Comparing place invariants and the marking equation

Definition

Let N be a net and let L, M be two markings of N. We say that L and M agree on all invariants if $I \cdot L = I \cdot M$ for every invariant I.

Theorem

Let N be a net and let L, M be two markings of N. L and M agree on all invariants if the marking equation $L = M + X$ has a solution.
When \(X \in \mathbb{Q} \),

Proof:

(\(\Leftarrow \)) Easy

(\(\Rightarrow \)) Let \(V_c \) be the vector space generated by the columns of \(C \).

Let \(V_p \) be the vector space of \(p \)-invariant

By definition of \(p \)-invariant we have

\[X \in V_p \iff X \cdot y = 0 \text{ for every } y \in V_c \]

A well-known theorem of linear algebra yields:

\[X \in V_c \iff X \cdot y = 0 \text{ for every } y \in V_p \]
Since \(Y \cdot L = Y \cdot M \) holds for every \(Y \in V_p \), we have
\[
Y \cdot (L - M) = 0 \quad \text{for every} \quad Y \in V_p,
\]
and so, by the theorem above,
\[
(L - M) \in V_c.
\]
So \((L - M) \) is a linear combination of the columns of \(C \), which means
\[
(L - M) = C \cdot x_0 \quad \text{for some} \quad x_0 \in \mathbb{Q}^{|T|},
\]
and so
\[
M + C \cdot x_0 = L.
\]