find a firing sequence where the first
attempt at the action/reaction protocol reaches a deadlock.

47

https://automata-tutor.model.in.tum.de/linked/index/623c72247a347cd9

First attempt

idlel

waitl

donel

idler

waitr

doner

requestlr

answerrl

requestrl

answerlr

actionl

reactionl actionr

reactionr

This solution can reach a deadlock: both processes can issue a request si-
multaneously, after which they wait forever for an answer.

We call such a situation a crosstalk.

48

First attempt

idlel

waitl

donel

idler

waitr

doner

requestlr

answerrl

requestrl

answerlr

actionl

reactionl actionr

reactionr

Deadlocked crosstalk marking

49

Second attempt

idlel

waitl

donel

idler

waitr

doner

rlr

answerrl

rrl

answerlr

actionl

reactionl actionr

reactionr

ctl ctr

Processes can detect that a crosstalk has taken place.

If a process detects a crosstalk, it answers the request of its partner, and then
continues to wait for an answer to its own request.

This solution has no deadlocks (prove it!), but a non-cooperative process
can always get answers to its requests, without ever answering any request
from its partner.

The solution is deadlock-free, but unfair.

50

Third attempt

il

wl

dl

ir

wr

dr

rlr

arl

rrl

alr

al

rl ar

rr
ctl

ctr

This attempt is fair.

If a process detects a crosstalk, it answers the request of its partner; however,
after that it is only willing to receive an answer to its own question.

Unfortunately, the system has again a deadlock (can you find it?).

Training Exercise in AutomataTutor:
� ü Action/reaction protocol 2: Find a firing sequence where the third
attempt at the action/reaction protocol reaches a deadlock.

51

https://automata-tutor.model.in.tum.de/linked/index/463877abb039d3fe

Fourth attempt

il

wl

dl

ir

wr

dr

rlr

arl

rrl
alr

end-of-round-l

end-of-round-r

al

rl ar

rr

ctl ctr

This final attempt is both deadlock-free and fair.

The protocol works in rounds.

A “good” round consists of a request and an answer.

In a “bad” round both processes issue a request and they reach a crosstalk
situation. Then both processes (i) detect the crosstalk, (ii) send each other
an “end-of-round” signal, (iii) wait for the same signal from their partner,
and (iv) move to their initial states.

The solution is not perfect. In the worst case there are only bad rounds, and
no requests are answered at all.

52

2.7 Some variants of the main model

Definition 2.7.1 (Nets with place capacities)
A net with capacities N = (S, T, F,K) consists of a net (S, T, F) and a
mapping K : S → IN.

A transition t is enabled at a marking M of N if

• M(s) ≥ 1 for every place s ∈ •t and

• M(s) < K(s) for every place s ∈ t• \ •t

The notions of firing, Petri net with capacities, etc. are defined as in the
capacity-free case.

53

Definition 2.7.2 (Nets with weighted arcs)
A net with weighted arcs N = (S, T,W) consists of

• two disjoint sets S and T of places and transitions; and

• a weight function W : (S × T) ∪ (T × S)→ IN.

A marking M enables a transition t if M(s) ≥ W (s, t) for every s ∈ S.

If M enables t then t can occur, leading to the marking M ′ defined by

M ′(s) = M(s) +W (t, s)−W (s, t)

for every place s.

In Petri nets with weighted arcs, the preset and postset of a transition is not
a set, but a multiset, i.e., a set that can contain multiple copies of an object.

If, say, W (s, t) = 3, then the preset of t contains 3 copies of the place s.

Training Exercises in Automata Tutor:

• � � Weighted arcs 1: Make a Petri net deadlock-free by changing
the weights of the transitions.

• � � Weighted arcs 2: Find a initial marking such that the Petri Net
is deadlock free.

54

https://automata-tutor.model.in.tum.de/linked/index/7cf707373fb0c46
https://automata-tutor.model.in.tum.de/linked/index/59bbd47e23d34a26

Definition 2.7.3 (Nets with inhibitor arcs)
A net with inhibitor arcs N = (S, T, F, I) consists of a net (S, T, F) and an
additional set I ⊆ S × T of inhibitor arcs.

A marking M enables a transition t if

• M(s) > 0 for every place s such that (s, t) ∈ F , and

• M(s) = 0 for every place s such that (s, t) ∈ I .

If M enables t then t can occur, leading to the marking M ′, defined as for
standard Petri nets (M ′ depends only on F , not on I).

Definition 2.7.4 (Nets with reset arcs)
A net with reset arcs N = (S, T, F,R) consists of a net (S, T, F) and an
additional set R ⊆ S × T of reset arcs.

A marking M enables a transition t if M(s) > 0 for every place s such that
(s, t) ∈ F .

If M enables t then t can occur, leading to the marking obtained after doing
the folllowing:

• Remove one token from every place s such that (s, t) ∈ F .

• Remove all tokens from every place s such that (s, t) ∈ R.

• Add one token to every place s such that (t, s) ∈ F .

55

2.8 Petri nets with weighted arcs: Some models

Readers and writers

A set of processes has access to a database.

Processes can read concurrently, but a process can only write if no other
processes reads nor writes.

Ri Si

ri

si

m

m

wj

Vj

vj

m

Wj

Ri: Process i reads

Process i idleSi:

ri: Process i starts reading

si: Process i stops reading

Wi:

Vj :

Process j writes

Process j idle

wj : Process j starts writing

vj : Process j stops writing

m readers n writers

Exercise: Modify the Petri net so that reading processes can not indefinitely
prevent another process from writing.

56

Population protocols

Population protocols are a model of distributed computation by anonymous,
identical, finite-state agents.

A population protocol consists of

• a set Q of states, and

• a set T ⊆ Q2 ×Q2 of transitions.

A transition
(
(q1, q2), (q3, q4)

)
∈ T is denoted q1, q2 7→ q3, q4 .

A configuration is a multiset of states.

A configuration, say C, such that C(q1) = 2 and C(q2) = 1, indicates that
currently there are two agents in state q1 and one agent in state q2.

The Petri net modeling a protocol has one place for each state, and one
transition for every transition of the protocol.

If a transition t of the Petri net models a transition q1, q2 7→ q3, q4 of the
protocol, then

•t = Hq1, q2I and t• = Hq3, q4I

(Here Hq, q′I denotes the multiset containing one copy of q and one of q′.
If q = q′, then Hq, q′I contains two copies of q. In particular, Hq, qI 6= HqI.)

An agent in state q is modeled by a token in place q.

A configuration C with C(q) agents in state q is modeled by the marking
that puts C(q) tokens in place q for every q ∈ Q.

57

An example

States: AY,AN,PY,PN

Transitions:

Nr. Transition

1 AY,AN 7→ PN,PN

2 Aα,Pβ 7→ Aα,Pα α, β ∈ {Y,N}

Associated Petri net:

AY AN

PY PN

2

58

Informal definition of the predicate computed by a protocol

Population protocols are designed to compute predicates ϕ : Nk → {0, 1}.
A protocol for ϕ has a distinguished set of input states {q1, q2, . . . , qk} ⊆ Q.

Each state of Q, initial or not, is labeled with an output, either 0 or 1.

Assume for example k = 2. In order to compute ϕ(n1, n2), we first place
ni agents in qi for i = 1, 2, and 0 agents in all other states.

This is the initial configuration of the protocol for the input (n1, n2). Then
we let the protocol run.

The protocol satisfies the following property for every input (n1, n2):

there exists b ∈ {0, 1} such that in every fair run starting at
the initial configuration for (n1, n2) (fair runs are defined in the
next slide), eventually all agents reach states labeled with b, and
stay in such states forever.

So, intuitively, in all fair runs from (n1, n2) all agents eventually “agree” on
the boolean value b.

By definition, b is the result of the computation, i.e, the ϕ(n1, n2) = b.

59

Formal definition of the predicate computed by a protocol

Fix a Petri net N = (S, T,W) with |•t| = 2 = |t•| for every transition t.
(The net of a procotol.)

Fix a set I = {p1, . . . , pk} of input places, and a function O : P → {0, 1}.
A marking M of N is a b-consensus if M(p) > 0 implies O(p) = b.

A b-consensus M is stable if every marking reachable from M is also a
b-consensus.

A firing sequence M0
t1−−→M1

t2−−→M2 · · · of N is fair if

• it is finite and leads to a deadlock marking; or

• it is infinite and the following condition holds for all markingsM,M ′

and t ∈ T :

if M t−→M ′ and M = Mi for infinitely many i ≥ 0

then

Mj
tj+1−−−→Mj+1 = M

t−→M ′ for infinitely many j ≥ 0.

N computes the value b for the input v = (n1, . . . , nk) if the initial marking
Mv given by Mv(pi) = ni for every 1 ≤ i ≤ k and Mv(p) = 0 for every
P \ I satisfies:

every fair firing sequence starting at Mv reaches a b-consensus.

60

An incorrect protocol for the majority predicate Y > N

States: AY,AN,PY,PN

Transitions:

Nr. Transition

1 AY,AN 7→ PN,PN

2 Aα,Pβ 7→ Aα,Pα α, β ∈ {Y,N}

Initial states: AY,AN

Associated Petri net:

AY AN

PN PY

2

61

A correct but slow protocol for majority.

Nr. Transition

1 AY,AN 7→ PN,PN

2 Aα,Pβ 7→ Aα,Pα α, β ∈ {Y,N}
3 PN,PY 7→ PN,PN

AY AN

PN PY

2

2

62

A correct and efficient protocol for majority.

Nr. Transition

1 AY,AT 7→ AY,PY

2 AY,AN 7→ AT,PT

3 AT,AN 7→ AN,PN

4 AT,AT 7→ AT,PT

5 Aα,Pβ 7→ Aα,Pα α, β ∈ {Y,T,N}

63

2.9 Three Petri net models from the literature

A biological system.

In biology models, tokens represent molecules or cells, and transitions cor-
respond to chemical reactions or biological processes.

This Petri net is taken from

“Executable cell biology”, by J. Fisher and T.A. Henzinger (Nature biotech-
nology, 2007).

NATURE BIOTECHNOLOGY VOLUME 25 NUMBER 11 NOVEMBER 2007 1243

A hierarchical structure allows one to view a system at different levels
of detail (e.g., whole organism, tissues, cells; Fig. 4a). Models of this
kind have been used to model T-cell activation and differentiation8,9,
as well as C. elegans development10,11,13,14.

Interacting state machine models are particularly suitable for
describing mechanistic models of biological systems that are well
understood qualitatively. Such models do not require quantitative data
relating to the number of molecules and reaction rates. They allow the
creation of abstract high-level models and the application of strong
analysis tools such as model checking. The possibility of hierarchical
structuring is extremely useful in cases where the behavior is distrib-
uted over many cells and where multiple copies of the same process
are executed in parallel.

There are many different languages to express interacting state
machine models. Using the visual language (Box 2) of Statecharts15,

Kam et al. developed a model that described the various stages in
the life span of a T-cell and the transitions between these stages8.
The initial T-cell model was followed by a more extensive animated
model of T-cell differentiation in the thymus9. A major advantage of
Statecharts compared to other state-based formalisms, such as Reactive
Modules16, is the fact that this language is visual. The user can draw
states and state changes and the tool automatically creates an execut-
able model, enabling relatively easy and intuitive programming even
for nonspecialists. Efroni et al. used reactive animation (Box 2)9,53,
where a reactive system drives the display of animation software to
visualize the model. These studies were followed by ongoing efforts to
model C. elegans development10,11,13,14, which used Statecharts and a
visual language called Live Sequence Charts54 and more recently a lan-
guage called Reactive Modules16 that supports compositional analysis
techniques (Box 2).

c

a1

a2

a3

a4

b

a Cell Size

Cln3
MBF

Sic1

SBF

Cln1,2

Cdh1

Cdc20&Cdc14

Clb1,2

Swi5

Mcm1/SFF

Clb5,6

b

Figure 2 Boolean networks. (a) An isolated part of a Boolean network representing the behavior of one substance. Arrows indicates activation and bars
denote inhibition. The next value of the substance is determined by the sum of activations minus the sum of inhibitions. In this example, if we denote the
values of a1, a2, a3 and a4 at time t by a1, a2, a3 and a4, then the value of substance b at time t + 1 will be 1 if a1 + a2 – (a3 + a4) is positive and 0 otherwise.
Sometimes arrows are given strengths and then we take the sum of strengths of activation arrows whose source is active (that is, set to 1) minus the sum of
strengths of inhibition arrows whose source is active. (b) Simplified cell-cycle network of the budding yeast. (c) Analysis of the yeast cell-cycle network using
Boolean networks. Each dot represents a state of the proteins in the system, where each of the proteins is either active or inactive. Each arrow represents
a transition from one state to another. The blue transitions correspond to the cell-cycle sequence. Starting from any point in the graph, in order to avoid
reaching the stable state at the bottom of the diagram, one would have to continuously perturb the system. Hence, the normal behavior converges fast to the
stable state at the bottom of the diagram, corresponding to the G1 stationary state in which the cell awaits a signal that will start another round of division.
This demonstrates that the yeast cell-cycle regulatory network is stable and robust for its function. Figures reproduced with permission from ref. 34.

p1

p2

p3

t1

t2

t3

t4

2

2

2

3

2

21

1

1

1

Trp TrpE

TrpRTrpext

t3
t3 t3 t2 t2 t4

t6 t7 t5 t8 t9

+ +– –

Trpext Trpext

TrpE TrpE Trp Trp

TrpR TrpR

2

2 2

2
2

2

2 2

a

b

c
Figure 3 Petri nets. (a) A simple, standard
Petri net. The circles denote places, whereas
the boxes denote transitions. The distribution
of tokens (black dots) in the places at a given
time defines a marking. Transitions change
the marking by removing a token from each
incoming arrow and adding a token to each
outgoing arrow. (b) Simplified logical regulatory
graph for the biosynthesis of tryptophan in
E. coli. Each node of the regulatory graph
represents an active component: tryptophan
(Trp), the active enzyme (TrpE) and the active
repressor (TrpR). The node marked by a
rectangle accounts for the import of Trp from
external medium. All nodes are binary (that
is, can take the value 0 or 1), except Trp,
which is represented by a ternary variable
(taking the values 0, 1, 2). Arrows represent
activation and bars denote inhibition. (c) Petri
net of the Trp regulatory network. Each of the
four components of b is represented by two complementary places and all the different situations that lead to a change of the state of the system are
modeled by one of the nine transitions (t1–t9). Figures reproduced with permission from ref. 46.

REV IEW

Part (a) is a standard weighted Petri net.

Part (b) shows a simplified logical regulatory graph for the biosynthesis of
tryptophan in E. coli. Each node of the regulatory graph represents an ac-
tive component: tryptophan (Trp), the active enzyme (TrpE) and the active
repressor (TrpR). The node marked by a rectangle accounts for the import
of Trp from external medium. Arrows represent activation and bars denote
inhibition (inhibitor arcs).

Part (c) shows the Petri net of the Trp regulatory network.

64

A flexible manufacturing system.

This Petri net is taken from

“Optimal Petri-Net-Based Polynomial-Complexity Deadlock-Avoidance Poli-
cies for Automated Manufacturing Systems” by Xing et al. (IEEE Trans.
on Systems, Man, and Cybernetics, 2009).

196 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 1, JANUARY 2009

saturated. Similarly, the firing of t6 requires r2 and leads θ1

saturated.
If a marked S3PR contains ξ-resources, the controller given

in Definition 7 cannot guarantee that the controlled system is
live. Moreover, note that a ξ-resource is related with many
MPRT-circuits, i.e., it is contained in at least two MPRT-
circuits. To obtain a deadlock-free controller for this kind of
Petri-net models in the following, we will first reduce Petri-net
models by ξ-resources so that the reduced ones do not contain
any ξ-resources but still fall into the class of S3PRs. By apply-
ing the design method for optimal polynomial-complexity DAP
to the reduced models, a suboptimal polynomial-complexity
DAP for a general S3PR is obtained.

Definition 8: Let (N,M0) = (P ∪ P 0 ∪ PR, T, F,M0) be
a marked S3PR and r a ξ-resource of (N,M0). The reduced
model of (N,M0) on r is a Petri net

(N(r),MA0) = (PA ∪ P 0 ∪ PAR, TA, FA,MA0)

which can be obtained by the following three steps.

Step 1) Delete the resource place r and its related arcs from
N , and let PAR = PR \ {r}.

Step 2) For each transition t ∈ P •
AR ∩ •r, for example,

r1 ∈ PAR such that (r1, t) ∈ F and (t, r) ∈ F ,
delete (r1, t) from S3PR. Let ps =(p) t. If |p•s| =
1, then ∀ts ∈ •ps, add (r1, ts) if (ts, r1) /∈ F and
delete (ts, r1) if (ts, r1) ∈ F . If |p•s| = k > 1, let
p•s = {t1, t2, . . . , tk} and (r)ti = ri, i = 1, 2, . . . , k,
and then, replace ps with k operation places
and, ∀ts ∈ •ps, with k transitions, i.e., delete
ps and its related arcs and add k operation
places, denoted as ps1, ps2, . . . , psk. Let ts ∈ •ps

and ps0 =(p) ts. Delete ts and its related arcs,
add k transitions, denoted as ts1, ts2, . . . , tsk, (in
which case, we will say that ts is separable
and is separated into ts1, ts2, . . ., and tsk) and
add arcs (ps0, tsi), (tsi, psi), (psi, ti), (ri, tsi), and
(tsi, rs), i = 1, 2, . . . , k. If for a resource place r′

and a transition t′ such that (r′, t′) and (t′, r′) exist
at the same time, then delete (r′, t′) and (t′, r′). Let
TS ⊆ T denote the set of all separable transitions
in N .

Step 3) After steps 1) and 2), the sets of the existing opera-
tion places, transitions, and arcs are denoted as PA,
TA, and FA, respectively. MA0 is the initial marking
of N(r), under which only places in P 0 ∪ PAR are
marked as in (N,M0).

The transition set T of N , based on the separation, can be
divided into two parts: TS and T \ TS. Correspondingly, all
transitions in N(r) can be divided into two sets: T1(r) and
T2(r), where T1(r) is the set of transitions that are also in N (in
this case, T1(r) = T \ TS, and we will use the same symbol
to denote the same transition in two sets) and T2(r) is the set
of all transitions that are obtained by separating some separable
transitions in TS.

Note that in a reduced Petri-net model N(r) some transitions
have no input and output resource places. For such a transition,

Fig. 2. Petri-net model (N, M0) of an flexible manufacturing cell.

we can consider its input and output operation places as one
operation place because they use the same resource type. This
way, (N(r),MA0) can be considered as a marked S3PR, in
which the concept of MPRT-circuits can be used. Thus, the
conclusions in (N,M0) hold in (N(r),MA0). To be pointed out
later, the reduction procedure can be repeated for any number
of times, and the reduced model will remain as S3PR. Thus, if
R(θ1) ∩ R(θ2) has multiple resources, we can reduce them one
by one to an S3PR without ξ-resources.

Example 2: The flexible manufacturing cell considered in
[4] has four machines m1−m4. Each machine can hold two
parts at the same time. Moreover, the cell contains three ro-
bots r1, r2, and r3, and each of them can hold one part.
Its Petri-net model (N,M0) is shown as in Fig. 2. The
set of resource places is R = {m1,m2,m3,m4, r1, r2, r3} =
(p20, p21, p22, p23, p24, p25, p26). The capacities of resources
are Ψ(mi) = 2, i = 1, 2, 3, 4, and Ψ(ri) = 1, i = 1, 2, 3. β1 =
t12p22t18p25t12 and β2 = t13p25t17p23t13 are two MPRT-
circuits, and R(β1) ∩ R(β2) = {p25} = {r2}. p25(r2) is a
ξ-resource and is used five times in the system. Reducing
(N,M0) on r2 is to delete places p25 and its related arcs from
Fig. 2 and delete and add some arcs based on Definition 8.
The reduced system Petri-net model (N(r2),MA0) is shown
in Fig. 3 and is still an S3PR.

If (N(r),MA0) does not contain ξ-resources, one can derive
its optimal DAP with polynomial complexity ρ∗A, and the
controlled reduced Petri-net model ρ∗A‖(N(r),MA0) is live.
Thus, it can be used as a live supervisor for (N,M0) under the
policy defined in the following.

Definition 9: Let (N,M0) = (P ∪ P 0 ∪ PR, T, F,M0) be a
marked S3PR and r a ξ-resource. (N(r),MA0) is a reduced
Petri-net model on r and does not contain ξ-resources. ρ∗A is the
optimal DAP with polynomial complexity for (N(r),MA0).
Define a supervisory policy ζ for (N,M0), as follows.
∀t ∈ T \ TS, ζ permits firing of t in (N,M0) ⇔ t can be

fired in ρ∗A‖(N(r),MA0). t fires in (N,M0) and (N(r),MA0)
at same time.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on January 4, 2009 at 02:37 from IEEE Xplore. Restrictions apply.

It shows a flexible manufacturing cell with four machines, modeled by
places p20 to p23, and three robots, modeled by places p24 to p26.

Tokens model parts, and so, for example, a token at p20 means that the part
represented by the token is currently being processed at the first machine.

Each machine can hold two parts at the same time, and each robot can hold
one part.

65

A business process.

This Petri net is taken from

“Business process management as the “Killer App” for Petri nets” by van
der Aalst (Software and Systems Modeling, 2014).

It shows a Petri net model of the life-cycle of a request for compensation.

A transition may carry a label referring to some activity.

Transitions without a label are “silent”.

66

2.10 Analysis problems

We introduce formal properties capturing questions of interest about the
models of the chapter.

Definition 2.10.1 (System properties)
Let (N,M0) be a Petri net with at least one place and one transition.

(N,M0) is deadlock free if every reachable marking enables at least one
transition (that is, no reachable marking is dead).

(N,M0) is live if for every reachable marking M and every transition t
there is a marking M ′ ∈ [M〉 that enables t. (Intuitively: every transition
can always fire again).

(N,M0) is bounded, if for every place s there is a number b ≥ 0 such that
M(s) ≤ b for every reachable marking M .

M0 is a bounded marking of N if (N,M0) is bounded.

The bound of a place s of a bounded Petri net (N,M0) is the number

max{M(s) |M ∈ [M0〉}

(N,M0) is b-bounded if every place has bound at most b.

67

Problems studied throughout the course

• Deadlock freedom: is a given Petri net (N,M0) deadlock-free?

• Liveness: is a given Petri net (N,M0) live?

• Boundedness: is a given Petri net (N,M0) bounded?

• b-boundedness: given b ∈ N and a Petri net (N,M0), is (N,M0)
b-bounded?

• Reachability: given a Petri net (N,M0) and a marking M of N , is
M reachable?

• Coverability: given a Petri net (N,M0) and a marking M of N , is
there a reachable marking M ′ ≥M?

Simple connections:

Proposition 2.10.2

(1) Liveness implies deadlock freedom.

(2) If (N,M0) is bounded then there is a number b such that (N,M0) is
b-bounded.

(3) If (N,M0) is bounded, then it has finitely many reachable markings.

Proof. (1) follows immediately from the definitions. (2) and (3) follow from
the definitions and from the fact that a Petri net has finitely many places. �

68

Sometimes we also use the following notion

Definition 2.10.3 (Well-formed nets) A net N is well formed if there is a
marking M0 such that the Petri net (N,M0)is live and bounded.

and consider the following problem:

• Well-formedness: is a given net well formed?

69

70

Part II

Analysis Techniques for Petri
Nets

71

Chapter 3

Decision procedures

3.1 Decision procedures for bounded Petri nets

A bounded Petri net has finitely many reachable markings, and so the reach-
ability graph can be computed and stored, at least in principle.

If the reachability graph is available, then it is easy to give algorithms for
b-Boundedness, Coverability, Reachability, and Deadlock-freedom running
in linear time in the size of the reachability graph.

We show now that this is also the case for Liveness.

73

Deciding liveness of a bounded Petri net

Let G = (V,E) be the reachability graph of a Petri net (N,M0).

Define the equivalence relation ∗←→⊆ V × V as follows:

M
∗←→M ′ gdw. M ∗−→M ′ and M ′ ∗−→M .

A strongly connected component (SCC) of G is a graph (V ′, E ′) where
V ′ ⊆ V is an equivalence class of of ∗←→ and E ′ = E ∩ (V ′ × V ′).

Strongly connected components are partially ordered by the relation < de-
fined as follows:

(V ′, E ′) < (V ′′, E ′′) iff V ′ 6= V ′′ and ∀M ′ ∈ V ′,M ′′ ∈ V ′′ : M ′′ ∈ [M ′〉 .

The bottom SCCs of G are the maximal SCCs of G with respect to <.

74

Proposition 3.1.1 Let (N,M0) be a bounded Petri net.

(N,M0) is live iff for every bottom SCC of the reachability graph of (N,M0)
and for every transition t, some marking of the SCC enables t.

Proof. (⇒) Assume (N,M0) is live.

Let M be a marking of a bottom SCC of the reachability graph of (N,M0),
and let t be a transition of N .

By the definition of liveness, some marking reachable from M enables t.

By the definition of bottom SCC, this marking belongs to the same bottom
SCC as M .

(⇐) Assume that for every bottom SCC of the reachability graph of (N,M0)
and for every transition t, some marking of the SCC enables t.

We show that (N,M0) is live.

Let M be an arbitrary marking reachable from M0, and let t be a transition.

By the definition of a bottom SCC, there is a bottom SCC such that every
marking of it is reachable from M .

Since some marking of the SCC enables t, we are done. �

The condition of Proposition ?? can be checked in linear time using Tarjan’s
algorithm, which computes all the SCCs of a directed graph in linear time.
The algorithm can be easily adapted to compute the bottom SCCs.

75

3.1.1 Complexity for 1-bounded Petri nets

Membership in PSPACE

A 1-bounded Petri net with n places may have up to 2n reachable markings.

Therefore, all algorithms based on the construction of the reachability graph
have exponential worst-case runtime. They only show that the problems are
in EXPTIME.

Using Savitch’s theorem we can show that they are in PSPACE. For ex-
ample, the following polynomial-memory nondeterministic program solves
Reachability:

Input: a 1-bounded Petri net (N,M0), a goal markingMg (a marking whose
reachability should be checked).

The program has a variable M ; initially M = M0.

A 1-bounded marking can be stored using 1 bits per place. SoM uses linear
space in the input.

While M 6= Mg, the program nondeterministically chooses a transition
t enabled at M , computes the marking M ′ such that M t−→M ′, and sets
M := M ′.

If the marking is not reachable, this program does not terminate. If you
want the program to always terminate, add a n-bit counter that counts the
number of steps.

Since the Petri net has at most 2n reachable markings, if M is reachable
then it is reachable in at most 2n − 1 steps.

If the counter reaches the value 2n−1 without reaching the marking M , the
program stops.

76

PSPACE-hardness

We now show that Coverability, Reachability, and Deadlock-freedom, and
Liveness are PSPACE-hard, and so PSPACE-complete.

Turing machines and linearly bounded automata. A (deterministic)
Turing machine is a tuple (Q,Γ, δ, q0, F), where

• Q is the set of states

• Γ is the set of tape symbols (containing a special blank symbol B),

• δ : (Q× Γ)→ Q× Γ× {R,L} is the transition function,

• q0 the initial state, and

• F the set of final states.

The size of a Turing machine is the number of bits needed to encode its
transition relation.

A linearly bounded automaton is a Turing machine that can only work on a
tape with n cells, where n is the size of the machine.

We assume that two special first and last cells are marked with two special
symbols, say $ and #, and that the transition function guarantees that the
head never moves to the left of the first cell or to the right of the last cell.

77

Most questions about the computations of linearly bounded automata are
PSPACE-hard.

The acceptance problem is PSPACE-complete:

Given: a linearly bounded automaton A of size n

Decide: Does A accept, i.e., does it accept from the configura-
tion $ q0B

n #?

The problem remains PSPACE-complete even for automata with one single
accepting state or one single accepting configuration.

The acceptance problem can be easily reduced to many other problems in
polynomial time, so they are PSPACE-hard too. Examples are:

• does A halt?,

• does A visit a given state?,

• does A visit a given configuration?

• does A visit a given configuration infinitely often?

78

Simulating linearly bounded automata with 1-bounded Petri nets.

A linearly bounded automaton of size n can be simulated
by a 1-bounded Petri net of size O(n2). Moreover, there is
a polynomial time procedure which constructs this Petri net.

Let A = (Q,Γ, δ, q0, F) be a linearly bounded automaton of size n.

Let C = {c1, . . . , cn} be the set set of cells of A.

We define the simulating Petri net N(A).

Places. N(A) has:

• a place s(q) for each state q ∈ Q,

• a place s(c) for each cell c ∈ C,

• a place s(a, c) for each symbol a ∈ Γ and for each cell c ∈ C.

A token on s(q) signals that A is currently is in state q.

A token on s(c) signals that A currently reads the cell c.

A token on s(a, c) signals that the cell c contains the symbol a.

The total number of places is |Q|+ n · (1 + |Γ|).

79

Transitions. The transitions of N(A) are determined by the transition re-
lation δ.

For example, if δ(q, a) = (q′, a′, R), then, for each cell ci but the last, N(A)
has a transition t(q, a, ci) with

• input places s(q), s(ci), and s(a, ci), and

• output places s(q′), s(a′, ci), and s(ci+1).

The total number of transitions is bounded by |Q| · |Γ| · n.

Since the size of A is O(|Q| · |Γ|), the number of transitions is O(n2).

Initial marking. The initial marking of N(A) puts

• one token on s(q0),

• one token on s(c1), and

• one token on the place s(B, ci) for 1 ≤ i ≤ n (recall: B denotes the
blank symbol).

The total size of the Petri net is O(n2).

80

Each move of A corresponds to the firing of one transition.

The configurations reached by A along a computation correspond to the
markings of N(A) reached along its corresponding run.

These markings put one token in exactly one of the places {s(q) | q ∈ Q},
in exactly one of the places {s(c) | c ∈ C}, and in exactly one of the places
{s(a, c) | a ∈ Γ} for each cell c ∈ C.

So N(A) is 1-bounded.

In order to answer a question about a linearly bounded automaton A we
can construct the net N(A), which is only polynomially larger than A, and
solve the corresponding question about the runs of A.

For instance, the question “does the computation of A terminate?” corre-
sponds to “has N(A) a deadlock?”

81

Since N(A) is only polynomially larger than A: every PSPACE-hard prob-
lem for linearly bounded automata translates into a PSPACE-hard problem
for 1-bounded Petri nets.

For instance:

• A reduction from “does A ever visit a given control state?” proves
PSPACE-hardness of Coverability for 1-bounded Petri nets.

• A reduction from “does A ever visit a given configuration?” proves
PSPACE-hardness of Reachability for 1-bounded Petri nets.

Further PSPACE-hard problems can be obtained by reduction from Cov-
erability or Reachability. For instance, Coverability can be reduced (exer-
cise!) to the following problems :

• is there a reachable marking that concurrently enables two given tran-
sitions t1 and t2?

• can a given transition t ever occur?

• is there a run containing a given transition t infinitely often?

More difficult exercise: prove that Liveness of 1-bounded nets is also
PSPACE-hard.

82

3.2 Decision procedures for general Petri nets

We study the decidability and complexity of Boundedness, Coverability,
Reachability, Deadlock-freedom and Liveness for general Petri nets, not
necessarily bounded.

The algorithms of the bounded case no longer work, because the construc-
tion of the reachability graph may not terminate.

3.2.1 A decision procedure for Boundedness

The b-Boundedness problem is clearly decidable: if the input Petri net
(N,M0) has n places, then the number of b-bounded markings ofN is nb+1.

So we can decide b-Boundedness by constructing the reachability graph
of (N,M0) until either the construction terminates, or we find a reachable
marking that is not b-bounded.

The same idea gives a semi-decision procedure for Boundedness: again, we
construct the reachability graph. If the input (N,M0) is bounded, then there
are finitely many reachable markings, the construction terminates, and we
can return “bounded”.

However, if the net is unbounded then this procedure does not terminate.

We now give a decision procedure for Boundedness.

83

We need two lemmas: (a variant of) König’s lemma and Dickson’s lemma.

Lemma 3.2.1 (Königs lemma) Let G = (V,E) be the reachability graph
of a Petri net (N,M0).

If V is infinite, then G contains an infinite (simple) path.

Proof. Assume V = [M0〉 is infinite.

For every reachable marking M , the graph G contains isa simple path πM
leading from M0 to M .

We have:

• M0 has finitely many immediate successors.
(At most one for each transition of N).

• Each simple path πM visits (at least) one immediate successor of M0.

It follows: at least one immediate successorM1 is visited by infinitely many
paths πM .

So M1 has infinitely many successors in the graph (V \ {M0}, E). In other
words: [M1〉 \ {M0} is infinite.

Applying the same argument to M1 we construct an immediate successor
M2 of (V \ {M0,M1)}, E).

Iterating we construct an infinite simple path M0M1M2 . . . �

84

Lemma 3.2.2 (Dickson’s lemma) For every infinite sequence A1A2A3 . . .
of vectors of Nk there is an infinite sequence i1 < i2 < i3 . . . of indexes such
that Ai1 ≤ Ai2 ≤ Ai3

Proof. By induction on k.

Basis: k = 1.

Then the elements of A are just numbers.

The set {A1, A2, · · · } has a minimum, say c1. Choose i1 as some index (say,
the smallest), such that Ai1 = c1.

Consider now the set {Ai1+1, Ai1+2, · · · }. The set has a minimum c2, which
by definition satisfies c1 ≤ c2.

Choose i2 as the the smallest index i2 > i1 such that Ai2 = c2, etc.

Step: k > 1.

Given a vector Ai, let A′i be the vector of dimension k − 1 consisting of the
first k − 1 components of Ai, and let ai be the last component of Ai.

We write Ai = (A′i | ai).

Since the vectors of A′1A
′
2A
′
3 · · · have dimension k − 1, by induction hy-

pothesis there is an infinite subsequence A′i1 ≤ A′i2 ≤ A′i3 · · · .
Consider now the sequence ai1ai2ai3 · · · . By induction hypothesis there is
a subsequence aj1 ≤ aj2 ≤ aj3 · · · .
But then we have Aj1 ≤ Aj2 ≤ Aj3 · · · , and we are done. �

Dickson’s lemma shows that the partial order ≤⊆ Nk ×Nk is a well-quasi-
order:

Given a set A, and a partial order�⊆ A×A, we say that� is a well-quasi-
order if every infinite sequence a1a2a3 · · · ∈ Aω contains an infinite chain
ai1 � ai2 � · · · .

85

Theorem 3.2.3 (N,M0) is unbounded iff there are markingsM and L such
that L 6= 0 and M0

∗−→M
∗−→ (M + L)

Proof. (⇐) : Assume there are such markings M,L.

By the Monotonicity Lemma we have

M1
∗−→ (M1 + L)

∗−→ (M1 + 2 · L)
∗−→ . . .

Since L 6= 0, the set [M0〉 of reachable markings is infinite and (N,M0) is
unbounded.

(⇒) Assume (N,M0) is unbounded.

Then the set [M0〉 of reachable markings is infinite.

By Königs lemma there is an infinite firing sequence M0
t1−→ M1

t1−→
M2 . . . such that the markings M0,M1,M2, . . . are pairwise distinct.

By Dickson’s Lemma there are indexes i < j such thatM0
∗−→Mi

∗−→Mj

and Mi ≤Mj .

Choose M := Mi and L := Mj −Mi.

Since Mi and Mj are distinct, we have L 6= 0. �

86

Theorem 3.2.4 Boundedness is decidable.

Proof. We give an algorithm that always terminates and always returns the
correct answer: “ bounded” or “unbounded”.

The algorithm explores the reachability graph of the input Petri net (N,M0)
using breadth-first search.

After adding a new marking M ′, the algorithm checks if the part of the
graph already constructed contains a sequence M0

∗−→ M
∗−→ M ′ such

that M ≤M ′ (and M 6= M ′, because M ′ is new).

The algorithm terminates if it finds such a sequence, in which case it returns
“unbounded”, or if it cannot add any new marking, in which case it returns
“bounded”.

We show that the algorithm is correct.

• If (N,M0) is bounded, then by Theorem ?? the algorithm never finds
a new marking M ′ satisfying the condition above.

So, since the Petri net has only finitely many reachable markings, the
algorithm terminates because it cannot find any new marking, and
correctly returns “bounded”.

• If (N,M0) is unbounded, then there are infinitely many reachable
markings, and so the algorithm never runs out of reachable markings.

By Theorem ?? the algorithm eventually finds distinct markingsM ′ ≤
M M0

∗−→ M
∗−→ M ′, and so it correctly answers “unbounded”.

�

87

3.2.2 Decision procedures for Coverability

We present three different algorithms to decide, given (N,M0) and M ,
whether M can be covered from M0:

• The coverability graph algorithm.

The algorithm constructs the so-called coverability graph of a Petri
net (N,M0).

For every marking M , one can decide if M can be covered from
(N,M0) by inspecting the graph.

• Rackoff’s algorithm.

The algorithm constructs the reachability graph, starting from M0,
but only until a certain depth that depends on M .

• The backwards reachability algorithm.

The algorithm constructs (a finite representation of) the set of all
markings from which one can cover M , and checks if M0 belongs
to it.

88

Why three algorithms?

• Coverability graph.

Advantage: Once the graph is constructed, all coverability questions
can be checked efficiently in the size of the graph.

Disadvantage: In the worst case the graph can be HUGE.

• Rackoff’s algorithm.

Advantage: Worst-case complexity matches the theoretical complex-
ity of the problem.

Disadvantage: Very inefficient in practice.

• The backwards reachability algorithm.

Advantage: Worst-case complexity matches the theoretical complex-
ity of the problem. Can be extended to more general models.

Disadvantage: Often less efficient in practice than the construction of
the coverability graph.

89

Coverability graphs

We show how to construct a coverability graph of a Petri net (N,M0).

The coverability graph is always finite, and satisfies the following property:

a marking M of N is coverable from M0 iff some node M ′

of the coverability graph of (N,M0) covers M , i.e., satisfies
M ′ ≥M .

ω-markings

We introduce a new symbol ω, standing for an arbitrarily large number.

We extend arithmetic on natural numbers with ω. For all n ∈ N:

n+ ω = ω + n = ω 0 · ω = 0
ω + ω = ω n ≥ 1⇒ n · ω = ω · n = ω
ω − n = ω n ≤ ω and ω ≤ ω

Observe that ω − ω remains undefined (we won’t need it).

An ω-marking of a net N = (S, T, F) is a mapping M : S → N ∪ {ω}.
Intuitively, in an ω-marking, each place has either a certain number of to-
kens or “arbitrarily many” tokens.

The enabling condition and the firing rule for ω-markings are as for normal
markings.

In particular, if a place contains ω tokens, then after firing a transition it still
has ω tokens, even if the transition is connected with an arc to the place.

90

Intuition behind the coverability graph

Assume M ′ ∈ [M〉 and M ≤M ′.

Then M t1t2...tn−−−−−→M ′ for some sequence t1t2 . . . tn of transitions.

By the Monotonicity Lemma, there is a marking M ′′ with M ′ t1t2...tn−−−−−→M ′′.

Further, letting ∆ := M ′ −M we have M ′′ = M ′ + ∆ = M + 2∆

M
t1t2···tn−−−−−→ M ′ t1t2···tn−−−−−→ M ′′ −−−→ · · ·

‖ ‖ ‖
M + ∆ M + 2∆ · · ·

Firing t1t2 . . . tn repeatedly we can “pump” an arbitrary number of tokens
to all places s such that ∆(s) > 0.

Main idea for the construction:

replace M
t1t2···tn−−−−−→M ′ by M

t1t2···tn−−−−−→M ′ + ω ·∆

Training Exercise in AutomataTutor:
� 2 Construct Coverability Graph: Construct the complete coverability
graph of the given Petri net step-by-step with the algorithm on the next
page.

91

https://automata-tutor.model.in.tum.de/linked/index/2b3ecb7cf585e3d8

Algorithm for the construction of the coverability graph

COVERABILITY-GRAPH(P, T, F,M0)
1 (V,E, v0) := ({M0}, ∅,M0);
2 Work := {M0};
3 while Work 6= ∅
4 do select M from Work ;
5 Work := Work \ {M};
6 for t ∈ enabled(M)
7 do M ′ := fire(M, t);
8 M ′ := AddOmegas(M,M ′, V, E);
9 if M ′ /∈ V

10 then V := V ∪ {M ′}
11 Work := Work ∪ {M ′};
12 E := E ∪ {(M, t,M ′)};
13 return (V,E, v0);

ADDOMEGAS(M,M ′, V, E)
1 for M ′′ ∈ V
2 do if M ′′ < M ′ and M ′′ ∗−→EM
3 then M ′ := M ′ + (M ′ −M ′′) · ω ;
4 return M ′;

Notations used in ADDOMEGAS:

• M ′′−→EM iff (M ′′, t,M) ∈ E for some t ∈ T .

• M ′′ ∗−→EM iff

M ′′ = M ′ or M ′′ →E M1 →E · · · →E Mn = M

for some n ≥ 1 and some M1, . . . ,Mn.

92

We show that

• COVERABILITY-GRAPH terminates.

• A marking M of (N,M0) is coverable iff some node M ′ of the cov-
erability graph of (N,M0) covers M .

Theorem 3.2.5 COVERABILITY-GRAPH terminates.

Proof. Assume that COVERABILITY-GRAPH does not terminate. We derive
a contradiction.

If COVERABILITY-GRAPH does not terminate, then it constructs an infinite
graph.

Since every node of the graph has at most |T | successors, by König’s lemma
the graph contains an infinite path Π = M1M2

If an ω-marking Mi of Π satisfies Mi(p) = ω for some place p, then
Mi+1(p) = Mi+2(p) = . . . = ω.

So Π contains a marking Mj such that all markings Mj+1,Mj+2, . . . have
ω’s at exactly the same places as Mj .

Let Π′ be the suffix of Π starting at Mj .

Consider the projection Π′′ = mjmj+1 . . . of Π′ onto the non-ω places.

Let n be the number of non-ω places. Π′′ is an infinite sequence of distinct
n-tuples of natural numbers.

By Dickson’s lemma, this sequence contains markings Mk,Ml such that
k < l and Mk ≤Ml.

This is a contradiction, because, since Mk 6= Ml, when executing
AddOmegas(Ml−1,Ml, V, E) the algorithm adds at least one ω to Ml−1. �

93

Coverability property

The lemma below states that for every ω-markingM ′ added by COVERABILITY-
GRAPH one can reach markings with arbitrarily large values for all ω-
components of M ′ simultaneously.

Definition 3.2.6 A place s is an ω-place of an ω-marking M if M(s) = ω,
and a normal place of M if M(s) ∈ N.

Lemma 3.2.7 For every ω-marking M ′ added by COVERABILITY-GRAPH

to V and for every k > 0, there is a reachable marking M ′
k satisfying

• M ′
k(s) = M ′(s) for every normal place s of M ′, and

• M ′
k(s) > k for every ω-place of M ′.

Proof. Consider an arbitrary point during execution of COVERABILITY-
GRAPH. We prove that if all ω-markings added to V until this point satisfy
the lemma, then the next ω-marking that is added to V also does.

Assume the algorithm has just executed line 7 with M t−→M ′.

By induction hypothesis, for every k > 0 there is a reachable marking Mk

satisfying

• Mk(s) = M(s) for every place normal place s of M , and

• Mk(s) > k for every ω-place s of M .

94

Case 1. Assume AddOmegas does not add any new ω to M ′ at line 8 and
M ′ /∈ V holds at line 9.

Then COVERABILITY-GRAPH adds M ′ to V , and we can take M ′
k as the

marking given by Mk+1
t−→M ′

k:

Indeed, we have M ′
k(s) > k because Mk+1(s) > k + 1 for every ω-place s

of M , and t removes at most one token from s.

Case 2. Assume that the for-loop in line 1 of AddOmegas(M,M ′, V, E)

• finds a unique ω-markingM ′′ satisfyingM ′′ ∗−→EM
t−→M ′ andM ′′ ≤

M ′, and

• adds a unique ω to M ′ for place s0, i.e., M ′′(s0) < M(s0) = ω.

(General case is similar.)

Then COVERABILITY-GRAPH adds in line 11 the marking M = M ′ +
(M ′ −M ′′) · ω, which has exacly one more ω-place than M ′′, namely the
place s0.

We prove: for every k > 0 there is a reachable marking Mk satisfying

• Mk(s) = M(s) for every place normal place s of M , and

• Mk(s) > k for every ω-place s of M .

Fix an arbitrary k. Our goal is to construct the marking Mk.

95

Let σ be a firing sequence such that M ′′ σ−→M
t−→M ′. By induction hy-

pothesis, for every ` > 0 there is a reachable marking M` satisfying

• M`(s) = M(s) for every normal place s of M , and

• M`(s) > ` for every ω-place s of M .

Fix k > 0. Choose ` large enough to guarantee that

(1) M` enables t(σt)k+1, and

(2) the marking M ′′′ given by M`
t(σt)k+1

−−−−−→M ′′′ satisfies M ′′′(s) > k for
every ω-place s of M and M ′.

We show that we can take Mk := M ′′′.

First, by (2), M ′′′
` (s) > k for every ω-place s of M ′.

Since the execution of σt adds at least one token to s0, after the execution
of t(σt)k+1 the place s0 has at least k + 1 tokens, and so M ′′′(s) > k. �

96

Theorem 3.2.8 Let (N,M0) be a Petri net and let M be a marking of N .
There is a reachable markingM ′ ≥M iff the coverability graph of (N,M0)
contains an ω-marking M ′′ ≥M .

Proof. (⇒): Assume there is a reachable marking M ′ ≥M .

Then some firing sequence

M0
t1−−→M1

t2−−→M2 · · ·Mn−1
tn−−→M ′

of (N,M0) leads from M0 to M ′.

By the definition of the algorithm, the coverability graph contains a path

M0
t1−−→M ′

1
t2−−→M ′

2 · · ·Mn−1
tn−−→M ′

n

such that M ′
i ≥Mi for every 1 ≤ i ≤ n.

Take M ′′ = M ′
n.

(⇐): Assume the coverability graph of (N,M0) contains an ω-marking
M ′′ ≥M .

By Lemma ??, there is a reachable markingM ′′
k satisfyingM ′′

k (s) = M ′′(s)
for every normal place s of M ′′, and M ′′

k (s) > k for every ω-place s of M ′′.

Take k larger than any of the components of M , and set M ′ := M ′′
k .

We have M ′ ≥M . �

97

Rackoff’s algorithm

The coverability graph allows us to answer coverability of any marking.

However, Coverability asks whether a particular markingM can be covered.

We give a bound on how much of the reachability graph we need to explore
to find a marking covering M from another marking M0.

The bound depends on M , but not on M0.

Theorem 3.2.9 [Rackoff 1978]

Let N be a net and let M be a marking of N .

Let k be the number of places of N , and let n = 1 +
∑k

i=1M(i).

For every marking M0 of N :

if M0
∗−→M ′ ≥M for some M ′

then M0
σ−→M ′′ ≥M for some M ′′ and some σ

of length at most (2n)(k+1)! ∈ n2O(k log k)
.

98

Integer Petri nets

We consider Petri nets in which places may have a negative number of to-
kens. Transitions can occur independently of the number of tokens in their
input places.

Definition 3.2.10 (Integer Petri nets) Let N = (S, T, F) be a net. A gen-
eralized marking of N (g-marking) is a mapping G : S → Z.

An integer Petri net is a pair (N,G0) whereN is a net andG0 is a g-marking.

The firing rule of integer nets is defined as follows:

A g-marking G enables all transitions, and the occurrence of t
at G leads to the marking G′ defined as for standard Petri nets.

We denote by G
t
↪→ G′ that firing t at G leads to the g-marking G′.

An integer firing sequence of an integer Petri net is a sequenceG0
t1
↪→ G1

t2
↪→

· · · tn↪→ Gm.

99

Fix a net N with places {s1, . . . , sk}.
We identify g-markings with vectors of Zk.

Definition 3.2.11 Let G ∈ Zk be a g-marking of N and let 0 ≤ i ≤ k.

• G is i-natural if its first i-components are natural numbers, i.e., if
0 ≤ G(j) for every 1 ≤ j ≤ i.

• G is i-r-natural if 0 ≤ G(j) < r for every 1 ≤ j ≤ i.

Let G ∈ Zk. An integer firing sequence G0
t1
↪→ · · · tm↪→ Gm

• is i-natural if all of G0, G1, . . . , Gm are i-natural g-markings.

• is i-r-natural if all of G0, G1, . . . , Gm are i-r-natural g-markings.

• i-covers G if Gm(j) ≥ G(j) for every 1 ≤ j ≤ i.
(But possibly Gm(j) < G(j) for components j > i.)

Loosely speaking, we have:

• G is i-natural if its restriction to {s1, . . . , si} is a “normal” marking,

• G0
t1
↪→ · · · tm

↪→ Gm is i-natural if its restriction to {s1, . . . , si} is a
“normal” firing sequence.

• The k-natural sequences are the “normal” firing sequences (recall k
is the number of places).

• A firing sequence covers M iff it k-covers M .

• M is coverable fromM0 iff some k-natural firing sequence of (N,M0)
k-covers M .

100

The key lemma

Lemma 3.2.12 LetG ∈ Zk be a g-marking ofN , and let n = 1+
∑k

i=1 |G(i)|.
For every G0 ∈ Zk and for every 0 ≤ i ≤ k:

if (N,G0) has an i-natural sequence that i-covers G

then it has one of length at most f(i),

where f is inductively defined as follows:

• f(0) = 1, and

• f(i) = (nf(i− 1))i + f(i− 1) for every i ≥ 1. �

The function f grows rapidly in k:

f(0) = 1
f(1) = (nf(0))1 + f(0) = n+ 1 ∈ O(n)
f(2) = (nf(1))2 + f(1) = (n(n+ 1))2 + n+ 1 ∈ O(n4)
f(3) = (nf(2))3 + f(2) ∈ O(n15)
f(4) = (nf(3))4 + f(3) ∈ O(n64)

In general, if f(i) ∈ O(nj), then f(i+ 1) ∈ O(n(1+j)(1+i)).

Proof. By induction on i.

Base: i = 0. Follows vacuously from the fact thatG0 is a 0-natural sequence
that 0-covers G.

(Every sequence is 0-natural, and the condition G0(j) ≥ G(j) for every
1 ≤ j ≤ i holds vacuously when i = 0.)

Step: i > 0. Assume (N,G0) has an i-natural sequence that i-covers G.

In the next two slides we consider two cases.

101

Case 1: Some sequence that i-covers G is i-nf(i− 1)-natural.

Assume the sequence is

G0
t1
↪→ G1 · · ·Gm−1

tm
↪→ Gm

and assume further that its length m is minimal.

We show m ≤ (nf(i− 1))i ≤ f(i).

Claim: The projections of G0, G1, . . . , Gm onto their first i components are
pairwise different.

Indeed: if there are α < β such that

(Gα(1), . . . , Gα(i)) = (Gβ(1), . . . , Gβ(i))

then the sequence

G0
t1
↪→ · · · tα−−→Gα

tβ+1

↪→ G′β+1

tβ+2

↪→ · · · tm↪→ G′m

is also i-nf(i− 1)-natural, i-covers G, and has shorter length.

Since G0
t1
↪→ G1 · · ·Gm−1

tm
↪→ Gm is i-nf(i− 1)-natural, we have

(0, . . . , 0) ≤ (G`(1), . . . , G`(i)) ≤ (nf(i− 1)− 1, . . . , nf(i− 1)− 1)

for every 1 ≤ ` ≤ m.

So there are (nf(i−1))i different possible value tuples for (G`(1), . . . , G`(i)).

If m > (nf(i− 1))i, then there are 0 ≤ α < β ≤ m such that

(Gα(1), . . . , Gα(i)) = (Gβ(1), . . . , Gβ(i))

contradicting the Claim.

So m ≤ (nf(i− 1))i ≤ f(i).

102

Case 2: No sequence that i-covers G is i-nf(i− 1)-natural.

Then there is a sequence G0
t1
↪→ G1

t2
↪→ · · · tm−1

↪→ Gm−1
tm
↪→ Gm

that i-covers G but is not i-nf(i− 1)-natural.

Let Gα be the first not i-nf(i− 1)-natural g-marking of the sequence.

We can assume Gα(i) ≥ nf(i− 1).

(If this would not be the case, reorder the places of the net.)

Then the prefix G0
t1
↪→ · · · tα−1

↪→ Gα−1 i-covers Gα−1 and is i-nf(i − 1)-
natural.

As in Case 1, we can assume that the g-markings of the prefix are pairwise
different, and so α− 1 ≤ (nf(i− 1))i.

The suffix Gα
tα
↪→ Gα+1

tα+1

↪→ · · · tm↪→ Gm is (i−1)-natural and (i−1)-covers
G.

By IH there is a (i− 1)-natural sequence Gα
u1
↪→ H1

u2
↪→ · · · u`↪→ H` of length

at most f(i− 1) that (i− 1)-covers G. So we have ` ≤ f(i− 1).

We have Gα(i) ≥ nf(i− 1), and a sequence of length f(i− 1) can remove
at most f(i− 1) tokens from a place.

So the final g-marking H` satisfies

H`(i) ≥ Gα(i)− f(n− 1) ≥ nf(n− 1)− f(n− 1) ≥ n− 1 ≥ G(i)

So the sequence G0
t1
↪→ · · · tα−1

↪→ Gα−1
tα
↪→ Gα

u1
↪→ H1

u2
↪→ · · · u`↪→ H`

• is i-natural,

• has length at most (nf(i− 1))i + f(i− 1) = f(i), and

• i-covers G. �

103

Proof of Theorem ??

Theorem. [Rackoff 1978]

Let N be a net and let M be a marking of N .

Let k be the number of places of N , and let n = 1 +
∑k

i=1M(i).

For every marking M0 of N :

if M0
∗−→M ′ ≥M for some M ′

then M0
σ−→M ′′ ≥M for some M ′′ and some σ

of length at most (2n)(k+1)! ∈ n2O(k log k) .

Proof. Assume that (N,M0) has a k-natural sequence that k-covers M .

By Lemma ??, it has one of length at most f(k).

So it suffices to prove f(k) ≤ (2n)(k+1)!.

We prove by induction on i that f(i) ≤ (2n)(i+1)! for every i ≥ 0.

Recall that n ≥ 1 holds by the definition of n.

Further, it follows from the definition of f that f(i) ≥ 1 for every i ≥ 0.

104

Base: i = 0. Since n ≥ 1, we have f(0) = 1 ≤ 2n = (2n)1!.

Step: i > 0. Assume f(i − 1) ≤ (2n)i!. We prove f(i) ≤ (2n)(i+1)!. We
have:

f(i) = (nf(i− 1))i + f(i− 1) (definition of f)
≤ (n(2n)i!)i + (2n)i! (ind. hyp.)
≤ (n(2n)i!)i + (n(2n)i!)i (n ≥ 1, i ≥ 1)
= 2(n(2n)i!)i

= 2ii!+1nii!+i

≤ 2(i+1)!n(i+1)! (n ≥ 1, i ≥ 1)
= (2n)(i+1)!

Finally, we prove (2n)(k+1)! ∈ n2O(k log k) .

We first show (k + 1)! ∈ 2O(k log k).

(k + 1)! ≤ (k + 1)k+1 (definition of factorial)
≤ (2k)k+1 (k ≥ 1)

=
(
2(log k+1)

)k+1
= 2(log k+1)(k+1)

∈ 2O(k log k)

Since 2n ≤ n2 for every n ≥ 1, we get

(2n)(k+1)! ≤ n2(k+1)!

∈ n2·2O(k log k)
= n21+O(k log k)

= n2O(k log k)
�

By Rackoff’s theorem, in order to decide coverability of M we just con-
struct the reachability graph up to depth (2n)(k+1)! using e.g. breadth-first
search.

105

The backwards-reachability algorithm

The algorithm decides if a marking M is coverable in (N,M0) by

• considering the setM of all markings that cover M ,

• computing the set of predecessors ofM, i.e., the set of all markings
M ′ (reachable or not) such that M ′ ∗−→M ′′ for some M ′′ ∈M, and

• checking if M0 belongs to this set.

Since even the set M is infinite, this computation requires to use a finite
representation of infinite set of markings.

Definition 3.2.13 (Upward-closed sets of markings)
A setM of markings of a net N is upward closed if M ∈M and M ′ ≥M
imply M ′ ∈M.

A markingM of an upward-closed setM is minimal if there is noM ′ ∈M
such that M ′ ≤M and M ′ 6= M .

Upward-closed sets are equal iff their sets of minimal elements are equal.

Lemma 3.2.14 Every upward-closed set has finitely many minimal elements.

Proof. Assume some upward-closed set has infinitely many minimal mark-
ings M1,M2,M3,

By Dickson’s Lemma there are i 6= j such that Mi ≤Mj .

But then Mj is not minimal. Contradiction. �

Consequence: every upwards closed set can be finitely represented by its
set of minimal elements.

106

Predecessors

Definition 3.2.15 LetM be a set of markings of a net N = (S, T, F), and
let t ∈ T be a transition. We define

pre(M, t) = {M ′ |M ′ t−→M for some M ∈M}
pre(M) =

⋃
t∈T

pre(M, t)

pre0(M) = M
pre i+1(M) = pre

(
pre i(M)

)
for every i ≥ 0

pre∗(M) =
∞⋃
i=0

pre i(M)

Lemma 3.2.16 If M is upward closed, then pre(M) and pre∗(M) are
also upward closed.

Proof. (i) pre(M) is upward closed.

Let M ′ ∈ pre(M). We have to prove M ′ +M ′′ ∈ pre(M) for every M ′′.

Since M ′ ∈ pre(M) then M ′ t−→M for some is M ∈M and t ∈ T .

By the firing rule we have M ′ +M ′′ t−→M +M ′′ for every marking M ′′.

SinceM is upward closed, we have M +M ′′ ∈M.

Since M ′ +M ′′ t−→M +M ′′, we get M ′ +M ′′ ∈ pre(M).

(ii) pre∗(M) is upward closed.

By repeated application of (i): prej(M) is upward closed for every j ≥ 0.

So pre∗(M) is a union of upward-closed sets.

By the definition of an upward-closed set: The union of upward-closed sets
if also upward closed. �

107

Combining Lemma ?? and Lemma ?? we obtain:

Theorem 3.2.17 LetM be an upward-closed set of markings of a net. Then
there is i ≥ 0 such that

pre∗(M) =
i⋃

j=0

prej(M)

Proof. By Lemma ??, pre∗(M) is upward closed.

By Lemma ??, the set m∗ of minimal markings of pre∗(M) is finite.

Since m∗ is finite, there exists an index i such that m∗ ⊆ ⋃i
j=0 pre

j(M).

Since
⋃i
j=0 pre

j(M) is upward closed, we have pre∗(M) ⊆ ⋃i
j=0 pre

j(M).

By the definition of pre∗(M), we get pre∗(M) =
⋃i
j=0 pre

j(M). �

This Theorem leads to the backwards-reachability algorithm:

BACK(S, T, F,M0,M)
1 M := {M ′ |M ′ ≥M};
2 Old M := ∅;
3 while true
4 do Old M :=M;
5 M :=M∪ pre(M);
6 if M0 ∈M
7 then return M can be covered
8 ifM = Old M
9 then return M cannot be covered

108

Using Rackoff’s theorem we can obtain an upper bound on the number of
iterations of the while loop of BACK.

Theorem 3.2.18 LetM be an upward-closed set of markings of a net with
a set of places S.

Let {M1, . . . ,Mm} be the set of minimal markings ofM.

For every 1 ≤ i ≤ m, let ni = 1+
∑

s∈SMi(s), and let n = max{n1, . . . , nm}.
Then

pre∗(M) =

(2n)(k+1)!⋃
j=0

prej(M)

Proof. Let M ∈ pre∗(M).

By the definition of pre∗(M), there is M ′ ∈M such that M ∗−→M ′.

So M ′ ≥Mi for some minimal marking Mi ofM.

By Theorem ?? and the definition of n, there exists a firing sequence

M
σ−→M ′′ ≥Mi

such that |σ| ≤ (2ni)
(k+1)! ≤ (2n)(k+1)!.

Since M ′′ ≥Mi andM is upward closed, we have M ′′ ∈M.

So M ∈ prej(M) for j = |σ| ≤ (2n)(k+1)!. �

109

Algorithm BACK is not directly implementable, because it manipulates in-
finite sets.

To solve this problem we give implementations of

• the testsM ?
= Old M (line 8) and M0

?∈M (line 6), and

• the operationM 7→M∪ pre(M) (line 5)

that use the finite representations ofM and Old M, that is, their finite sets
of minimal elements.

Implementing the tests

Given a setM, let min(M) denote the set of minimal elements ofM. We
have:

• M0 ∈M iff there exists M ′ ∈ min(M) such that M0 ≥M ′.

• M = Old M iff min(M) = min(Old M).

110

ImplementingM :=M∪ pre(M)

We need several definitions.

Given a transition t, a marking M , and a set of markingsM:

• Let R[t] denote the marking that puts one token in each output place
of t, and no tokens elsewhere.
(R[t] is the minimal marking allowing to fire t “backwards”).

• LetM[t] denote the set {M ∈M |M ≥ R[t]}.
(M[t] is the set of markings ofM that enable t “backwards”.)

• Let M ∧M denote the set {M ∧M ′ |M ′ ∈M},
where (M ∧M ′)(s) := max{M(s),M ′(s)} for every place s.

We make two observations:

• min(M∪ pre(M)) = min
(

min(M) ∪min(pre(M)
)

= min
(

min(M) ∪
⋃
t∈T

min
(
pre(M, t)

))
= min

(
min(M) ∪

⋃
t∈T

pre
(

min(M[t]), t
)

This reduces computing min(M∪pre(M)) to computing min(M[t]).

• IfM is upward closed, then min(M[t]) = R[t] ∧min(M).
(SinceM∧R[t] ≥M , ifM is upward closed we haveM∧R[t] ∈M
for every M ∈ min(M).)

In words, the minimal markings ofM that enable t “backwards” are
obtained by taking the minimal markings ofM, and computing their
join with R[t].

111

Putting these two observations together, we get:

• IfM is upward closed, then

min(M∪pre(M)) = min
(

min(M)∪
⋃
t∈T

pre
(
R[t]∧min(M), t

))

which computes min(M∪ pre(M)) as a function of min(M).

This leads to the algorithm BACK2:

BACK(S, T, F,M0,M)
1 M := {M ′ |M ′ ≥M};
2 Old M := ∅;
3 while true
4 do Old M :=M;
5 M :=M∪ pre(M);
6 if M0 ∈M
7 then return coverable
8 ifM = Old M
9 then return not coverable

BACK2((P, T, F,M0,M))
1 m := {M};
2 old m := ∅;
3 while true
4 do old m := m;
5 m := min(m ∪⋃t∈T pre(R[t] ∧m, t));
6 if ∃M ′ ∈ m : M0 ≥M ′

7 then return coverable
8 if m = old m
9 then return not coverable

The type of the variables m and old m is now “finite set of markings”, and
so their values can be stored in a computer.

112

Training Exercises in Automata Tutor:

• � 2 Backwards Reachability 1: Apply the backwards reachability
algorithm step-by-step.

• � 2 Backwards Reachability 2: Apply the backwards reachability
algorithm step-by-step.

• � 2 Backwards Reachability 3: Apply the backwards reachability
algorithm step-by-step.

113

https://automata-tutor.model.in.tum.de/linked/index/5d49130965cf76bd
https://automata-tutor.model.in.tum.de/linked/index/57f6a973120cdf6c
https://automata-tutor.model.in.tum.de/linked/index/345f50e3f6230355

3.2.3 The abstract backwards-reachability algorithm

The backwards reachability algorithm can be reformulated in more general
terms, which allows to apply it to other models of concurrency more general
than Petri nets.

Definition 3.2.19 Let A be a set and let � be a partial order on A.
(I.e., a reflexive, antisymmetric, and transitive subset of A× A.)

We say that � is a well-quasi-order (wqo) if every infinite sequence
a1a2a3 · · · ∈ Aω contains an infinite chain ai1 � ai2 � ai3 · · ·
with i1 < i2 < i3

Examples of well-quasi-orders:

• The pointwise order ≤ on Nk.

By Dickson’s lemma.

• The subword order on Σ∗ for any finite alphabet Σ.

We say w1 � w2 if w1 can be obtained from w2 by deleting letters.

Higman’s lemma states that every infinite sequence of words contains
an infinite chain with respect to the subword order.

• The subtree order on the set of finite trees over a finite alphabet Σ.

We say that t1 � t2 if there is an injective mapping from the nodes of
tree t1 into the nodes of t2 that preserves reachability: n′ is reachable
from n in t1 iff the image of n′ is reachable from the image of n in t2.

Kruskal’s lemma states that every infinite sequence of trees contains
an infinite chain with respect to the subtree order.

114

Definition 3.2.20 Let A be a set and let � be a wqo on A.

A set X ⊆ A is upward closed if x ∈ X and x � y implies y ∈ X for every
x, y ∈ A.

In particular, given x ∈ A, the set {y ∈ A | y � x} is upward-closed.

A relation→⊆ A × A is monotonic if for every x → y and every x′ � x
there is y′ � y such that x′ → y′.

Given X ⊆ A, we define

pre(X) = {y ∈ A | y → x and x ∈ X}
pre0(X) = X

pre i+1(X) = pre
(
pre i(X)

)
for every i ≥ 0

pre∗(X) =
∞⋃
i=0

pre i(X)

Following the same steps as in the proof of Theorem ?? we can show:

Theorem 3.2.21 Let A be a set and let � be a wqo on A.

Let X ⊆ A be an upward-closed set and let→⊆ A× A be monotonic.

Then there is j ∈ N such that

pre∗(X) =

j⋃
i=0

pre i(X)

115

This theorem can be used to obtain a backwards-reachability algorithm for
generalizations of Petri nets, like

• reset Petri nets,

• lossy channel systems, or

• broadcast protocols,

whose transition relation is monotonic w.r.t. a suitable wpo.

Other net models, like Petri nets with inhibitor arcs, do not have a mono-
tonic transition relations (adding tokens may disable a transition), and the
theorem cannot be applied to them.

In fact we have:

Theorem 3.2.22 Deadlock freedom, Liveness, Boundedness, b-boundedness,
Reachability, and Coverability are all undecidable for Petri nets with in-
hibitor arcs.

116

3.2.4 Decision procedures for other problems

Reachability

The decidability of Reachability was open for about 10 years until it was
proved by Mayr in 1980.

Kosaraju and Lambert simplified the proof in 1982 and 1992, respectively.

All these algorithms and their proofs exceed the framework of this course.

In 2012 Leroux provided a new algorithm.

Its proof is as complicated as the proofs of the previous ones, but the algo-
rithm is very simple.

Definition 3.2.23 (Semilinear set) A set X ⊆ Nk is linear if there is a root
r ∈ Nk (the) and a finite set P ⊆ Nk of periods) such that

X = {r +
∑
p∈P

λp · p | ∀p ∈ P : λp ∈ N}

A semilinear set is a finite union of linear sets.

A semilinear set can be finitely represented as a set of pairs

{(r1, P1), . . . , (rn, Pn)}

giving the roots and periods of its linear sets.

117

Theorem 3.2.24 [Leroux 2012] Let M0 and M1 be markings of a net N .

If M1 is not reachable from M0, then there exists a semilinear set M of
markings of N such that

(a) M0 ∈M;

(b) if M ∈M and M t−→M ′ for some transition t, then M ′ ∈M; and

(c) M1 /∈M.

Given a semilinear setM represented by {(r1, P1), . . . , (rn, Pn)}, we can
check whetherM satisfies (a)-(c).

Indeed, checking (a) and (c) amounts to determining if the systems of linear
equations

M0 = ri +
∑
p∈Pi

λp · p and M1 = ri +
∑
p∈Pi

λp · p

with unknowns λ1, . . . , λn (two systems for each 1 ≤ i ≤ n) have an integer
nonnegative solution.

Checking (b) reduces to checking validity of a formula of a theory called
Presburger arithmetic, for which decision procedures exist.

Theorem ?? leads to an algorithm for Reachability of a marking M , con-
sisting of two semi-decision procedures:

• The first procedure explores the reachability graph breadth-first, and
stops if it reaches M .

• The second procedure enumerates all semilinear sets, and stops if one
of them satisfies (a)-(c).

The procedures run in parallel. Since for every M one or the other termi-
nates, they yield together a decision procedure for Reachability.

118

Deadlock-freedom

We reduce Deadlock-freedom to Reachability.

We proceed in two steps. First, we reduce Deadlock-freedom to an auxiliary
problem P, defined next, and then we reduce P to Reachability.

P: Given a Petri net (N,M0) and a subset R of places of N ,
is there a reachable marking M such that M(s) = 0 for every
s ∈ R?

Theorem 3.2.25 Deadlock-freedom can be reduced to P.

Proof. Let (N,M0) be a Petri net such that N = (S, T, F). Define

S = {R ⊆ S | ∀t ∈ T : •t ∩R 6= ∅}

(An element of S contains at least one of each transition t.) We have

(1) S is a finite set.

(2) A marking M of N is dead iff the set of places unmarked at M is an
element of S .

Suppose now that there is an algorithm that decides P.

We can then decide Deadlock-freedom as follows.

For every R ∈ S we use the algorithm for P to decide if some reachable
marking M satisfies M(s) = 0 for every s ∈ R.

By (2), (N,M0) is deadlock-free if the answer is negative in all cases.

By (1), we only have to solve a finite number of instances of P. �

119

Theorem 3.2.26 P can be reduced to Reachability.

Proof. Let (N,M0) be a Petri net where N = (S, T, F), and let R be a set
of places of N .

We construct a new Petri net (N ′,M ′
0) by adding new places, transitions,

and arcs to (N,M0).

We proceed in two steps.

We start with (N,M0) (drawn with the transitions at the bottom and the
places of S \R highlighted).

N

S\R

T

s1

sn

t1 tm

120

In a first step, we add

• two new places s0 and r0, putting one token on s0.

• a transition t0 and arcs (s0, t0) and (t0, r0).

• two arcs (s0, t) and (t, s0) for every transition t ∈ T .

N

S\R

T

s1

sn

t1 tm

s0 t0 r0

Observe: transition t0 can occur at any time, and when this happens all
transitions of T become “dead”.

Intuitively, firing t0 “freezes” the current marking of N .

121

In a second step we add:

• a transition ts and arcs (s, ts), (r0, ts), (ts, r0) for every s ∈ S \R.

N

S\R

T

s1

sn

t1 tm

s0 t0 r0

ts1

tsn

Intuitively, these transitions are “garbage collectors”. The “garbage” are the
tokens in the places of S \R.

If r0 becomes marked, then the garbage collectors can “empty” S \R.

This concludes the definition of (N ′,M ′
0).

122

Let Mr0 be the marking of N ′ that puts one token on r0 and no tokens
elsewhere. We have

(1) If some reachable marking M of (N,M0) puts no tokens in R, then
Mr0 is a reachable marking of (N ′,M ′

0).

To reach Mr0 , we first fire a sequence of transitions of T leading
from M0 to M , then we fire t0, and finally we fire the transitions
{ts | s ∈ S} until all places of S are empty.

(2) If Mr0 is a reachable marking of (N ′,M ′
0), then some marking M

reachable from (N,M0) puts no tokens in R.

Mr0 can only be reached by firing t0 at a marking that puts no to-
kens in R (because after firing t0 the places of R cannot be emptied
anymore).

So we can choose M as the marking reached immediately before fir-
ing t0.

By (1) and (2), we can decide if some reachable marking M of (N,M0)
puts no tokens in R as follows: construct (N ′,M ′

0) and decide if Mr0 is
reachable.

Therefore, if there is an algorithm for Reachability, then there is also one
for P. �

123

Liveness

Liveness can also be reduced to Reachability. The proof is more complex.

We sketch how to reduce the problem

Given: A Petri net (N,M0), a transition t of N .
Decide: Is t live in (N,M0)?

to Reachability.

Let Et be the set of markings of N that enable t.

Et is upward closed, and therefore so is pre∗(Et) (Lemma ??).

We have: pre∗(Et) is the set of markings of N that enable some firing
sequence ending with t.

Let Dt be the complement of pre∗(Et), that is, the set of markings from
which t cannot be enabled anymore.

We have: (N,M0) is live iff no marking of Dt is reachable from M0.

So liveness of t reduces to the reachability of Dt.

However, Dt may be infinite, and so this is not a reduction to Reachability
(yet).

We solve this problem.

124

Claim 1: Dt is a semilinear set and we can compute a semilinear represen-
tation of it.

We can compute the finite set min(pre∗(Et)) using the backwards-rechabiilty
algorithm.

From min(pre∗(Et)) we can compute a semilinear representation of pre∗(Et)
(exercise).

Now we use a powerful result from the literature (without proof):

The complement of a semilinear set is also semilinear.

Moreover, there is an algorithm that, given a representation of
a semilinear set X ⊆ Nk, computes a representation of the
complement Nk \X .

This proves the claim.

125

Claim 2: The problem:

Given: a Petri net (N,M0) and a (representation of) a semilin-
ear set X .

Decide: Is some marking of X reachable from M0 ?

can be reduced to Reachability.

The reduction is as follows.

We construct a Petri net that first simulates (N,M0), and then transfers
control to another Petri net that nondeterministically generates a marking
of X on “copies” of the places of N .

This second net then transfers control to a third, whose transitions remove
one token from a place of N and a token from its “copy”.

If X is reachable, then

• The first net can produce a marking of X .

• The second net can produce the same marking.

• The third net can then remove all tokens from the first and second
nets, reaching the empty marking.

Conversely, if the net consisting of the three nets together can reach the
empty marking, then (N,M0) can reach some marking of X .

126

3.2.5 Complexity

Unfortunately, all the problems we have seen so far have very high com-
plexity.

We prove that all of them are EXPSPACE-hard.

Rackoff’s algorithm shows that Coverability is in EXPSPACE-complete,
that is, that exponentially growing memory suffices. The same can be
proved for Boundedness.

For a long time it was conjecture that Deadlock-freedom, Liveness, and
Reachability were EXPSPACE-complete as well. However, the conjecture
was disproved in 2019 by Czerwiński et al.. All three problems have non-
elementary complexity.

To explain what this means, define inductively the functions expk(x) as
follows:

• exp0(x) = x;

• expk+1(x) = 2expk(x).

The complexity class k-EXPSPACE contains the problems that can be solved
by a Turing machine using at most expk(n) space for inputs of length n.

The class of elementary problems is defined as

∞⋃
k=0

k-EXPSPACE

In other words, a problem is elementary if there is a number k and a Turing
machine that solves every instance of the problem of size n using at most
expk(n) space.

127

Some problems related to logical theories have non-elementary complex-
ity. Logical theories are sets of formulas, typically defined by closing a set
of atomic formulas under boolean operations and quantification. Without
getting into details, in some logical theories the complexity of deciding if
a formula is true is given by a tower of exponentials whose height is equal
to the number of quantifiers in the formula times some constant. Since
formulas can have an arbitrary number of quantifiers, these problems are
non-elementary.

Consider the function that assigns to each n the number expn(n). This func-
tion grows faster than any tower-of-exponentials function of fixed height.
However, the function belongs to the class of primitive recursive functions.
Loosely speaking, these are the functions computable by programs using
only for-loops. In particular, such programs are guaranteed to terminate,
because no for-loop can run forever. There are functions that grow even
faster than every primitive-recursive function. The best known example is
the Ackermann function, inductively defined by

A(m,n) =


n+ 1 if m = 0

A(m− 1, 1) if m > 0 and n = 0

A(m− 1, A(m,n− 1)) if m > 0 and n > 0

All known algorithms for Deadlock-freedom, Liveness, and Reachability
have non-primitive recursive runtime, that is, their runtime grows faster than
any elementary function.

128

Simulating exponentially bounded automata with 1-bounded Petri nets
An exponentially bounded automaton is a Turing machine that can only
work on a tape with 2n cells, where n is the size of the machine.

A deterministic, exponentially bounded automaton of size n can
be simulated by a Petri net of size O(n2).
Moreover, there is a polynomial time procedure which constructs
this net.

In order to answer a question about the computation of an exponentially
space bounded automaton A, we can construct the net that simulates A,
which has size O(n2), and solve the corresponding question. If the origi-
nal question requires 2n space, as is the case for many properties, then the
corresponding question about nets requires at least 2O(

√
n)-space.

129

Counter programs

Bounded automata and general Place/Transition Petri nets do not “fit” well.

It is not appropriate to model a cell of a bounded automaton as a place,
as we did in the 1-safe case, because the cell contains one out of a finite
number of possible symbols, while the place can contain infinitely many
tokens, and so the same information as a nonnegative integer variable.

So we use an intermediate model, namely counter programs.

It is well-known that so-called bounded counter programs can simulate
bounded automata (see below), and we show that Petri nets can simulate
bounded counter programs.

A counter program is a sequence of labeled commands separated by semi-
colons.

Basic commands have the following form, where l, l1, l2 are labels or ad-
dresses taken from some arbitrary set, for instance the natural numbers, and
x is a variable over the natural numbers, also called a counter:

l: x := x+ 1
l: x := x− 1
l: goto l1 unconditional jump
l: if x = 0 then goto l1 conditional jump

else goto l2
l: halt

A program is syntactically correct if the labels of commands are pairwise
different, and if the destinations of jumps correspond to existing labels.

For convenience we can also require the last command to be a halt com-
mand.

130

A program can only be executed once its variables have received initial
values. We assume that the initial values are always 0.

The semantics of programs is the one suggested by the syntax. The only
point to be remarked is that the command l : x := x− 1 fails if x = 0, and
causes abortion of the program.

Abortion must be distinguished from proper termination, which corresponds
to the execution of a halt command.

A counter program C is k-bounded if after any step in its unique execution
the contents of all counters are smaller than or equal to k.

We use a well-known construction of computability theory:

There is a polynomial time procedure which accepts a de-
terministic bounded automaton A of size n and returns a
counter program C with O(n) commands that simulates the
computation of A on empty tape. I
In particular, A halts if and only if C halts. Moreover, if A
is exponentially bounded, then C is 22n-bounded.

Now, it suffices to show that a 22n-bounded counter program of size O(n)
can be simulated by a Petri net of size O(n2). This is the goal of the rest of
this section.

131

Simulating bounded counter programs by Petri nets

We describe the Petri net that simulates a 22n-bounded counter program.

Since a direct description of the sets of places and transitions of the simulat-
ing net would be very confusing, we introduce a net programming notation
with a very simple net semantics. It is very easy to obtain the net corre-
sponding to a program, and execution of a command corresponds exactly
to the firing of a transition. So we look at the programming notation as a
compact description language for Petri nets.

A net program is similar to a counter program, but does not have the possi-
bility to branch on zero; it can only branch nondeterministically.

However, it has the possibility of transferring control to a subroutine.

The basic commands are as follows:

l: x := x+ 1
l: x := x− 1
l: goto l1 unconditional jump
l: goto l1 or goto l2 nondeterministic jump
l: gosub l1 subroutine call
l: return end of subroutine
l: halt

132

The Petri net semantics of net programs is explained in this figure:

l

l l l

l

l l

l

l l l halt

l

l l

x x

1

1 1 2

1

1 1

: x:=x+1;
: ...

: x:=x-1;
: ...

l: goto l l: haltl: goto l
 or
 goto l

11

2

133

Example:

1: gosub 4;
2: gosub 4;
3: halt;
4: goto 5 or goto 6;
5: return;
6: return

1

2

3

halt

return_4

4

5 6

1_calls_4

2_calls_4

The places 1 calls 4 and 2 calls 4 are used to remember the address
from which the subroutine was called.

134

The Petri net corresponding to a net program with k commands has O(k)
places and O(k) transitions, and its initial marking has size O(k). So it is
of size O(k2).

Let C be a 22n-bounded counter program with O(n) commands.

We show that C can be simulated by a net program N(C) with O(n) com-
mands, which corresponds to a Petri net of size O(n2).

N(C) will be a non-deterministic net program, even though C is determin-
istic. So what does “simulate” mean?

N(C) simulates C in the following way:

C halts (executes the command halt) if and only if some com-
putation of N halts (other computations may fail).

Each variable x of N(C) (be it a variable from C or an auxiliary variable)
has an auxiliary complement variable x.

N takes care of setting x = 22n at the beginning of the program. We call
the code that takes care of this Ninit(C).

The rest of N(C), called Nsim(C), simulates C and takes care of keeping
the invariant x = 22n − x.

135

The net program Nsim(C)

Nsim(C) is obtained through replacement of each command of C by an
adequate net program.

Commands of the form x := x + 1 (x := x − 1) are replaced by the net
program x := x+ 1;x := x− 1 (x := x− 1;x := x+ 1).

Unconditional jumps are replaced by themselves.

Let us now design a program

TESTn(x,ZERO, NONZERO)

to replace a conditional jump of the form

l: if x = 0 then goto ZERO
else goto NONZERO

The specification of TESTn is as follows:

If x = 0 (1 ≤ x ≤ 22n), then some execution of the pro-
gram leads to ZERO (NONZERO), and no computation leads to
NONZERO (ZERO).

Moreover, the program has no side-effects: after any execu-
tion leading to ZERO or NONZERO no variable has changed its
value.

136

Actually, it is easier to design a program TEST′n(x,ZERO, NONZERO) with
the same specification but a side-effect: after an execution leading to ZERO,
the values of x and x are swapped.

Once TEST′n has been designed, we can take:

TESTn(x, ZERO, NONZERO):

TEST′n(x, continue, NONZERO);
continue: TEST′n(x, ZERO, NONZERO)

because the values of x and x are swapped 0 times if x > 0 or twice if
x = 0, and so TESTn has no side effects.

137

The net program TEST′n

The key to the design of TEST′n lies in the following observation: Since x
never exceeds 22n , testing x = 0 can be replaced by nondeterministically
choosing

• to decrease x by 1, and if we succeed then we know that x > 0, or

• to decrease x by 22n , and if we succeed then we know that x = 22n ,
and so x = 0.

If we choose wrongly, that is, if for instance x = 0 holds and we try to
decrease x by 1, then the program fails; this is not a problem, because we
only have to guarantee that the program may (not must!) terminate, and that
if it terminates then it provides the right answer.

Decreasing x by 1 is easy (exercise).

Decreasing x by 22n is the difficult part. We leave it for a routine DECn(sn)
(designed later), which must satisfy the following specification:

If the initial value of s is smaller than 22n , then every execution
of DECn fails.

If the value of sn is greater than or equal to 22n , then

• all executions terminating with a return command have
the same effect as sn := sn − 22n ; sn := sn + 22n;
in particular, there are no side-effects;

• all other executions fail.

We give the code of TEST′n.

138

TEST′n(x, ZERO, NONZERO)

/ / initially sn = 0 and sn = 22n / /
goto nonzero or goto loop;

nonzero: x := x− 1; x := x+ 1;
goto NONZERO;

loop: x := x− 1; x := x+ 1;
sn := sn + 1; sn := sn − 1;
goto exit or goto loop

exit: gosub decn; // the routine called at decn is DECn(sn) / /
goto ZERO

Recall the specification of TEST′n:

If x = 0 (1 ≤ x ≤ 22n), then some execution of the pro-
gram leads to ZERO (NONZERO), and no computation leads to
NONZERO (ZERO).

After any execution leading to ZERO the values of x and x are
swapped, and no other variable changes its value; and after any
execution leading to NONZERO no variable changes its value.

If x > 0, then we can choose the nonzero branch and reach NONZERO.
No execution ever reaches ZERO, because sn cannot reach the value 22n ,
and so DECn fails.

If x = 0, then x = 22n . After looping 22n times on loop the values of x, x
and sn, sn have been swapped. The values of sn and sn are swapped again
by DECn, and then the program moves to ZERO. No execution reaches the
NONZERO branch, because the program fails at x := x− 1.

The next step is to design DECn.

139

The net program DECn

We proceed by induction on n. DEC0 has to decrease s by 220 = 2. We take

DEC0(s)

s := s− 1; s := s+ 1;
s := s− 1; s := s+ 1;
return

Now we design DECi+1 under the assumption that DECi is already known.

Key idea: decreasing by 22i+1 amounts to decreasing 22i times by 22i , be-
cause

22i+1

= (22i)2 = 22i · 22i

So decreasing by 22i+1 can be implemented by two nested loops, each of
which is executed 22i times. The body of the inner loop decreases s by 1.

The loop counters have initial values 22i . The loops terminate when the
counters reach 0, which is tested with TEST′i.

DECi+1(s)

/ / initially yi = 22i = zi, yi = 0 = zi //
/ / the initialisation is carried out by Ninit //

outer loop: yi := yi − 1; yi := yi + 1;
inner loop: zi := zi − 1; zi := zi + 1;

s := s− 1; s := s+ 1;
TEST′i(zi, inner exit , inner loop);

inner exit: TEST′i(yi, outer exit, outer loop);
outer exit: return

140

Recall the specification of DECi:

If the initial value of s is smaller than 22i , then every execution
of DECi fails.

If the value of s is greater than or equal to 22n , then

• all executions terminating with a return command have
the same effect as s := s− 22i ; s := s+ 22i;
in particular, there are no side-effects;

• all other executions fail.

It could seem that DECi+1 swaps the values of yi, yi and zi, zi, which would
be a side-effect contrary to the specification.

This is not the case. These swaps are compensated by the side-effects of the
ZERO branches of the TEST′i programs! Notice that these branches are now
the inner exit and outer exit branches. When the program leaves
the inner loop, TEST′i swaps the values of zi and zi. When the program
leaves the outer loop, TEST′i swaps the values of yi and yi.

141

The net program Ninit(C)

Let us first make a list of the initializations that have to be carried out.

Nsim(C) contains

• the variables x1, . . . , xl of C with initial value 0; their complementary
variables x1, . . . , xl with initial value 22n;

• a variable s with initial value 0; its complementary variable s with
initial value 22n;

• two variables yi, zi for each i, 0 ≤ i ≤ n − 1, with initial value 22i;
their complementary variables yi, zi for each i, 0 ≤ i ≤ n − 1, with
initial value 0.

The specification of Ninit(C) is:

Ninit(C) uses only the variables in the list above; every suc-
cessful execution leads to a state in which the variables have
the correct initial values.

Ninit(C) calls programs INCi(v1, . . . , vm) with the following specification:

All successful executions have the same effect as

v1 := v1 + 22i;
. . . ;

vm := vm + 22i

In particular, there are no side-effects.

142

The net program INCi

INCi is defined by induction on i, and is very similar to the family of DECi
programs.

We start with INC0:

INC0(v1, . . . , vm):

v1 := v1 + 1; v1 := v1 + 1;
. . .
vm := vm + 1; vm := vm + 1

and now give the inductive definition of INCi+1:

INCi+1(v1, . . . , vm)

// initially yi = 22i = zi, yi = 0 = zi //
outer loop: yi := yi − 1; yi := yi + 1;
inner loop: zi := zi − 1; zi := zi + 1;

v1 := v1 + 1;
. . .
vm := vm + 1;
TEST′i(zi, inner exit , inner loop);

inner exit: TEST′i(yi, outer exit, outer loop);
outer exit: . . .

It is easy to see that these programs satisfy their specifications.

143

We now give the code for Ninit(C).

Apparently, we face a problem: in order to initialize the variables v1, . . . , vm
to 22i+1 the variables yi and zi must have already been initialized to 22i .

But it suffices to carry out the initializations in the right order:

Ninit(C)

INC0(y0, z0); INC1(y1, z1); . . . ; INCn−1(yn−1, zn−1); INCn(s, x1, . . . , xl)

Size of N(C)

We show that N(C) has size O(n2), where n is the size of C.

Nsim(C) It contains two assignments for each assignment of C, an uncon-
ditional jump for each unconditional jump in C, and a different instance of
TESTn for each conditional jump.

Moreover, it contains (one single instance of) the routines DECn, DECn−1,
. . . , DEC0 (notice that TESTn calls DECn, which calls DECn−1, etc.).

Both TESTn and the routines have constant length.

So the number of commands of Nsim(C) is O(n).

Ninit(C) contains (one single instance of) the programs INCi for 1 ≤ i ≤ n.

The programs INC1, . . . , INCn−1 have constant size, since they initialize a
constant number of variables.

The number of commands of INCn is O(n), since it initializes O(n) vari-
ables.

So N(C) contains O(n) commands. It follows that its corresponding Petri
net has size O(n2).

144

Chapter 4

Semi-decision procedures

4.1 Linear systems of equations and linear pro-
gramming

In the next two sections we construct linear systems of equations with inte-
ger or rational coefficients that provide partial information about our anal-
ysis problems. (More precisely, they will be systems of equations and in-
equations, but, abusing language, we let “equations” stand for both.)

We will prove propositions like “if the system of equations A ·X ≤ b (we
will see how this system looks like) has a rational positive solution, then the
Petri net (N,M0) is bounded” (sufficient condition), or “if M is reachable
in (N,M0), then the system of equations B ·X = b has a solution over the
natural numbers” (necessary condition).

Such propositions lead to semi-decision procedures to prove or disprove a
property. The complexity of these procedures depends on the complexity of
solving the different systems of equations.

145

We define the size of a linear system of equations A ·X = b or A ·X ≤ b
where A = (aij)i=1,...n,j=1,...,m and b = (bj)j=1,...,m as∑

{log2|aij| | 1 ≤ i ≤ n, 1 ≤ j ≤ m}+
∑
{log2|bj| | 1 ≤ j ≤ m}

The problem of deciding whether A ·X = b has

• a rational solution can be solved in polynomial time.
(Naive Gauss elimination is not polynomial, because coefficients can
become very large. However, there exist improved versions with
polynomial complexity.).

• an integer solution can be solved in polynomial time.

• a nonnegative integer solution is NP-complete.

The problem of deciding whether A ·X ≤ b has

• a rational solution can be solved in polynomial time.
(In practice we use the simplex algorithm, which has exponential
worst-case complexity, but is very efficient for most instances.)

• an integer solution is NP-complete.

• a nonnegative integer solution is NP-complete.

Given a linear objective function f(X) = c1x1 + . . . cm we can decide with
the same runtime whether there is a solution Xop that maximizes f(X) and,
if so, the value f(Xop).

146

4.2 The Marking Equation

Definition 4.2.1 (Incidence matrix)
LetN = (S, T, F) be a net. The incidence matrix N : (S×T)→ {−1, 0, 1}
is given by

N(s, t) =


0 if (s, t) 6∈ F and (t, s) 6∈ F or

(s, t) ∈ F and (t, s) ∈ F
−1 if (s, t) ∈ F and (t, s) 6∈ F

1 if (s, t) 6∈ F and (t, s) ∈ F

The column N(−, t) is denoted by t, and the row N(s,−) by s.

Example 4.2.2

s5

t2

s3

t1

t4t3

s4

s1 s2

t1 t2 t3 t4
s1 −1 0 1 0
s2 −1 0 0 1
s3 1 −1 0 0
s4 0 1 −1 0
s5 0 1 0 −1

147

Definition 4.2.3 (Parikh-vector of a sequence of transitions)
Let N = (S, T, F) be a net and let σ be a finite sequence of transitions.
The Parikh vector σ : T → IN of σ is defined by

σ(t) = number of occurrences of t in σ

Lemma 4.2.4 (Marking Equation Lemma)
Let N be a net and let M σ−→M ′ be a firing sequence of N . Then:

M ′ = M + N · σ

Proof. By induction on the length of σ.
Basis: σ = ε. Then M = M ′ and σ = 0
Step: σ = τt for some sequence τ and transition t. Let M τ−→ L

t−→ M ′.
We have

M ′ = L+ t (Definition of t)
= L+ N · t (Definition of t)
= M + N · τ + N · t (Induction hyp.)
= M + N · (τ + t)
= M + N · τt (Definition of Parikh-vector)
= M + N · σ (σ = τt)

�

Example 4.2.5 In the previous net we have (11000)
t1t2t3−−→ (10001), and

1
0
0
0
1

 =


1
1
0
0
0

+


−1 0 1 0
−1 0 0 1

1 −1 0 0
0 1 −1 0
0 1 0 −1

 ·


1
1
1
0



148

The marking reached by firing a sequence σ from a marking M depends
only on the Parikh-vector σ.

In other words, if M enables two sequences σ and τ with σ = τ , then both
σ and τ lead to the same marking.

Definition 4.2.6 (Marking Equation)
The Marking Equation of a Petri net (N,M0) is M = M0 + N · X with
variables M and X .

The Marking equation leads to the following semi-algorithms for Bounded-
ness, b-Boundedness, (Non)-Reachability, and Deadlock-freedom:

Proposition 4.2.7 (A sufficient condition for boundedness)
Let (N,M0) be a Petri net. If the optimization problem

maximize
∑
s∈S

M(s)

subject to M = M0 + N ·X

has an optimal solution, then (N,M0) is bounded.

Proof. Let n be the optimal solution of the problem.

Then n ≥ ∑
s∈S

M(s) holds for every marking M for which there exists a

vector X such that M = M0 + N ·X .

By Lemma ?? we have n ≥ ∑
s∈S

M(s) for every reachable marking M , and

so n ≥M(s) for every reachable marking M and every place s. �

Exercise: Change the algorithm so that it checks whether a given place is
bounded.

149

Proposition 4.2.8 (A sufficient condition for non-reachability)
Let (N,M0) be a Petri net and let L be a marking of N .
If the equation

L = M0 + N ·X (with only X as variable)

has no solution, then L is not reachable from M0.

Proof. Immediate consequence of Lemma ??. �

Proposition 4.2.9 (A sufficient condition for deadlock-freedom)
Let (N,M0) be a 1-bounded Petri net whereN = (S, T, F). If the following
system of equations has no solution then (N,M0) is deadlock-free.

M = M0 + N ·X∑
s∈•t

M(s) < |•t| for every transition t.

Proof. We show: if there is a reachable dead marking M , then M is a
solution of the system.

Let M be a reachable dead marking. By Lemma ?? there is a vector X
satisfying M = M0 + N ·X .

Let t be an arbitrary transition. We prove
∑
s∈•t

M(s) < |•t|.

Since (N,M0) is 1-bounded, we have M(s) ≤ 1 for every place s. In
particular,

∑
s∈•t

M(s) ≤ |•t|.

Since M does not enable t, we have M(s) = 0 for at least one place s ∈ •t,
and so

∑
s∈•t

M(s) < |•t|. �

150

The converses of these propositions do not hold (that is why they are semi-
algorithms!). Counterexamples are:

• To Proposition ??:

s2

t1

s1
t1

s1 0
s2 1

(N,M0) ist bounded but(
0

n

)
=

(
0

0

)
+

(
0

1

)
· n

holds for every n (that is, the Marking Equation has a solution for
every marking of the form (0, n)).

• To Proposition ??:

Peterson’s algorithm: the marking

(p4, q4,m1=true,m2=true, hold=1)

ist not reachable, but the Marking Equation has a solution.

(Exercise: find a smaller example).

• To Proposition ??:

Peterson’s algorithm with an additional transition t satisfying •t =
{p4, q4} and t• = ∅. The Petri net is deadlock free, but the Marking
Equation has a solution for (m1=true,m2=true, hold=1) that satis-
fies the conditions of the proposition.

(Exercise: find a smaller example).

151

4.3 S- and T-invariants

4.3.1 S-invariants

Definition 4.3.1 (S-invariants)
Let N = (S, T, F) be a net. An S-invariant of N (aka P-invariant, P-flow,
or place invariant) is a vector I : S → Q such that I ·N = 0.

Proposition 4.3.2 (Fundamental property of S-invariants)
Let (N,M0) be a Petri net and let I be a S-invariant of N . If M0

∗−→ M ,
then I ·M = I ·M0.

Proof. We have M0
σ−→ M for some firing sequence σ. By the Marking

Equation Lemma we get

M = M0 + N · σ

and so

I ·M = I ·M0 + I ·N · σ (Marking Equation)
= I ·M0 (I ·N = 0)

�

The value of the expression I ·M is therefore the same for every reachable
marking M , and so it constitutes an invariant of (N,M0).

152

Example 4.3.3 We compute the S-invariants of

s2s1

t1 t2 t3

s4s3

The incidence matrix is:

t1 t2 t3
s1 1 −1 0
s2 0 −1 1
s3 −1 1 0
s4 0 1 −1

We compute the solutions of the system of equations

(i1, i2, i3, i4) ·


1 −1 0
0 −1 1
−1 1 0

0 1 −1

 = 0

The general form of the S-invariants is therefore (x, y, x, y) with x, y ∈ Q.

153

The following propositions are immediate consequences of the definition of
S-invariants:

Proposition 4.3.4 The S-invariants of a net form a vector space over the
rational numbers.

This definition of S-invariant is very suitable for machines, but not for hu-
mans, who can only solve very small systems of equations by hand.

There is an equivalent definition which allows people to decide, even for
nets with several dozens of places, if a given vector is an S-invariant.

Proposition 4.3.5 I is an S-invariant of N = (S, T, F) iff∑
s∈•t

I(s) =
∑
s∈t•

I(s)

holds for every transition t ∈ T .

Proof. I ·N = 0 is equivalent to I · t = 0 for every transition t, and we
have I · t =

∑
s∈t•

I(s)− ∑
s∈•t

I(s). �

154

Example 4.3.6 We show that I = (1, 1, 2, 1) is an S-invariant of

s3

s1

t3

s4

t2

t1

s2

The condition of Proposition ?? must hold for transitions t1, t2 und t3.

• Transition t1: I(s1) + I(s2) = I(s3) = 2.

• Transition t2: I(s3) = I(s1) + I(s4) = 2.

• Transition t3: I(s3) = I(s4) + I(s2) = 2.

155

With the help of S-invariants we can obtain

• a sufficient condition for boundedness,

• a necessary conditions for liveness, and

• a necessary condition for the reachability of a marking.

Definition 4.3.7 (Semi-positive and positive S-invariants)
Let I be an S-invariant of N = (S, T, F).

I is semi-positive if I ≥ 0 and I 6= 0.

I is positive if I > 0 (that is, if I(s) > 0 for every s ∈ S).

The support of an S-invariant is the set 〈I〉 = {s ∈ S | I(s) > 0}.

Training Exercises on AutomataTutor:

• � ü Semipositive Place Invariant 1: Find a semipositive place in-
variant.

• � ü Semipositive Place Invariant 2: Find three different minimal
semipositive place invariants.

• �ü Positive Place invariant: Find a positive place invariant.

156

https://automata-tutor.model.in.tum.de/linked/index/c406065e63a482c
https://automata-tutor.model.in.tum.de/linked/index/1ca6a72330aa3d57
https://automata-tutor.model.in.tum.de/linked/index/6ba4af5676f4282a

Proposition 4.3.8 (A sufficient condition for boundedness)
Let (N,M0) be a Petri net. If N has a positive S-invariant I , then (N,M0)
is bounded. More precisely: (N,M0) is n-bounded for

n = max

{
I ·M0

I(s)
| s is a place of N

}
Proof. Let M be any reachable marking.

By the fundamental property of S-invariants we have I ·M = I ·M0.

Let s be an arbitrary place of N .

Since I > 0 we have I(s) ·M(s) ≤ I ·M = I ·M0

and so M(s) ≤ I·M0

I(s)
. �

Proposition 4.3.9 (A necessary condition for liveness)
If (N,M0) is live, then I ·M0 > 0 for every semi-positive S-invariant of N .

Proof. Let I be a semi-positive S-invariant and let s be a place of 〈I〉.
Since (N,M0) is live, some reachable marking M satisfies M(s) > 0.

Since I is semi-positive, we have I ·M ≥ I(s) ·M(s) > 0.

Since I is a S-invariant, we get I ·M0 = I ·M > 0 �

These two propositions lead immediately to semi-algorithms for Bounded-
ness and Liveness.

Definition 4.3.10 (The ∼ relation)
Let M and L be markings and let I be a S-invariant of a net N .

M und L agree on I if I ·M = I · L.

We write M ∼ L if M and L agree on all invariants of N .

157

Proposition 4.3.11 (A necessary condition for reachability)
Let (N,M0) be a Petri net. M ∼M0 holds for every M ∈ [M0〉.

Proof. Follows from the fundamental property of S-invariants. �

Training Exercise in AutomataTutor:
� � Decide Reachability with place invariants: Decide whether the given
marking is reachable or unreachable. Proof it by giving either a firing se-
quence that reaches the marking or a place invariant that shows unreacha-
bility.

158

https://automata-tutor.model.in.tum.de/linked/index/7afbef50db37091e

The following theorem allows one to decide if M ∼ L holds for two given
markings M and L.

Theorem 4.3.12 Let N be a net and let M,L be two markings of N .
M ∼ L iff the equation M = L+ N ·X has a rational solution.

Proof. (⇒): M ∼ L implies I · (M − L) = 0 for every S-invariant I .

We now recall a well-known theorem of linear algebra. Given a n × m
matrix A, the sets

U ={u ∈ Qn | u · A = 0}
V ={v ∈ Qn | u · v = 0 for every u ∈ U}

are vector spaces, and the columns of A contain a basis of V .

If we take A := N, then U is the set of S-invariants of N .

So, by the theorem, the columns of N contain a basis of the vector space of
vectors v satisfying I · v = 0 for every S-invariant I .

In particular, since (M − L) is one of these vectors, (M − L) is a linear
combination over Q of the columns of N.

So the equation N ·X = (M − L) has a rational solution.

(⇐) : Assume M = L+ N ·X has a rational solution X0.

Let I be an S-invariant of N .

Since I ·N = 0 we have

I ·M = I · (L+ N ·X0) = I · L+ 0 = I · L .

�

159

More generally, we have:

M is reachable from L
6⇑ ⇓

M = L+ N ·X has a solution X ∈ N|T |
6⇑ ⇓

M = L+ N ·X has a solution X ∈ Q|T |
m

M ∼ L

160

4.3.2 T-invariants

Definition 4.3.13 (T-invariants)
Let N = (S, T, F) be a net. A T-invariant of N (aka T-flow) is a vector
J : T → Q such that N · J = 0.

Proposition 4.3.14 J is a T-invariant of N = (S, T, F) iff∑
t∈•s

J(t) =
∑
t∈s•

J(t)

for every place s ∈ S.

Proposition 4.3.15 (Fundamental property of T-invariants)
Let N be a net, let M be a marking of N , and let σ be a sequence of
transitions of N enabled at M .
The vector σ is a T-invariant of N iff M σ−→M .

Proof. (⇒) : Let M ′ be the marking satisfying M σ−→M ′.

By the Marking Equation we have M ′ = M + N · σ. Since N · σ = 0 we
get M ′ = M

(⇐) : By the Marking Equation we have M = M + N · σ.

So N · σ = 0. �

161

We compute the T-invariants of

s2s1

t1 t2 t3

s4s3

as the solutions of the system of equations
1 −1 0
0 −1 1
−1 1 0

0 1 −1


 j1

j2
j3

 = 0

The general form of the T-invariants is (x, x, x), where x ∈ Q.

Training Exercises on AutomataTutor:

• �ü Positive Transition Invariant 1: Find a positive transition invari-
ant.

• � ü Semipositive Transition Invariant: Find a semipositive transi-
tion invariant.

• �ü Positive Transition invariant 2: Find a positive transition invari-
ant.

162

https://automata-tutor.model.in.tum.de/linked/index/53d8c7a0099bcd9d
https://automata-tutor.model.in.tum.de/linked/index/41522317d9f2bcb3
https://automata-tutor.model.in.tum.de/linked/index/4ab2fd5cc6255140

Using T-invariants we obtain a necessary condition for well-formedness:

Theorem 4.3.16 (Necessary condition for well-formedness)
Every well-formed net has a positive T-invariant.

Proof. Let N be a well-formed net and let M0 be a live and bounded mark-
ing of N .

By liveness there is an infinite firing sequence σ1σ2σ3 · · · such that every σi
is a finite firing sequence containing all transitions of N .

We have
M0

σ1−→M1
σ2−→M2

σ3−→ . . .

By boundedness there are indices i < j such that Mi = Mj . So the se-
quence σi+1 . . . σj satisfies

Mi

σi+1...σj
−−→ Mi

and so J = σi+1 + . . .+ σj is a T-invariant of N .

J is positive because every transition occurs at least once in σi+1 . . . σj . �

163

4.4 Siphons and Traps

4.4.1 Siphons

Definition 4.4.1 (Siphon)
Let N = (S, T, F) be a net. A set R ⊆ S of places is a siphon of N if
•R ⊆ R•. A siphon R is proper if R 6= ∅.

Example 4.4.2 The set {s1, s2} is a siphon of

t3

s3

t5t1

t2

s1

t4

s4s2

•{s1, s2} = •s1 ∪ •s2 = {t2} ∪ {t1} = {t1, t2}
{s1, s2}• = s•1 ∪ s•2 = {t1} ∪ {t2, t3} = {t1, t2, t3}

Training Exercises in Automata Tutor:

• �ü Minimal siphon: Find a proper minimal siphon of the Petri net.

• � ü Siphon containing a certain place: Find a proper siphon con-
taining at least one specified place.

• �ü Largest siphon: Find the largest siphon of the Petri net.

164

https://automata-tutor.model.in.tum.de/linked/index/1570971c07f4091a
https://automata-tutor.model.in.tum.de/linked/index/67aed8929c2afa1c
https://automata-tutor.model.in.tum.de/linked/index/355bed2d124ac4c4

Proposition 4.4.3 (Fundamental property of siphons)
Let R be a siphon of a net N , and let M σ−→M ′ be a firing sequence of N .
If M(R) = 0, then M ′(R) = 0.

Proof. Since •R ⊆ R•, the transitions that can mark R can only occur at
markings that already mark R. �

Loosely speaking, a siphon that becomes unmarked (or “empty”), remains
unmarked forever.

165

Corollary 4.4.4 (A necessary condition for reachability)
If M is reachable in (N,M0), then for every siphon R, if M0(R) = 0 then
M(R) = 0.

We can easily check in polynomial time if this condition holds.

We first observe that, if R1 and R2 are siphons of N , then so is R1 ∪R2.

It follows that there exists a unique largest siphonQ0 unmarked atM0 (more
precisely, R ⊆ Q0 for every siphon R such that M0(R) = 0).

We claim that the condition of Corollary ?? holds for every siphon R if and
only if M(Q0) = 0.

• Assume the condition holds for every siphon R.
Since M0(Q0) = 0 by definition, we get M(Q0) = 0.

• Assume the condition does not hold.
Then there is a siphon R such that M0(R) = 0 and M(R) > 0.
Since R ⊆ Q0, we also have M(Q0) > 0.

The siphon Q0 can be determined with the help of the algorithm in the
next slide, which computes the largest siphon contained in a given set R of
places—it suffices then to choose R as the set of places unmarked at M0.

166

Training Exercises in Automata Tutor:

• � � Decide reachability with siphons: Decide whether the given
marking is reachable or unreachable. Proof it by giving either a firing
sequence that reaches the marking or a siphon that shows unreacha-
bility.

• � � Decide Reachability with siphons and place invariants: Decide
whether the given marking is reachable or unreachable. Proof it by
giving either a firing sequence that reaches the marking or a place
invariant or siphon that shows unreachability.

167

https://automata-tutor.model.in.tum.de/linked/index/7992f08b9e22670c
https://automata-tutor.model.in.tum.de/linked/index/44bf7dc4d5440c94

Input: A net N = (S, T, F) and R ⊆ S.
Output: The largest siphon Q ⊆ R.
Initialization: Q := R.

begin
while there are s ∈ Q and t ∈ •s such that t /∈ Q• do

Q : = Q \ {s}
endwhile

end

Exercise: Show that the algorithm is correct. That is, prove that

• the algorithm terminates, and

• after termination Q is the largest siphon contained in R.

168

Siphons lead to a necessary condition for liveness, and a sufficient condition
for deadlock-freedom.

Proposition 4.4.5 (A necessary condition for liveness)
If (N,M0) is live, then M0 marks every proper siphon of N .

Proof. Let R be a proper siphon of N and let s ∈ R.

Since we assume that N is connected, •s∪ s• 6= ∅, and, since R is a siphon,
s• 6= ∅.
Let t ∈ s• 6= ∅. By liveness some reachable marking enables t, and so some
reachable marking marks s, and therefore also the siphon R.

By Proposition ?? the initial marking M0 also marks R. �
Again, the condition can be checked with the help of the algorithm above:
the condition holds if and only if Q0 = ∅.
We also obtain a sufficient condition for deadlock-freedom, but not one that
is easy to check.

Proposition 4.4.6 If M is a dead marking of N , then the set of places un-
marked at M is a proper siphon of N .

Proof. Let R = {s |M(s) = 0}. Since M is dead, R 6= ∅.
We show •R ⊆ R•.

For every transition t there is a place s ∈ •t such that M(s) = 0 (otherwise
t would be enabled). We have s ∈ R.

So R• contains all transitions of N , and therefore •R ⊆ R•. �

Corollary 4.4.7 (A sufficient condition for deadlock-freedom) Let (N,M0)
be a Petri net. If every reachable marking marks all proper siphons of N ,
then (N,M0) is deadlock-free.

169

4.4.2 Traps

Definition 4.4.8 (Trap)
Let N = (S, T, F) be a trap. A set R ⊆ S of places is a trap if R• ⊆ •R. A
trap R is proper if R 6= ∅.

Example 4.4.9 The set {s3, s4} is a trap of

t3

s3

t5t1

t2

s1

t4

s4s2

Training Exercises in Automata Tutor:

• �ü Minimal trap: Find a proper minimal trap of the Petri net.

• � ü Trap containing a certain place: Find a proper trap containing
at least one specified place.

• �ü Largest trap: Find the largest trap of the Petri net.

Proposition 4.4.10 [Fundamental property of traps]
Let R be a trap of a net N and let M σ−→ M ′ be a firing sequence of N . If
M(R) > 0, then M ′(R) > 0.

170

https://automata-tutor.model.in.tum.de/linked/index/59d862159e84f582
https://automata-tutor.model.in.tum.de/linked/index/5df40f445fbddc4d
https://automata-tutor.model.in.tum.de/linked/index/6fea128c3b1cc0a

Proof. Since •R ⊆ •R, transitions that take tokens from R put tokens in R.
�

So, loosely speaking, marked traps stay marked.

Notice, however, that this does not mean that the number of tokens of a trap
cannot decrease. The number can go up or down, just not become 0.

171

Traps lead to a necessary condition for reachability:

Corollary 4.4.11 (A necessary condition for reachability)
If M is reachable in (N,M0), then for every trap R, if M0(R) > 0 then
M(R) > 0.

As in the case of siphons, we can check in polynomial time if this condition
holds.

If R1 and R2 are traps of N , then so is R1 ∪R2.

So there exists a unique largest trap Q0 unmarked at M (more precisely,
R ⊆ Q0 for every trap R such that M(R) = 0). This condition holds if and
only if M0(Q0) = 0.

To compute the largest trap unmarked at M , we transform the algorithm
that computes the largest siphon contained in a given set of places into an
algorithm for computing the largest trap (exercise).

Training Exercises in Automata Tutor:

• �� Decide reachability with traps: Decide whether the given mark-
ing is reachable or unreachable. Proof it by giving either a firing
sequence that reaches the marking or a trap that shows unreachabil-
ity.

• � � Decide Reachability in any way: Decide whether the given
marking is reachable or unreachable. Proof it by giving either a firing
sequence that reaches the marking or a place invariant, trap or siphon
that shows unreachability.

The sufficient condition for deadlock-freedom was computationally expen-
sive, because of the form “for every reachable marking ...”. Combining
siphons and traps we obtain an easier-to-check condition.

172

https://automata-tutor.model.in.tum.de/linked/index/177ebaf967b10489
https://automata-tutor.model.in.tum.de/linked/index/1f183023edb196d8

Proposition 4.4.12 (A sufficient condition for deadlock-freedom)
Let (N,M0) be a Petri net. If every proper siphon of N contains a trap
marked at M0, then (N,M0) is deadlock-free.

Proof. Easy consequence of Corollary ?? and Proposition ??. �

The siphon-trap condition cannot be checked in polynomial time unless
P=NP (whether every proper siphon contains a marked trap is an NP-complete
problem), but can be checked with the help of a SAT-solver (see “New al-
gorithms for deciding the siphon-trap property” by O. Oanea, H. Wimmel,
and K. Wolf).

173

Proving mutual exclusion of Peterson’s algorithm
We show how to combine S-invariants and traps to prove that Peterson’s
algorithm satisfies the mutual exclusion property.

The Petri net model is (see Chapter 2):

p1

p2

p3

p4

q1

q2

q3

q4

m1=f

m1=t

m2=f

m2=t

hold=1

hold=2

u6 u1

u3
u2

u4 u5

v6v1

v3
v2

v4v5

Recall that the the algorithm satisfies the mutual exclusion property iff no
reachable marking M of the Petri net model satisfies

M(p4) ≥ 1 ∧M(q4) ≥ 1 .

We first compute some constraints derived from S-invariants and traps.

174

Constraints from S-invariants

(1) M(hold=1) +M(hold=2) = 1

p1

p2

p3

p4

q1

q2

q3

q4

m1=f

m1=t

m2=f

m2=t

hold=1

hold=2

u6 u1

u3
u2

u4 u5

v6v1

v3
v2

v4v5

(2) M(p2) +M(p3) +M(p4) +M(m1=f) = 1

(3) M(q2) +M(q3) +M(q4) +M(m2=f) = 1

p1

p2

p3

p4

q1

q2

q3

q4

m1=f

m1=t

m2=f

m2=t

hold=1

hold=2

u6 u1

u3
u2

u4 u5

v6v1

v3
v2

v4v5

175

Constraints from traps

(4) M(m1=f) +M(p2) +M(hold=1) +M(q3) > 0

(5) M(m2=f) +M(q2) +M(hold=2) +M(p3) > 0

p1

p2

p3

p4

q1

q2

q3

q4

m1=f

m1=t

m2=f

m2=t

hold=1

hold=2

u6 u1

u3
u2

u4 u5

v6v1

v3
v2

v4v5

The set of places
{m1=f , p2, hold=1, q3}

(shown in blue in the picture) is a trap.

Every transition that removes some token from the set (shown in blue again)
also add some token to the set.

176

Proving mutual inclusion
Assume that some reachable markingM violates the mutual exclusion prop-
erty. Then M satisfies all of

(0) M(p4) ≥ 1 ∧M(q4) ≥ 1

(1) M(hold=1) +M(hold=2) = 1

(2) M(p2) +M(p3) +M(p4) +M(m1=f) = 1

(3) M(q2) +M(q3) +M(q4) +M(m2=f) = 1

(4) M(m1=f) +M(p2) +M(hold=1) +M(q3) > 0

(5) M(m2=f) +M(q2) +M(hold=2) +M(p3) > 0

We show this is a contradiction:

M(p4) ≥ 1 ∧M(q4) ≥ 1

=⇒ ((2) and (3))

M(p2) +M(p3) +M(m1=f) = 0
∧

M(q2) +M(q3) +M(m2=f) = 0

=⇒ { ((1)) }
M(p2) +M(p3) +M(m1=f) = 0

∧
M(q2) +M(q3) +M(m2=f) = 0

∧
(M(hold=1) = 0 ∨ M(hold=2) = 0)

=⇒ { (logic and arithmetic) }
M(m1 = f) +M(p2) +

M(hold = 1) +M(q3) = 0
∨ M(m2 = f) +M(q2) +

M(hold = 2) +M(p3) = 0

contradicts (4) contradicts (5)

177

Automatizing the proof process
We describe a procedure that automatically computes the proof of mutual
exclusion.

We assume that the set of markings that violate the property can be ex-
pressed as the markings satisfying a system V of linear constraints (linear
equations or inequations). In our case V = {M(p4) ≥ 1,M(q4) ≥ 1}.
We maintain a second system of linear constraints L that is satisfied by all
reachable markings. Initially L = ∅.
In the j-th iteration of the procedure:

• We compute a marking Mj (not necessarily reachable!) satisfying all
constraints of L and V .

If no such marking exists, then every reachable marking satisfies the
property.

• Otherwise, we compute an S-invariant Ij or a trap Rj such that Mj

does not satisfy the linear constraint Lj for Ij or Rj .

If no such S-invariant or trap exist, we stop without a conclusion.

• Otherwise, we set L := L ∪ {Lj}.

The marking Mj is computed by solving the set of linear equations corre-
sponding to V and the current constraints of L.

The existence of an S-invariant is checked by solving the systems

Ij ·N = 0 Ij ·N = 0
Ij ·Mj < Ij ·M0 Ij ·Mj > Ij ·M0

The existence of a trap is checked by computing the largest trap Qj con-
tained in the set {s |Mj(s) = 0}, and checking if M0(Qj) > 0.

178

In our example, the procedure can produce the following results:

• V = {M(p4) ≥ 1,M(q4) ≥ 1}.

• M1 = {p4, q4} satisfies V .

• We compute (1): M(hold=1) +M(hold=2) = 1,
which is not satisfied by M1, from an S-invariant.

• M2 = {p4, q4, hold=1} satisfies (1) and V .

• We compute (5): M(m2=f) +M(q2) +M(hold=2) +M(p3) > 0,
which is not satisfied by M2, from a trap.

• M3 = {p4, q4, hold=1,m2=f} satisfies (1), (5), and V .

• We compute (3): M(q2) +M(q3) +M(q4) +M(m2=f) = 1,
which is not satisfied by M3, from an S-invariant.

• M4 = {p4, q4, hold=2,m1=f} satisfies (1), (5), (3), and V .

• We compute (2): M(p2) +M(p3) +M(p4) +M(m1=f) = 1,
which is not satisfied by M4, from an S-invariant.

• M5 = {p4, q4, hold=2} satisfies (1), (5), (3), (2), and V .

• We compute (4): M(m1=f) +M(p2) +M(hold=1) +M(q3) > 0,
which is not satisfied by M5, from a trap.

• There is no reachable marking satisfying (1)-(5) and V .

179

180

Chapter 5

Petri net classes with efficient
decision procedures
In the three sections of this chapter we study three classes of Petri nets:
S-systems, T-systems, and free-choice systems.

All sections have a similar structure. After the definition of the class, we in-
troduce three theorems: the Liveness, Boundedness, and Reachability The-
orems.

The Liveness Theorem characterizes the live Petri nets in the class.

The Boundedness Theorem characterizes the live and bounded systems.

The Reachability Theorem characterizes the reachable markings of the live
and bounded systems.

The proofs of the theorems requires some results about the structure of S-
and T-invariants of the class, which we also present.

The theorems immediately yield decision procedures for Liveness, Bound-
edness and Reachability whose complexity is much lower than those for
general Petri nets.

181

Why boundedness only for live Petri nets, and reachability only for live
and bounded Petri nets?

First, in many application areas, a Petri net model of a correct system must
typically be live and bounded, and so, if one of these properties fails, it does
not make sense to check the other.

Second, the general characterization of the bounded systems or the reach-
able markings is less elegant than the corresponding characterization for
live or live and bounded Petri nets.

Third, the computational complexity also improves in some cases. For ex-
ample, Reachability for arbitrary free-choice systems is non-elementary, but
it is NP-complete for live and bounded free-choice Petri nets.

The proofs of the theorems are very easy for S-systems, a bit more involved
for T-systems, and relatively complex for free-choice systems. For this rea-
son we just sketch the proofs for S-systems, explain the proofs in detail for
T-systems, and omit some of the proofs for free-choice systems.

182

5.1 S-Systems

Definition 5.1.1 (S-nets, S-systems)
A net N = (S, T, F) is a S-net if |•t| = 1 = |t•| for every transition t ∈ T .
A Petri net (N,M0) is a S-system if N is a S-net.

Training Exercise in AutomataTutor:
� � Not deadlock-free S-system: Construct a S-System that is not
deadlock-free.

Proposition 5.1.2 (Fundamental property of S-systems)
Let (N,M0) be a S-system where N = (S, T, F).
M0(S) = M(S) holds for every reachable marking M .

Proof. Every transition consumes one token and produces one token. �

Theorem 5.1.3 (Liveness Theorem for S-systems)
Let (N,M0) be a S-system where N = (S, T, F).
(N,M0) is live iff N is strongly connected and M0(S) > 0.

Proof. (Sketch.)
(⇒): Assume N is not strongly connected. Then there is an arc (s, t) such
that N has no path from t to s. We show that t is not live.

For every marked place s′ such that there is a path from s′ to s, fire the
transitions of the path to bring the tokens in s′ to s, and then fire transition
t until s contains no tokens.

We have then reached a marking from which no tokens can “travel” back to
s, and so t cannot occur again. So t is not live.

IfM0 marks no places, then no transition can occur, and (N,M0) is not live.

183

https://automata-tutor.model.in.tum.de/linked/index/3655dad202af6f3d

(⇐): If N is strongly connected and M0 puts at least one token somewhere,
then the token can freely move, reach any other place, and so enable any
transition again. �

184

Theorem 5.1.4 (Boundedness Theorem for S-systems)
Let (N,M0) be a live S-system where N = (S, T, F).
(N,M0) is b-bounded iff M0(S) ≤ b.

Proof. Trivial. �

Exercise: give a counterexample for non-live S-systems.

Theorem 5.1.5 (Reachability Theorem for S-systems)
Let (N,M0) be a live S-system where N = (S, T, F), and let M be a mark-
ing of N . M is reachable from M0 iff M0(S) = M(S).

Proof. N is strongly connected by Proposition ??. So tokens can move to
any place, and reach any marking M such that M(S) = M0(S). �

We characterize the S-invariants of S-nets. Recall that by assumption nets
are connected.

Proposition 5.1.6 (S-invariants of S-nets)
Let N = (S, T, F) be a S-net. A vector I : S → Q is a S-invariant of N iff
I = (x, . . . , x) for some x ∈ Q.

Proof. Each transition t ∈ T has exactly one input place st and an output
place s′t. So we have∑

s∈•t
I(s) = I(st) and

∑
s∈t•

I(s) = I(s′t)

and therefore

I is a S-invariant
⇔ ∀t ∈ T : I(st) = I(s′t) (Def. of S-invariant and property above)
⇔ ∀s1, s2 ∈ S : I(s1) = I(s2) (N is connected)
⇔ ∃x ∈ Q ∀s ∈ S : I(s) = x

�

185

5.2 T-systems

Definition 5.2.1 (T-nets, T-systems)
A net N = (S, T, F) is a T-net if |•s| = 1 = |s•| for every place s ∈ S.
A system (N,M0) is a T-system if N is a T-net.

Notation: We let γ denote a circuit of a net N . Given a marking M , we let
M(γ) denote the number of tokens of γ under M , that is,

M(γ) =
∑
s∈γ

M(s) .

Training Exercises in Automata Tutor:

• �� Unbounded T-system: Create an unbounded T-system.

• � � Not deadlock-free T-system: Create a T-system that is not
deadlock-free.

Proposition 5.2.2 (Fundamental property of T-systems)
Let γ be a circuit of a T-system (N,M0) and let M be a reachable marking.
Then M(γ) = M0(γ).

Proof. Firing a transition does not change the number of tokens of γ.

If the transition does not belong to the circuit, then the distribution of tokens
in the circuit does not change.

If the transition belongs to the circuit, then it removes one token from a
place of the circuit, and adds a token to another place. So the token count
does not change. �

186

https://automata-tutor.model.in.tum.de/linked/index/41da35a2ddd8bc1a
https://automata-tutor.model.in.tum.de/linked/index/414cfbc66b84eaa8

5.2.1 Liveness

Theorem 5.2.3 (Liveness Theorem for T-systems)
A T-system (N,M0) is live iff M0(γ) > 0 for every circuit γ of N .

Proof. (⇒): Let γ be a circuit with M0(γ) = 0.

By Proposition ?? we have M(γ) = 0 for every reachable marking M .

So no transition of γ can ever occur, and (N,M0) is not live.

(⇐): Let t be an arbitrary transition and let M be a reachable marking. We
show that some marking reachable from M enables t.

Let SM be the set of places s of N such that some path leading from s to t
contains no place marked at M .

We proceed by induction on |SM |.
Basis: |SM | = 0. Then M(s) > 0 for every place s ∈ •t. So M enables t.

Step: |SM | > 0. By the fundamental property of T-systems, every circuit of
N is marked at M . So there is a simple path Π such that:

(1) Π leads from some node (possibly t) to t.

(2) M marks no place of Π.

(3) Π has maximal length (no path longer than Π satisfies (1)-(2)).

Let u be the first element of Π. By (3), u is a transition, and M marks all
places of •u. So M enables u.

Let M u−→ L. We show that SL ⊂ SM , and so that |SL| < |SM |.

187

We prove SL ⊆ SM and SL 6= SM .

1. SL ⊆ SM

Let s ∈ SL. We show s ∈ SM .

By assumption there is a simple path Π′ = s . . . t containing no place
marked at L.

Assume Π′ contains a place r marked at M .

Since L(r) = 0 and M u−→ L we have u ∈ r•, and so {u} = r•. So
u is the (unique) successor of r in Π′.

Since |SM | > 0, the marking M does not enable t. Since M enables
u, we have u 6= t. So L marks the successor of u in Π′, contradicting
the definition of Π′.

2. SL 6= SM . Let s be the successor of u in Π. Then s ∈ SM but s 6∈ SL,
because L(s) > 0.

By induction hypothesis there is a firing sequence L σ−→ L′ such that L′

enables t. It follows M u−→ L
σ−→ L′, and so L′ is a marking reachable

from M that enables t. �

188

5.2.2 Boundedness

Theorem 5.2.4 (Boundedness Theorem)
A place s of a live T-system (N,M0) is b-bounded iff it belongs to some
circuit γ such that M0(γ) ≤ b.

Proof. (⇐): Assume s belongs to some circuit γ such that M0(γ) ≤ b.
By the fundamental property of T-systems the same holds for every reach-
able marking.

(⇒): Assume s is b-bounded. Let M be a reachable marking such that
M(s) is maximal. We have M(s) ≤ b.

Define the marking L as follows:

L(r) =

{
M(r) if r 6= s
0 if r = s

We claim that (N,L) is not live.

Assume (N,L) is live. Then there is a firing sequence L σ−→ L′ such that
L′(s) > 0.

By the Monotonicity Lemma, M σ−→M ′ for some marking M ′ satisfying

M ′(s) = L′(s) +M(s) > M(s) .

This contradicts the maximality of M(s), and proves the claim.

Since (N,L) is not live, by the Liveness Theorem some circuit γ is un-
marked at L.

Since M is reachable from M0, the system (N,M) is live, and so γ is
marked at M .

Since L and M only differ in the place s, the circuit γ contains s, and s is
the only place of γ marked at M .

So M(γ) = M(s), and since M(s) ≤ b we get M(γ) ≤ b. �

189

Corollary 5.2.5 Let (N,M0) be a live T-system

1. A place of N is bounded iff it belongs to some circuit.

2. Let s be a bounded place. Then

max{M(s) |M0
∗−→M} = min{M0(γ) | γ contains s}

3. (N,M0) is bounded iff N is strongly connected.

Proof. Exercise �

190

5.2.3 Reachability

Proposition 5.2.6 (T-invariants of T-nets)
Let N = (S, T, F) be a T-net. A vector J : T → Q is a T-invariant iff
J = (x . . . x) for some x ∈ Q.

Proof. Dual of the proof of Proposition ??. �

Theorem 5.2.7 (Reachability Theorem)
Let (N,M0) be a live T-system. A marking M is reachable from M0 iff
M0 ∼M .

Proof. (⇒): Immediate consequence of the fundamental propety of S-
invariants.

(⇐) By Theorem ?? there is a rational vector X such that

M = M0 + N.X (5.1)

Since J = (1, 1, . . . , 1) is a T-invariant of N (Proposition ??), we have

N · (X + λJ) = N ·X

for every λ ∈ Q.

So without loss of generality we can assume X ≥ 0.

Let T be the set of transitions of N . We proceed in two steps:

191

(1) There is a vector Y : T → IN such that M = M0 + N · Y .

Let Y be the vector Y (t) := dX(t)e for every transition t.
(Where dxe denotes the smallest integer larger than or equal to x).

By (??) , for every place s with {t1} = •s and {t2} = s• we have

M(s) = M0(s) +X(t1)−X(t2) .

Since both M(s) and M0(s) are integers we get

X(t1)−X(t2) = Y (t1)− Y (t2) .

So M(s) = M0(s)+Y (t1)−Y (t2), which implies M = M0 +N ·Y .

192

(2) M0
∗−→M .

By induction on |Y | = ∑t∈T Y (t).

Basis: |Y | = 0. Then Y = 0 and M = M0.

Step: |Y | > 0.

Claim: M0 enables some transition of 〈Y 〉 := {t ∈ T | Y (t) > 0}.
Let

R = {s ∈ •〈Y 〉 |M0(s) = 0}
Let s ∈ R. Since M0(s) = 0 and M0 + N · Y = M ≥ 0 we have:

If some transition of s• belongs to 〈Y 〉, then some transi-
tion of •s belongs to 〈Y 〉.

Let Π be a path of maximal length containing places of R and transi-
tions of 〈Y 〉 (such a path exists, because otherwise N would contain
a circuit unmarked at M0).

By the property above, the first node of Π is a transition t ∈ 〈Y 〉, and
no place of •t belongs to R.

So M0 marks every place of •t, that is, M0 enables t, and the claim is
proved.

Let M0
t−→M1. We have

M1 + N(Y − t) = M

where
|Y − t| = |Y | − 1 < |Y | .

By induction hypothesis we get M1
∗−→M .

Since M0
t−→M1

∗−→M , we get M0
∗−→M .

�

193

5.2.4 Other useful results

Theorem 5.2.8 Let N be a strongly connected T-net. For every marking
M0 the following statements are equivalent:

(1) (N,M0) is live.

(2) (N,M0) is deadlock-free.

(3) (N,M0) has an infinite firing sequence.

Proof. (1)⇒ (2)⇒ (3) follow from the definitions. We show (3)⇒ (1).

Let M0
σ−→ be an infinite firing sequence.

Claim: Every transition of N occurs in σ.

Since N is strongly connected, (N,M0) is bounded (Theorem ??).

Let σ = t1 t2 t3 . . ., and M0
t1−→M1

t2−→M2
t3−→

Since (N,M0) is bounded, there are i < j such that Mi = Mj .

Let σij be the infix of σ containing the transitions between Mi and Mj .

By the fundamental property of T-invariants (Proposition ??) σij is a T-
Invariant .

By Proposition ?? there is n ∈ N such that σij = (n . . . n).

So every transition of N occurs in σij , and so the same holds for σ, proving
the claim.

By the claim, every place and every circuit of N becomes marked during
the execution of σ.

By the fundamental property of T-systems, all circuits are marked at M0.

By the Liveness Theorem (Theorem ??), (N,M0) is live. �

194

Theorem 5.2.9 (Genrich’s Theorem)
Let N be a strongly connected T-net. There is a marking M0 such that
(N,M0) is live and 1-bounded.

Proof. Since N is strongly connected, any marking that puts tokens on all
places of N is live, because it marks all circuits (Liveness Theorem), and
bounded, because all markings of N are bounded (Corollary ??).

Let (N,M) be live and bounded, but not 1-bounded. We construct another
live marking L of N satisfying the following two conditions:

(1) L(γ) ≤M(γ) for every circuit γ of N , and

(2) L(γ) < M(γ) for at least one circuit γ.

By Theorem ??, at least one place of N has a smaller bound under L as
under M . Iterating this construction we obtain a 1-bounded marking of N .

Let s be a non-1-bounded place of (N,M). Some reachable marking M ′

satisfies M ′(s) ≥ 2. Let L be the marking that puts exactly one token in s,
and as many tokens as M elsewhere.

Since M is live, it marks all circuits of N . By construction L also marks all
circuits, and so L is also live.

We show that L satisfies (1) and (2).

Condition (1) is a consequence of the definition of L.

Condition (2) holds for all circuits containing s (and there is at least one,
because N is strongly connected). �

195

The Shortest Sequence Theorem for 1-bounded T-systems

We prove that for any two markings M1, M2 of a 1-bounded T-system (live
or not), if M2 is reachable from M1, then it can be reached from M1 in
at most n · (n − 1)/2 steps, where n is the number of transitions of the
T-system.

Definition 5.2.10 Given a sequence σ of transitions, we let A(σ) denote
the set of transitions occurring at least once in σ.

Lemma 5.2.11 Let (N,M0) be a T-system. If M0 enables σ1 σ2 t for some
σ1, σ2 ∈ T ∗, and some t ∈ T such that t /∈ A(σ1) and A(σ2) ⊆ A(σ1),
then M0 also enables σ1 t σ2.

Proof. By induction on the length of σ2.

If |σ2| = 0 there is nothing to prove.

Assume σ2 = σ′2u for some u ∈ T . We prove that M0 enables σ1 σ′2 t u.
The result follows by applying the induction hypothesis to σ1 σ′2 t.

Let M0

σ1 σ′2−−−→M1
u−→M2

t−→M3. Consider two cases:

Case 1: u• ∩ •t = ∅. Then t is already enabled at M1, and we are done.

Case 2: u• ∩ •t 6= ∅. Let s ∈ u• ∩ •t.
Since u ∈ A(σ2) and A(σ2) ⊆ A(σ1), we have u ∈ A(σ1).

Since t /∈ A(σ1), we have t /∈ A(σ2).

So u occurs at least twice in σ1 σ2, and t occurs zero times.

It follows M2(s) ≥ 2, and so M1(s) ≥ 1.

Since M1(s) = M2(s) ≥ 1 for every s ∈ •t \ u•, transition t is already
enabled at M1, and we are done. �

196

Lemma 5.2.12 Let (N,M0) be a 1-bounded T-system with N = (S, T, F),
and let M0

σ−→M . There exist sequences σ1, σ2 such that

(a) M0
σ1 σ2−−−→M ;

(b) no transition occurs more than once in σ1;

(c) A(σ2) ⊆ A(σ1); and

(d) if σ is nonempty, then A(σ2) ⊂ A(σ1).

Proof. We first prove that (a)-(c) hold.

By induction on |σ|.
If |σ| = 0, then take σ1, σ2 = ε.

Assume σ = τ t for some t ∈ T and M0
τ−→M ′ t−→M .

By induction hypothesis there are τ1, τ2 such that

• M0
τ1 τ2−−−→M ′;

• no transition occurs more than once in τ1; and

• A(τ2) ⊆ A(τ1).

It t ∈ A(τ1), then take σ1 := τ1 and σ2 := τ2 t.

If t /∈ A(τ1), then by Lemma ?? we have M0
τ1 t τ2−−−−→M .

Take σ1 := τ1 t and σ2 := τ2.

197

We now prove (d).

Assume M0
σ−→M such that σ is nonempty and of minimal length.

Let σ1, σ2 be sequences satisfying (a)-(c).

In particular we have A(σ2) ⊆ A(σ1).

We show A(σ2) ⊂ A(σ1).

Claim 1: A(σ1) 6= ∅.
Follows from σ 6= ε and A(σ2) ⊆ A(σ1).

Claim 2: A(σ1) 6= T .

IfA(σ1) = T then σ1 contains every transition exactly once, and soM0
τ1−−→M0.

It follows M0
τ2−−→M , contradicting that σ has minimal length.

We prove A(σ2) ⊂ A(σ1) with the help of the claims.

Since N is 1-bounded, it is strongly connected (Boundedness Theorem).

By Claim 1 and Claim 2 there is a place s with input and output transitions
t and u, respectively, such that t ∈ A(σ1) and u /∈ A(σ1).

We show that t /∈ A(σ2), which proves A(σ2) ⊂ A(σ1).

Assume t ∈ A(σ2). Then t occurs at least twice in σ1σ2.

We have u /∈ A(σ1) and A(σ2) ⊆ A(σ1), and so u occurs zero times in
σ1σ2.

This contradicts 1-boundedness.

�

198

Theorem 5.2.13 (Shortest Sequence Theorem)
Let (N,M0) be a 1-bounded T-system and let M be a reachable marking.
Then there is an occurrence sequence M0

σ−→M such that

|σ| ≤ n(n− 1)/2

where n is the number of transitions of N .

Proof. By repeated application of Lemma ??, there exists an occurrence
sequence

M0
σ1 σ2 ···σn−−−−−−→M

such that

• σi 6= ε for every 1 ≤ i ≤ n;

• no transition occurs more than once in any of σ1, . . . , σn; and

• A(σ1) ⊃ A(σ2) ⊃ · · · ⊃ A(σn).

Further, we can assume T ⊃ A(σ1). Indeed, if T = A(σ1) thenM0
σ1−−→M0,

and we can choose σ2 · · · σn instead of σ1 · · · σn.

It follows that |σi| ≤ n− i for every 1 ≤ i ≤ n. We get

|σ| ≤
n∑
i=1

(n− i) =
n−1∑
i=1

i =
n(n− 1)

2
.

�

Exercise: Show that the bound of the theorem is tight.

Exercise: Show that for b-bounded T-systems the corresponding bound is
b · n · (n− 1)/2.

199

5.3 Free-Choice Systems

Definition 5.3.1 (Free-Choice nets, Free-Choice systems)
A net N = (S, T, F) is free-choice if for every s ∈ S and t ∈ T :

if (s, t) ∈ F then •t× s• ⊆ F .

A Petri net (N,M0) is free-choice if N is a free-choice net..

For example:

free-choice net non-free-choice net

The following less concise but equivalent definitions may be easier to un-
derstand.

Proposition 5.3.2 (Alternative definitions of free-choice nets)
A net is free-choice if the presets of any two transitions are disjoint or iden-
tical: For every two transitions t1, t2: •t1 ∩ •t2 = ∅ or •t1 = •t2.

A net is free-choice if the postsets of any two places are disjoint or identical:
For every two places s1, s2: s•1 ∩ s•2 = ∅ or s•1 = s•2.

Proof. Exercise. �
Training Exercise in AutomataTutor:
� � Free-choice system: Make a given Petri net free-choice by adding
arcs.

200

https://automata-tutor.model.in.tum.de/linked/index/6021c160b553706

Observe that S- and T-systems are special cases of free-choice systems:

Circuits T−systemsS−systems

Free−choice systems

201

5.3.1 Liveness

We showed in the last chapter that a Petri net in which every siphon contains
an initially marked trap is deadlock-free, but the converse does not hold.

For free-choice systems we obtain Commoner’s Liveness Theorem: A free-
choice Petri net is live iff every proper siphon contains an initially marked
trap.

We prove both directions separately.

If-direction of Commoner’s Liveness Theorem

Definition 5.3.3 (Live and dead transitions) Let M be a marking of N .

A transition t is dead at M if it is not enabled at any marking of [M〉. We
let DM denote the set of transitions dead at M .

A transition t is live at M if t 6∈ DM ′ for every marking M ′ ∈ [M〉. We let
LM denote the set of transitions live at M .

Notice that a transition may be neither live nor dead at a marking. (In this
proof, a better name for “live” would be “inmortal”). We have:

• Live transitions stay live: If t ∈ LM and M ′ ∈ [M〉, then t ∈ LM ′ .

• Dead transitions stay dead: f t ∈ DM and M ′ ∈ [M〉, then t ∈ DM ′ .

• Transitions that are neither live nor dead can die:
If t 6∈ LM ∪DM then t ∈ DM ′ for some M ′ reachable from M .

202

Theorem 5.3.4 (First part of Commoner’s Liveness Theorem)
Let (N,M0) be a free-choice system. If every proper siphon of N contains
a trap marked at M0, then (N,M0) is live.

Proof. We prove that if (N,M0) is not live, then some proper siphon of N
does not contain any trap marked at M0.

Let T be the set of transitions of N .

Since (N,M0) is not live, then, by Definition ??, there is a marking M
reachable from M0 such that T = DM ∪ LM , that is, every transition is
either live or dead at M , and DM 6= ∅.
Claim: For every transition t ∈ DM there exists st ∈ •t such that M(st) =
0 and every t′ ∈ •st is dead at M .

Let St be the set of input places of t not marked at M .

Since t ∈ DM , the set St is nonempty.

Since N is free-choice, for every s ∈ St every transition of s•t is dead at M
(otherwise we could fire t).

So along any occurrence sequence starting at M the number of tokens in
each place of St does not decrease.

It follows: if every place st ∈ •t such that M(st) = 0 has a live input
transition at M , then we can reach a marking that marks all places of St.

But such a marking enables t, contradicting that t is dead at M .

So at least one place st ∈ •t has only dead input transitions at M , which
proves the claim.

Let now R = {st | t ∈ DM}. By the claim, and since DM 6= ∅, the set R
is a siphon unmarked at M . If R would contain a trap marked at M0 then,
since marked traps remain marked, R would be marked at M . So R does
not contain any trap marked at M0. �

203

s1 s2

s3 s4 s5 s6

s7 s8

Figure 5.1: A free-choice net

A siphon is minimal if it does not properly contain any proper siphon.

Theorem ?? still holds if we replace “siphon” by “minimal siphon”.

The net of Figure ?? has four minimal siphons:

R1 = {s1, s3, s5, s7} R2 = {s2, s4, s6, s8}
R3 = {s2, s3, s5, s7} R4 = {s1, s4, s6, s8}

R1, R2, R3 and R4 are also traps, and so, in particular, they contain traps.

By Theorem ??, every marking that marks R1, R2, R3 and R4 is live.

204

Only-if-direction of Commoner’s Theorem

We show that if some proper siphon R of a free-choice system (N,M0)
does not contain an initially marked trap, then (N,M0) is not live.

If such a siphon exists, then the maximal trap Q ⊆ R is unmarked at M0,
and so M0 only can mark places of D := R \Q.

Intuitively, we construct a firing sequence that “empties” the places of D
without marking the places of Q. In this way we reach a marking at which
the siphon R is empty, which proves that (N,M0) is not live.

We need the notion of a cluster.

Definition 5.3.5 (Cluster) Let N = (S, T, F) be a net. A cluster is an
equivalence class of the equivalence relation

((F ∩ (S × T)) ∪ (F ∩ (S × T))−1)∗ .

We let [x] denote the cluster of the node x ∈ S ∪ T .

Informally: two nodes x, y are equivalent if one can travel from x to y by
moving from a place to one of its output transitions, and from a transition
to one of its input places.

Observe: every node of a net belongs to exactly one cluster, that is, the set
of clusters is a partition of S ∪ T .

The figure in the next page shows the clusters of the net of Figure ??.

205

206

The following proposition is easy to prove:

Proposition 5.3.6 Let (N,M0) be a free-choice system withN = (S, T, F),
and let c be a cluster of N .

(1) (s, t) ∈ F for every s ∈ c ∩ S and t ∈ c ∩ T .

(2) A marking enables some transition of c iff it enables every transition
of c.

By (2) we can say that M enables a cluster.

The firing sequence σ that empties the siphon R is constructed as follows.

• We define an allocation that assigns to each cluster c of N containing
places of D a transition of c ∩ T .

Intuitively, the allocation is a recipe indicating which transition to
fire: Whenever the transitions of the cluster are enabled, we fire the
allocated transition, and never any of the others.

• The sequence σ is constructed by repeatedly enabling the clusters of
D, which is possible by liveness, and then firing the allocated transi-
tion.

207

We formally define allocations.

Definition 5.3.7 (Allocation)
LetN = (S, T, F) be a net and letC be a set of clusters ofN . An allocation
of C is a mapping α : C → T such that α(c) ∈ c for every c ∈ C.

Let C = {[t] | t ∈ D•}. We construct an allocation α : C → T satisfying
the following properties.

(a) α is circuit-free, that is, there is no cycle containing only places of D
and allocated transitions.

If there were such a cycle, then by firing only allocated transitions we
might never be able to empty D, because tokens in the cycle would
never “leave” it.

(b) α does not allocate any transition of •Q.

Otherwise firing this transition would mark the trap Q, which would
make it impossible to empty the siphon.

(c) While there are tokens in D it is always possible to fire any of the
allocated transitions again, without firing any of the non-allocated
transitions.

The recipe to construct an allocation satisfying (a) and (b) is given in the
proof of the following lemma. This part does not require the free-choice
property.

208

Lemma 5.3.8 (Circuit-free Allocation Lemma)
Let N be a net, let R be a set of places of N , let Q be the maximal trap
included in R, let D = R \Q, and let C = {[t] | t ∈ D•}.
There exists a circuit-free allocation α : C → T such that α(C) ∩ •Q = ∅.

Proof. By induction on |R|.
Basis: |R| = 0. Then C = ∅ and we take the empty allocation.

Step: |R| > 0.

If R is a trap then D = ∅, and again C = ∅.
If R is not a trap then there exists t ∈ R• \ •R (intuitively, t is a way-out
through which tokens can leave R).

Let R′ = R \ •t, let Q′ be the maximal trap of R′, let D′ = R′ \Q′, and let
C ′ = {[t] | t ∈ (D′)•}.
By induction hypothesis there exists an allocation α′ : C ′ → T , circuit-free
for D′, such that α′(C ′) ∩ •Q′ = ∅.
Define α : C → T as follows:

α(c) =

{
t if t ∈ c
α′(c) otherwise

We show that (a) α is circuit-free and (b) α(C) ∩ •Q = ∅.
We first prove the following facts, which we leave as an exercise:

(i) Q is the maximal trap included in R′, i.e., Q′ = Q.

(ii) D ⊆ D′ ∪ •t. (Use (i).)

(iii) C ⊆ C ′ ∪ {[t]}. (Use (ii) and the definition of C.)

209

(iv) α(C) ⊆ α(C ′) ∪ {t}. (Use (iii) and the definition of α.)

(a) α is circuit-free.

Assume D ∪ α(C) contains a circuit γ.

By (ii) and (iv) we have

D ∪ α(C) ⊆ D′ ∪ α′(C ′) ∪ {t} ∪ •t .

By induction hypothesis D ∪ α′(C ′) is circuit-free. So γ contains t.

Since all places of γ belong to R and t /∈ •R, we have that γ contains no
place of t•, contradicting that γ is a circuit.

(b) α(C) ∩ •Q = ∅.
We have

α(C) ∩ •Q′
⊆ (α(C ′) ∪ {t}) ∩ •Q′ (def. of α and Q = Q′)
= {t} ∩ •Q′ (induction hypothesis)
= ∅ (t /∈ •R and •Q ⊆ •R)

�

210

We now prove that we can find an infinite occurrence sequence that “re-
spects a given allocation”. This part crucially requires the free-choice prop-
erty.

Lemma 5.3.9 (Allocation Lemma)
Let (N,M0) be a live free-choice system, let C be a set of clusters ofN , and
let α : C → T be an allocation of C.

There is an infinite occurrence sequence M0
σ−→ such that σ contains

• infinitely many occurrences of allocated transitions, and

• no occurrences of non-allocated transitions of C, i.e., of transitions
of
⋃
c∈C c \ {α(c)}.

Proof. We iteratively define occurrence sequences σ0, σ1, σ2, . . ., and define
σ := σ0 σ1 σ2

Given a marking Mi, let τi be a minimal occurrence sequence that enables
some cluster c ∈ C. The sequence exists by liveness.

By the free-choice property, the sequence σi = τiα(c) is also a firing se-
quence.

Let Mi+1 be the marking given by Mi
σi−−→Mi+1. �

211

Theorem 5.3.10 (Second half of Commoner’s Liveness Theorem)
Let (N,M0) be a free-choice system. If (N,M0) is live, then every proper
siphon of N contains a trap marked at M0.

Proof. Let R be a proper siphon of N , and let Q be the maximal trap
included in R. We prove M0(Q) > 0.

Since (N,M0) is live, we have M0(R) > 0 by Proposition ??.

Let D = R \Q.

If D• = ∅ then D is a trap. So D ⊆ Q, which implies D = ∅, and we are
done.

If D• 6= ∅ then let C = {[t] | t ∈ D•}.
By Lemma ?? there is an allocation with domain C and circuit-free for D
satisfying α(C) ∩ •Q = ∅.
Let M0

σ−→ be the occurrence sequence of Lemma ??. It is easy to see that

• Q cannot become marked during the occurrence of σ.

Because transitions of •Q are not allocated, and so do not occur in σ.

• Q is marked at some point during the occurrence of σ.

Since α is circuit-free, there is an allocated transition t that occurs
infinitely often in σ, and whose input places are not output places of
any allocated transition.

So the input places of t must get tokens from transitions that do not
belong to the clusters of C.

But these transitions are necessarily output transitions of Q.

�

212

Non-liveness of free-choice systems is NP-complete

The non-liveness problem for free-choice systems is NP-complete, and so
we cannot expect to find a polynomial algorithm to check the condition of
Commoner’s Theorem:

Theorem 5.3.11 (Non-liveness is NP-complete)
The following problem is NP-complete:

Given: A free-choice system (N,M0)
Decide: Is (N,M0) not live?

Proof. Membership in NP follows from Commoner’s theorem.

The following nondeterministic algorithm decides non-liveness:

• Guess a siphon R of N .

• Compute (in polynomial time) the maximal trap contained in R.

• Check that the trap is unmarked at M0.

The proof of NP-hardness is by reduction from SAT, the satisfiability prob-
lem for boolean formulas.

Given a formula ϕ, we construct in polynomial time a free-choice Petri net
(Nϕ,M0ϕ) such that ϕ is satisfiable iff (Nϕ,M0ϕ) is not live.

The construction is described by example in the next page.

�

213

False

x1x1

A1 A2 A3

x2 x3x2 x3

C1 C2 C3

Figure 5.2: Free-choice system for (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3)

214

5.3.2 Boundedness

Definition 5.3.12 (S-component)
Let N = (S, T, F) be a net. A subnet N ′ = (S ′, T ′, F ′) of N is a
S-component of N if

1. N ′ is a strongly connected S-net, and

2. T ′ = •S ′ ∪ S ′•.

Two S-components of the net of Figure ??:

s1

s3 s5

s7

s2

s4 s6

s8

215

S-components are for free-choice systems what circuits are for T-systems:
firing a transition does not change the number of tokens of an S-component.

Proposition 5.3.13
Let (N,M0) be a Petri net and let N ′ = (S ′, T ′, F ′) be an S-component of
N . Then M0(S

′) = M(S ′) for every marking M reachable from M0.

Proof. Firing a transition either takes no tokens from a place of the com-
ponent and adds none, or it takes exactly one token and adds exactly one
token. �

Theorem 5.3.14 (Hack’s Boundedness Theorem)
Let (N,M0) be a live free-choice system. (N,M0) is bounded iff every place
of N belongs to a S-component.

Proof. (⇐) Exercise

(⇒) (Sketch). We first show that every minimal siphon N is the set of
places of a S-component. Then we show that every place is contained in
some minimal siphon. �

Proposition 5.3.15 (Place bounds)
Let (N,M0) be a live and bounded free-choice system and let s be a place
of N . We have

max{M(s) |M0
∗−→M} =

min{M0(S
′) | S ′ is the set of places of a S-component of Nandcontainss}

Proof. Analogous to the Boundedness Theorem for T-systems. �

216

The Rank Theorem

Theorem ?? shows that there is no polynomial algorithm for Liveness (un-
less P = NP). But what is the complexity of deciding if a free-choice
system is simultaneously live and bounded.

We can first use the decision procedure for liveness, and then check the
condition of the Boundedness Theorem. But there are more efficient algo-
rithms.

(Compare with this: in order to decide if a number is divisible by 100.000,
we can first check if it is divisible by 3125, and, if so, if it is divisible by 32.
However, there is a faster procedure: check if the last five digits are zeros.)

The fastest known algorithm runs in O(n ·m) time for a net with n places
and m transitions. A not so efficient but simpler algorithm follows from the
Rank Theorem:

Theorem 5.3.16 (Rank Theorem)
A free-choice system (N,M0) is live and bounded iff

1. N has a positive S-invariant.

2. N has a positive T-invariant.

3. The rank of the incidence matrix N is equal to c − 1, where c is the
number of clusters of N .

4. Every proper siphon of N is marked under M0.

Proof. Omitted. �

(1) and (2) can be checked using linear programming, (3) using well-known
algorithms of linear algebra, (4) by computing the largest siphon unmarked
at M0.

217

5.3.3 Reachability

Reachability is NP-complete for live and bounded free-choice Petri nets.

We prove separately that it is NP-hard and in NP.

Theorem 5.3.17 Reachability is NP-hard for live and bounded free-choice
systems.

Proof. We proceed in two steps

(1) We reduce SAT to the following problem:

Given: A live and bounded free-choice system (N,M0), two disjoint
sets T=1, T≥1 of transitions of N , and a marking M .

Decide: Is M reachable from M0 by means of a firing sequence that
fires each transition of T=1 exactly once, and each transition of T≥1 at
least once?

(2) We reduce this problem to the reachability problem for live and bounded
free-choice systems.

(1) Figure ?? shows the net N , the markings M0 and M , and the sets
T=1, T≥1 for the formula

x1 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) .

218

x1 x2

tx1 fx1 tx2 fx2

>= 1 >= 1 >= 1

Marking M0

Marking M

C2
C3C1

= 1 = 1

End

Start

Figure 5.3: Result of the reduction for the formula x1 ∧ (x1∨x2) ∧(x1∨x2)

219

The formula has three clauses C1, C2, C3.

Black tokens correspond to M0 and white tokens to M .

Intuitively, the net chooses a variable xi, and assigns it a value by firing txi
or fxi. This sends tokens to the three modules at the bottom of the figure,
one for each clause.

More precisely, for each clause the transition sends exactly one token to
one of the two transitions of the module: if the value makes the clause true,
then the token goes to the input place of the transition that belongs to T≥1;
otherwise the token goes to the input place of the other transition.

The formula is satisfiable iff the Petri net has a firing sequence that fires

• each transition of T=1 exactly once,
(this corresponds to choosing a truth assignment)

• each transition of T≥1 at least once
(so that at least one of the literals of each clause is true under the
assignment).

220

(2) Now we reduce the problem above to the reachability problem for live
and bounded free-choice systems.

Given a free-choice net with sets T=1, T≥1 ⊆ T , we “merge” each transition
of T≥1 with the transition t≥1 of a separate copy of this module

0=
> 1

t t
Marking M

Marking M

The module ensures that in order to reach the marking M the transition t≥1

has to be fired at least once.

Similarly, we merge each transition of T=1 with the transition t=1 of a sep-
arate copy of this module

��
��
��
��

��������
����������

��������

����������

����������

����������

����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

���
���
���
���

t = 1

Marking M

Marking M0

The second module ensures that the transition t=1 has to be fired exactly
once. �

221

Like for Commoner’s Theorem, membership in NP is harder to prove. It
follows from this theorem, due to Yamasaki et al.

Definition 5.3.18 (Subnet generated by a set of transitions)
Let N = (S, T, F) be a net, and let U ⊆ T . The subnet of N generated
by U , denoted NU , is the unique subnet of N having U as set of transitions
and •U ∪ U• as set of places.

Theorem 5.3.19 (Reachability Theorem)
Let (N,M0) be a live and bounded free-choice system. M is reachable from
M0 iff there exists a vector X ∈ N|T | such that

• M = M0 + N ·X , and

• The system (NU ,MU) has no unmarked traps, where
U = {t ∈ T | X(t) > 0} and MU is the projection of M onto the
places of NU .

Proof. (⇐): Exercise.

(⇒): Omitted. �

Membership in NP can then be proved as follows. To check that M is
reachable in (N,M0), where N = (S, T, F):

• Guess a set U ⊆ T .

• Construct NU , compute in polynomial time the maximal trap of NU

unmarked at M , and check that it is the empty trap.

• Guess in polynomial time a vector X ∈ N|T | such that X(t) ≥ 1 for
every t ∈ U , and check that M = M0 + N ·X holds.

Proving that the vector can be guessed in polynomial time follows from the
fact that Integer Linear Programming is also in NP.

222

5.3.4 Other useful results

A Petri net (N,M0) is cyclic if, loosely speaking, it is always possible to
return to the initial marking. In other words, for every markingM reachable
from M0, the marking M0 is reachable from M .

Theorem 5.3.20 (Cyclicity Theorem)
A live and bounded free-choice system (N,M0) is cyclic iff M0 marks every
proper trap of N .

Proof. Omitted. �

Reachabiilty is polynomial for live, bounded, and cyclic free-choice sys-
tems.

Theorem 5.3.21 (Reachability Theorem for Cyclic Free-Choice Nets)
Let (N,M0) be a live, bounded, and cyclic free-choice system. A marking
M of N is reachable from M0 iff M0 ∼M .

Proof. Omitted. �

Corollary 5.3.22 The problem

Given: a live, bounded, and cyclic free-choice system (N,M0)
and a marking M
Decide: Is M reachable?

can be solved in polynomial time.

223

There is also a Shortest Sequence Theorem for live and bounded free-choice
nets.

Theorem 5.3.23 (Shortest Sequence Theorem)
Let (N,M0) be a live and b-bounded free-choice system and let M be a
reachable marking. Then there is an occurrence sequence M0

σ−→M such
that

|σ| ≤ b n(n+ 1)(n+ 2)/6

where n is the number of transitions of N .

This gives a simpler proof that the reachability problem for live and bounded
free-choice nets is in NP: just guess in polynomial time an occurrence se-
quence leading to M .

224

